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bÉcoles de Saint-Cyr Coëtquidan, 56380 Guer, France

(Received 00 Month 20XX; accepted 00 Month 20XX)

The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the
MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a
classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost
functions – two polynomial criteria and a min/max criterion – were tested on a planar musculoskeletal
model. The MusIC method provides a computation frequency approximately ten times higher compared
to a classical optimization problem with a relative mean error of 4% on cost function evaluation.
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1. Introduction

Musculoskeletal simulation is evolving quickly and numerous software propose musculoskeletal sim-
ulations based on inverse dynamics based method (Damsgaard et al. (2006); Delp et al. (2007))
or on EMG-driven models (Buchanan et al. (2004, 2005); Sartori et al. (2012)), even in real time
(Manal et al. (2002); Murai et al. (2010); van den Bogert et al. (2013)). In such software using in-
verse dynamics based methods, the force sharing problem is solved thanks to optimization methods.
In An et al. (1984) and Herzog (1987), the force sharing problem is assumed to be an optimization
problem, consisting in minimizing a criterion representing a central nervous system (CNS) strat-
egy. The criterion represents a cost, e.g. metabolic energy, muscle fatigue or joint reaction force
(Crowninshield and Brand (1981); Challis (1997); Rasmussen et al. (2001); Dumas et al. (2014)).

However, optimization remains costly in terms of computation time, despite of several implemen-
tations and improvements in the last years. Mostly, the use of Sequential Quadratic Programming
Methods (SQP) have deeply improved the computation times since the muscle forces estimation
problem is well shaped for such an algorithm.

However, in real-time simulations including muscle forces estimation, the result remains sub-
optimal. In the method proposed by Murai et al. (2010), muscles were gathered by functional
groups to reduce the problem complexity, that led to strong bias in the estimated forces. In the
work of van den Bogert et al. (2013), the use of a neural network dedicated to quadratic optimization
led to a real-time but sub-optimal result, since computation time was limited to ensure real-time
computation. Moreover, force-length and force-velocity relationships were not taken into account
in the muscle models in this paper.

Interpolation has been proposed as a solution to reduce the computation time (Pontonnier and
Dumont (2009, 2010)). Although barycentric interpolation of muscle forces based on a database
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of optimized forces led to a faster solution than classical optimization, the method did not ensure
the dynamical equilibrium of the interpolated forces. Moreover, the database remained difficult to
extend to multibody models and multi-articular muscles, mostly due to the high degree of coupling
existing between joints.

The current study aims at presenting a fast and quasi-optimal method of muscle forces estimation,
the MusIC method (Muscle forces Interpolation and Correction) and its performance in terms of
mean computation frequency and accuracy. The next section presents the MusIC method and the
application developed to compare this method with a classical SQP method. Results are presented
and discussed in terms of optimality with regard to the chosen cost function and external forces
applied to the system, similarity between the solutions found by both methods and computation
time.

2. Methods

In the following section, we consider a generic musculoskeletal model composed of nb bodies,
articulated by nj joints and actuated by nm muscles.

From the musculoskeletal model geometry, we construct the (nj×nm) matrix M which contains
the analytical expressions of the moment arms of each muscle for each joint with respect to joint
coordinates. For a given frame, this matrix is numerically evaluated from joint coordinates values.
F refers to the (nm×1) muscle forces vector at a given frame. Fmax is the (nm×1) maximal muscle
forces vector containing the maximal physiological force that can be provided by each muscle. The
input of the MusIC method are the joint coordinates and the joint torques, issued from motion.
Thus, the (nj × 1) vector q contains the joint coordinates and the (nj × 1) vector Γ contains the
joint torques.

2.1 MusIC method overview

The MusIC method is based on two main hypotheses:

• the muscle forces problem can be first solved joint per joint and the inter-joint muscular
coupling (multi-articular muscles) can be taken into account a posteriori;
• the muscle forces can be corrected to respect the dynamic equilibrium.

Therefore, the MusIC method is separated in two stages. The first one consists in computing a
database describing the muscle forces sharing solution joint per joint. The second one consists in
interpolating forces thanks to this database, mixing them to take into account muscular coupling
and finally correcting them to respect the dynamics of the motion.

The database contains the classical muscle force sharing solutions – solutions of the static op-
timization under constraints of a cost function representing the CNS behavior –, stored in an
(nm×1) activation ratio vector α, solution of the force sharing problem for the considered joint. It
corresponds to the activity of each muscle normalized by the total activity of the muscles involved
in this joint’s motion (1). By considering only one joint, it allows muscle forces to be computed
independently from the torque applied to generate the database. Indeed, the values of α are not
dependent of this applied torque due to the normalization by the sum of activations of all muscles.

αm =
Fm/Fmax,m
nm∑
i=1

Fi/Fmax,i

(1)

Where m is the mth muscle. The next section details the computation and the storage of the
vector α in a generic case.
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2.2 Database computation

An activation ratio vector database consists in nj independent sub-databases (left part Figure 1)
containing activation ratios for each joint of the model.

Figure 1. Activation ratio vector databases structure, composed of nj independent sub-databases (left part). Each sub-database

gathers α for different joint configurations (central part). For each configuration, α are computed and stored (right part).

Each sub-database is composed of activation ratio vectors α. As they depend on moment arms,
a sub-database stores α for different joint configurations (central part Figure 1). For the ith sub-
database, only joints affecting moment arms of joint i are considered. To handle this, a symmetric
(nj × nj) muscular coupling matrix C is associated to the musculoskeletal model. Cij is 1 if there
is at least one muscle coupling joints i and j, zero otherwise. Figure 2 shows three examples
of muscular coupling: mono-articular, bi-articular and tri-articular muscle and the corresponding
coupling terms. The dimension of sub-database i is the number of joints affecting the moment
arms of joint i. Joint space of database i is discretized to generate joint configurations. For each of
these sub-database configurations, the other joints coordinates are set to zero. The central part in
Figure 1 represents the 3-dimension sub-database i considered in the example (3) in Figure 2.

Figure 2. Example of different muscular coupling. (1): mono-articular muscle actuating the joint i. (2): bi-articular muscle
actuating joints (i − 1) and i. (3): tri-articular muscles actuating joints (i − 1), i and (i + 1). Black lines represent segments

and black circles represent revolute joints. Red lines represent muscles attached to the segments.
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For each configuration, activation ratio vectors are computed thanks to an optimization prob-
lem (2) and then stored in the database (right part Figure 1). It consists in minimizing a cost
function while respecting the dynamic equilibrium and the positivity of forces exerted by muscles
due to the fact that muscles can only pull. The maximal muscle forces are not taken into account in
this optimization problem since only ratios between forces are stored in the database. A reference
torque Γref is assigned to joint i and the other joints torques are set to zero value. The muscle
force sharing solution depends on the sign of the joint torque, therefore the algorithm computes
two separate groups of α: α+ for a positive reference torque (Γref > 0) and α− for a negative
reference torque (Γref < 0).

minimize
F̃

f(F̃ )

subject to M̃F̃ = Γ̃ref ,

F̃ ≥ 0.

(2)

Where ∼ refers to the joints affecting the moment arms of the joint associated to this sub-

database – obtained from the coupling matrix C – and muscles actuating this joint. Thus, M̃
is the sub-matrix of M containing the rows associated to the referred joints and the columns
associated to the referred muscles. F̃ is the sub-vector of F containing the forces associated to the
referred muscles. Γ̃ref contains the torques applied in referred joints – Γref for the joint associated
to the sub-database and zero value for the others. α+ and α− are then computed thanks to the
equation (1) by using F̃ and by assigning a zero force for the joints that are not considered in F̃ .

2.3 Muscle forces estimation

From an experimental or a simulated motion, the MusIC method aims at estimating the muscle
forces. Thanks to joint coordinates q and joint torques Γ, the method uses the previously generated
database to compute a muscle forces estimation frame per frame. It consists in two global steps:
an interpolation step and a correction step (Figure 3). From the current joint coordinates and
joint torques, a first estimation of the muscle forces for each joint (F (1), F (2), ..., F (nj)) – set of
(nm × 1) vectors – is interpolated from the activation ratio vector database. Then, the correction
step find a solution F close to the interpolation result that respects the dynamic equilibrium and
the physiological properties.

Figure 3. MusIC method pipeline. Muscle forces are deducted from joint coordinates q and joint torques Γ. A first estimation

is interpolated from the database for each joint. The correction step finds a solution F close to the first estimation that respects
the dynamic equilibrium and the physiological properties.

Step 1 computes muscle forces that respect the joint torques and the activation ratio vector for

each joint configuration (3). For joint i, the interpolated activation ratio vector α
(i)
interp is extracted

4



January 18, 2018 Computer Methods in Biomechanics and Biomedical Engineering Mulleretal2016CMBBE

from the sub-database i thanks to a linear interpolation between the stored values. The sign of Γi
decides to use α+ or α−.

F (i) =

 Γi

Mi∗ · (α
(i)
interp ◦ Fmax)

(α(i)
interp ◦ Fmax

)
(3)

Where Mi∗ corresponds to the ith row of the moment arms matrix M and ◦ is the entrywise
product.

Step 2 gathers and corrects forces obtained at step 1. Step 1 gives several forces values for a single
muscle (one per joint on which the muscle acts). Thus, step 2 first computes a single muscle force
for each muscle, gathered in a (nm×1) vector Fs. For each muscle, the force value is computed with
a barycentric interpolation of all the forces associated to the muscle (4). The torques associated
with each joint are used as weights in the interpolation.

Fs,m =

∑
i∈Jm

F
(i)
m Γi∑

i∈Jm
Γi

(4)

where Jm is the list of joints actuated by the muscle m. Once Fs is obtained, we solve the
optimization problem (5). It consists in finding the closest solution to Fs subject to the dynamic
equilibrium and the physiologicial properties – muscles can only pull with maximal forces. An
active set method using Karush-Kuhn-Tucker (KKT) conditions and directly implemented from
Dumont (1995) is used to solve this problem. The gradients are analytically computed since the
cost function is quadratic and constraint equations are linear.

minimize
F

nm∑
i=1

(
Fi − Fs,i
Fmax,i

)2

subject to MF = Γ,

0 ≤ F ≤ Fmax.

(5)

Finally, the vector F is the solution of the muscle force estimation problem for this frame.

3. Application

The method was applicated and compared to a classical optimization method for a large set of
motions applied to a simple but representative musculoskeletal model.

3.1 Model

A transverse planar shoulder and elbow model was used. The skeletal system consisted of the thorax
– considered fixed –, the arm and the forearm (Figure 4). Geometrical and inertial parameters were
obtained respectively from Dempster (1955) and Dumas et al. (2007) and uniformly scaled to the
subject’s size and mass. One synthetic morphology was used to test the method: 180 cm/80 kg.

The muscular geometry was based on the virtual arm model developed by Song et al. (2008)
and consisted in 12 muscles as detailed in Table 1. The maximum force produced by a muscle
was defined from the maximum isometric force f0 and the muscle length – depending on the joint
coordinates q – by using the length-force relation proposed by Rengifo et al. (2010) (Figure 5).
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Figure 4. Schematic representation of the transverse planar arm model used in this study. The same representation as in
Figure 2 is used. Broken lines illustrate muscles with via points associated to the segments.

Joint actuated
Muscles by this muscle f0 (N)

Shoulder Elbow
DA Deltoid anterior x 1,148
DP Deltoid posterior x 266
PC Clavicular portion of pectoralis major x 490
SS Supraspinatus x 1,203
IS Infraspinatus x 364

Blh Biceps long head x x 630
Bsh Biceps short head x x 434
Tlh Triceps long head x x 611
Tlt Triceps lateral head x 763

Tmd Triceps medial head x 630
BS Brachialis x 994
BR Brachioradialis x 266

Table 1. Muscles in the model. f0 is the maximum isometric force.

An external constant force Fext was applied to the distal point of the forearm, with four different
levels of intensity [0 0], [0 50], [50 0] and [50 50] – expressed in the global frame R0 –.

3.2 Databases generation

In this application, to test the robustness of the method, three different cost functions were tested:
two polynomial criteria (6)(7) (Pedotti et al. (1978); Herzog (1987); Happee (1994)) and one
min/max criterion (8) (Rasmussen et al. (2001)). The behaviors induced by these usual cost func-
tions are different. Indeed, the two polynimal criteria used tend to recruit in priority strongest
muscles whereas the min/max criterion tends to recruit in similar proportion all the synergistic
muscles. Thus, three databases associated to the three cost functions were generated as described
in Section 2.2.
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Figure 5. Force-length relationship (Rengifo et al. (2010)). Fmax,m is the maximum force produced by a muscle, f0 the

maximum isometric force, lm the current length – depending on the joint coordinates q – and l0 the optimal fiber length.

f(F ) = f1(F ) =

nm∑
m=1

(
Fm

Fmax,m

)2

(6)

f(F ) = f2(F ) =

nm∑
m=1

(
Fm

Fmax,m

)3

(7)

f(F ) = f3(F ) = max
m∈[[1:nm]]

(
Fm

Fmax,m

)
(8)

Cost functions f1 and f2 were directly used in optimization problem (2). As proposed by Ras-
mussen et al. (2001), the optimization problem with f3 was reformulated as a bound formulation
(9) to improve the numerical resolution. Optimization problems were solved with a SQP method
(fmincon function of Matlab R©).

minimize
β,F

β

subject to F ≤ β,

MF = Γ,

F ≥ 0.

(9)

After a preliminary study, we chose to discretize the accessible joint space of each joint in 60 parts
between −180◦ and 180◦. This value ensured results convergence with an acceptable computation
time – about one hour – for the database generation. In this example, with bi-articular muscles, the
muscular coupling matrix C is a (2× 2) matrix and each sub-database contained 3,600 (60× 60)
α entries.

3.3 Motions generation

To compare the MusIC method to a classical method, a set of synthetic unconstrained point-to-
point motions was chosen. To generate a set of 36 start-end points (forearm distal point), we chose
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6 joint coordinates equally distributed between 5◦ and 90◦ for the shoulder and 6 joint coordinates
equally distributed between 5◦ and 90◦ for the elbow. All point-to-point combinations between
the 36 points were generated. All the motions were completed successively in 0.5 second and in 1
second, sampled at 100 Hz, representing finally 2,520 motions.

As mentioned before, the input of the MusIC method are the joint coordinates and the joint
torques. Thus, joint trajectories were obtained thanks to the work of Flash and Hogan (1985),
minimizing the mean-square jerk. At each frame, the joint coordinates vector q is thus extracted.
Joint torques Γ were computed thanks to a recursive Newton-Euler algorithm – based on spatial
algebra – (Featherstone (2008)) taking into account the external force Fext. For this end, for each
motion, trajectories q were numerically differentiated to obtain joint velocities and accelerations.
The gravity was assumed to be zero, since the arm worked in the transverse plane as in the Flash
and Hogan (1985) experimentation.

3.4 Muscle forces estimation

Muscles forces F , computed thanks to the MusIC method, and reference muscle forces Fref ,
computed thanks to a classical optimization method, were compared.

3.4.1 MusIC method

According to the cost function, muscle forces F were computed in accordance with the method
described in section 2.

3.4.2 Classical optimization method

Reference muscle forces Fref were computed by solving an optimization problem (10) with each
cost function f(Fref ) and each motion. Constraint functions correspond to the dynamic equilibrium
and the physiological properties. For the min/max optimization problem, a bound formulation was
used (Rasmussen et al. (2001)). Optimization problems were classically solved by applying a SQP
method.

minimize
Fref

f(Fref )

subject to MFref = Γ,

0 ≤ Fref ≤ Fmax.

(10)

3.4.3 Comparison

Both methods were compared in terms of accuracy and computation time. During the resolution
of the optimization problem 5, the algorithm did not converge for some configurations whereas
all agonist or antagonist muscles provide their maximal force. Thus, these configurations were not
physiologically plausible due to the fact that the motions were synthetically generated. Motions
containing one of these configurations were detected and not taken into account in the statistics.
For each motion, a cost function matching indicator εf (11) averaged over the motion (over-lined
variables) was evaluated to assess the match between the cost function values computed by using
Fref and computed by using F .

εf =
f(F )− f(Fref )

max(f(Fref ))
(11)
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Moreover, cross-correlation was used to compare the muscle forces obtained by both methods in
terms of shape. Last, the mean computation frequency of both methods were collected by dividing
the whole computation time by the number of frames. Only the computation time of muscle forces
estimation parts were considered. We chose to use the mean computation frequency to allow motions
with different duration to be compare.

4. Results and discussion

The first step consisted in detecting and removing unfeasible motions. Thus, considering all com-
binations of motions, external forces and cost functions, we kept 18,207 motions on the 25,920
generated ones.

Globally, the mean cost function matching indicator was 4±3.7% for all trials. Table 2 shows the
mean cross-correlation results for each muscle force. The mean cross-correlation coefficients ranged
between 0.89 and 0.99. The maximal mean time delay was 0.16 seconds. For the classical opti-
mization method and for the MusIC method, the mean computation frequencies were respectively
108± 33 Hz and 1000± 180 Hz.

Muscles r τ(s)
DA Deltoid anterior 0.99 -0.14
DP Deltoid posterior 0.93 -0.05
PC Clavicular portion of pectoralis major 0.98 -0.11
SS Supraspinatus 0.94 -0.02
IS Infraspinatus 0.95 -0.05

Blh* Biceps long head* 0.96 -0.07
Bsh* Biceps short head* 0.92 -0.03
Tlh* Triceps long head* 0.91 -0.03
Tlt Triceps lateral head 0.90 -0.16

Tmd Triceps medial head 0.90 -0.16
BS Brachialis 0.90 -0.02
BR Brachioradialis 0.89 -0.02

Table 2. Mean cross-correlation coefficient (r) and mean time lag (τ) between muscle forces obtained with both methods.

Bi-articular muscles are noted with a *.

The cost function matching indicators distributions differ according to the cost function used
(Figure 6). The εf followed a normal distribution (verified by a quantile-quantile linear correlation),
thus a f-test was performed between cost function results. Significant differences were detected
between each cost function results (p < 0.001). The mean cost function matching indicators were
1.85± 1.70%, 2.52± 2.30% and 7.12± 3.65% for f1, f2 and f3 respectively.

Figure 7 compares the three cost function values obtained by both methods with respect to time.
Motions 1, 2 and 3 exhibit respectively a low εf , a median εf and a high εf compared to the mean.
In every case, cost function f1 and f3 led to the lowest and highest εf values respectively. Moreover,
the highest absolute differences between the two methods were found where muscle activations were
the most important.

For the motion 2 – εf comparable to the mean –, we analyze the muscle forces obtained by both
methods with the cost function f1 (Figure 8), the cost function f2 (Figure 9) and the cost function
f3 (Figure 10). In accordance with the cost function matching indicators results, muscle forces
obtained considering the cost function f3 are further from the classical method than the others.
This result is particularly visible on the deltoid posterior (DP), on the triceps long head (Tlh)
and on the triceps medial head (Tmd). For the two others cost function, results are very similar.
For each muscle, the activation or the non-activation is respected with the MusIC method. The
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Figure 6. Box plots representing cost function matching indicators distributions for the different cost function used. Significant

differences at p < 0.001 are denoted ***. Outliers were not displayed.

three muscular chiefs of Triceps exhibit a small difference in amplitude and force distribution. The
deltoid posterior muscle (DP) is representative of the recruiting differences between cost functions.
This behavior was correctly mimicked by the MusIC method, leading to more muscle synergy with
a higher polynomial degree.

Results are encouraging: in any case, the method finds a quasi-optimal solution which respects
the dynamic equilibrium and the physiological properties. We consider the solution as quasi-optimal
with respect to the classical optimization problem of the considered cost function. Cross-correlations
show that each muscle force exhibit a similar shape between methods. The main benefit of this
sub-optimal method is the computation frequency which is, in this case, approximately ten times
higher. However, the MusIC method requires an additionnal computation time corresponding to the
database generation time – about one hour. This time may seem important and widely increase the
global computation time. However, several improvements are suggested in the following discussion
to decrease the computation time needed to generate the database.

One of principles of this method is to consider separately the muscles contribution for each joint.
So, the poly-articular muscles are those which could give the worst results. However, the cross-
correlation for these muscle forces seems to be consistent with the others. As the method proposed
aims at mimicking a static optimization, it has the same limitations. One of them is the lack of
continuity of the solution from one frame to one other. This issue is however pondered by the fact
that sampling time is quite small.

Large differences appear according to the cost function used. That means MusIC method does
not behave in the same way for each of them. Indeed, errors with cost function f3 are higher and
more variable than with the others where the error on cost function is always less than 7%.

This is also the case in the three motions used as illustrative and representative cases. As men-
tionned above, cost function f1 and f3 led to the lowest and highest εf values respectively. The
illustrative motions also seemed to show that the more the joint motion is important, the more
the error is important. Since motion duration is equal in any case, it seems to show that higher
accelerations led to less accurate results. However, this is not that sensitive with cost functions f1

and f2 as presented on Figure 6.
The results presented above are also confirmed by the muscle forces values. Cost functions f1

and f2 led to very similar activations and amplitudes whatever the method used. Only the triceps
chiefs revealed a small difference in amplitude. Since these muscles actions were very similar,
the MusIC method was not accurate enough to distinguish these contributions properly. Cost
function f3 exhibited similar trends but the difference between methods was higher. Moreover, the
activation pattern of muscles was not always respected. Indeed, as expected, min/max criterion
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Figure 7. Evolution of the three cost function values with respect to time (in seconds) for three different motions. The
continuous blue line represents results obtained with the classical optimization method. The dotted red line represents results

obtained with the MusIC method. Each corresponding εf was noted on graphs. Motions 1,2 and 3 exhibit a low εf compared

to the mean, a median εf and a high εf compared to the mean respectively. Each of the three motions were completed in 0.5
second without applied external forces.

could lead to non-smooth muscle activation patterns (An et al. (1984); Crowninshield and Brand
(1981); Rasmussen et al. (2001)). The MusIC method has a natural smoothing effect – barycentric
interpolation detailed in (4) – that could explain these differences. It is particularly visible on the
deltoid anterior (DA), on the deltoid posterior (DP) and on the pectoralis major (PC) where the
abrupt changes are not followed by the MusIC method.

Thus, the MusIC method seems to be very beneficial for the polynomial criteria where the
observed results are comparable to a classical optimization problem while largely decreasing the
computation time. However, errors observed in some conditions with the min/max criterion appear
to ask for improvements to use such a method with such a cost function.

Moreover, to stay in accordance with the idea to work with activations, we chose to normalize
forces by the maximal muscle forces in the optimization problem (5) where the dynamic equilibrium
and the physiological properties are taken into account. This normalization emphasizes muscles
with larger maximal forces values.

The method was applicated on a simple but representative musculoskeletal model. However,
additional validations have to be achieved with more complex models, real experimental data and
numerous subjects. Particularly, we need to validate the method on a three dimensional model.

The use of a more complex musculoskeletal model is mandatory to define more precisely some
parameters arbitrarily chosen in this study, particularly for the database generation. Indeed, with
increasing degrees of freedom, the databases dimension will increase – for example with a classical
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Figure 8. Muscles forces (in Newtons) of the motion 2 (Figure 7) obtained by both methods with the cost function f1 with

respect to time (in seconds). The continuous blue line represents the classical optimization method. The dotted red line
represents the MusIC method. Muscle force scale goes from zero to the maximum isometric force (f0).

Figure 9. Muscles forces (in Newtons) of the motion 2 (Figure 7) obtained by both methods with the cost function f2 with

respect to time (in seconds). The continuous blue line represents the classical optimization method. The dotted red line
represents the MusIC method. Muscle force scale goes from zero to the maximum isometric force (f0).
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Figure 10. Muscles forces (in Newtons) of the motion 2 (Figure 7) obtained by both methods with the cost function f3
with respect to time (in seconds). The continuous blue line represents the classical optimization method. The dotted red line
represents the MusIC method. Muscle force scale goes from zero to the maximum isometric force (f0).

musculoskeletal leg model (Klein Horsman et al. (2007)), a sub-database generation could involve
six different joints –. This is probably not an issue for the data extraction which is achieved
separately for each dimension. However, the time spent on databases generation could become an
obstacle.

So it is of importance to find a trade-off between the density of the database and the time spent
for its generation. This is a study that will be made in a near future to allow the method to be
used with complex three dimensional models with a reasonable database generation time, a study
evaluating the accuracy of the method with regard to the database density has to be driven. An
other solution could be to define a non-homogeneous database. This solution is able to reduce the
density of some databases spaces while refining the results for others. For example, moment arm
sign changes are critical and need a high density of the database whereas extreme joint positions
seem less sensitive and databases may be less populated at these locations. Such a method can also
be used to improve the results consistency, in particular with the min/max criterion.

Currently, one database must be generated for one specific subject with one cost function. Since
the time spent for the generation may be significant, a dimensionless database could be generated
and used for all subjects with the cost function considered. This dimensionless database could
be adapted to the subject’s geometrical, inertial and muscular properties thanks to an additional
scaling step.

Moreover, to simplify the implementation and to limit the computation time, we chose to use
a linear interpolation to extract an activation ratio vector corresponding to the current joint co-
ordinates. It could be interesting to evaluate the influence of the chosen interpolation method on
results. Particularly, the most suitable interpolation method can vary according to the cost function
used.

The MusIC method was assessed with three different cost functions: two polynomial criteria and
one min/max criterion. Other functions usually exploited to evaluate muscle forces could be tested
with the MusIC method. It only consists in using a new cost function throughout the database
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generation. A polynomial criteria with another normalization factor as the physiological cross
sectional area (PCSA) (Crowninshield and Brand (1981)) or a soft saturation criteria (Siemienski
(1992)) could be tested. These cost function are based on muscle forces or activations. Some authors
have proposed to introduce joint reaction forces as a cost (Challis and Kerwin (1993) and Dumas
et al. (2014)). Even if the MusIC method does not take into account directly the joint reaction
forces, they are associated to the joint torques. We therefore believe that the use of the MusIC
method with this kind of cost function could be an interesting future work. We could also generate
the database thanks to cost functions generating co-contraction behaviors (Forster et al. (2004);
Brookham et al. (2011)). Since the MusIC method aims at mimicking an optimization method,
each generated database will lead to a unique solution for a given frame with respect to this cost
function. However different databases may be used to generate a variety of solutions, or a unique
database containing various solutions.

Moreover, the muscle model used as a application exhibits only a force-length relationship. An-
other improvement would be to extend the method to muscle models exhibiting force-velocity
relationships (Hill (1938); Zajac (1989)). This would lead to change the sub-database constitution
by including joint velocities storage.

Finally, the use of joint torques as input data of the method allows only models with open loop
chains to be used. With this kind of models, the optimization method used in this paper as the
reference is the same as classically used in the litterature (Damsgaard et al. (2006); Delp et al.
(2007)). However, some musculoskeletal models which try to improve the anatomy representation
by using closed loop chains (Van Der Helm (1994); Maurel et al. (1996); Pennestri et al. (2007)).
Thus, to take into account these models, we would have to adapt the MusIC method to not consider
joint torques as an input but directly the motion.

5. Conclusion

This paper aimed at presenting a fast and quasi-optimal method of muscle forces estimation:
the MusIC method. It consists in interpolating a first estimation in a database generated offline
and then correcting it with respect to the motion dynamics. This method was tested on a planar
musculoskeletal arm model. Results were compared with a state-of-the-art muscle forces estimation
method

For a large set of motions, the method allowed to find a solution which respects the dynamic
equilibrium and the physiological properties and corresponded to an average cost function close
to the optimal value. The method showed a particularly low computation time compared to the
classical SQP method – approximately ten times faster. The method was particularly efficient with
polynomial criteria whereas the min/max criterion leaded to less accurate results.

After additional validations, we consider implementing the method in a motion analysis library
in the near future. This would lead to a very appealing product, enabling fast and accurate mus-
culoskeletal simulation. Such a feature has a great potential in the development of new usages in
rehabilitation, sports or ergonomics. Indeed, the use of this type of method could enable a direct
feedback to the user thus improve such setups.
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