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Incubation temperature affects 
the expression of young precocial 
birds’ fear-related behaviours and 
neuroendocrine correlates
Aline Bertin1, Ludovic Calandreau1, Maryse Meurisse1, Marion Georgelin1, Rupert Palme  2, 
Sophie Lumineau3, Cécilia Houdelier3, Anne-Sophie Darmaillacq3, Ludovic Dickel3,  
Violaine Colson4, Fabien Cornilleau1, Christophe Rat5, Joel Delaveau5 & Cécile Arnould1

The influence of embryonic microclimate on the behavioural development of birds remains unexplored. 
In this study, we experimentally tested whether chronic exposure to suboptimal temperatures 
engendered plasticity in the expression of fear-related behaviours and in the expression of the 
corticotropin-releasing factor in the brains of domestic chicks (Gallus g. domesticus). We compared the 
neurobehavioural phenotypes of a control group of chicks incubated in an optimal thermal environment 
(37.8 °C) with those of a group of experimental chicks exposed chronically in ovo to suboptimal 
temperatures (27.2 °C for 1 hour twice a day). Chronic exposure to a suboptimal temperature delayed 
hatching and decreased growth rate and experimental chicks had higher neophobic responses than 
controls in novel food and novel environment tests. In addition, experimental chicks showed higher 
expression of corticotropin-releasing factor than did controls in nuclei of the amygdala, a structure 
involved in the regulation of fear-related behaviours. In this study, we report the first evidence of the 
strong but underappreciated role of incubation microclimate on the development of birds’ behaviour 
and its neurobiological correlates.

Among vertebrates, the nongenomic effects of parental environment on the construction of offspring pheno-
types are a well-observed phenomenon1. These effects drive behavioural plasticity that may constraint or allow 
offspring to cope better with the conditions experienced by their parents2,3. Most studies considering the devel-
opment of behaviour of avian species have focused on maternal effects mediated by egg quality, egg components, 
yolk hormones or post-hatching parental care4. Far less is known regarding the direct influence of embryos’ ther-
mal environment. This gap in our knowledge is particularly surprising because avian embryos are poikilotherms, 
and therefore, their development relies entirely on parental incubation behaviour.

Parents of most avian species sit on their eggs and use their bodies to transfer heat to the developing embryos. 
Parental attentiveness is crucial because the optimal incubation temperature for avian embryos is considered to 
be narrow, within the range of 35.5 °C and 38.5 °C5,6. However, field measurements have shown that embryos are 
exposed to substantial diel thermal fluctuations when parents leave their nest to forage for instance, and are thus 
subjected to temperatures above the optimum but more commonly to substantial periodic cooling5. Parental 
incubation behaviour is a period of elevated energy expenditure7, and this costly reproductive behaviour is highly 
flexible because of trade-offs between the self-maintenance and survival of parents and the thermal requirements 
and survival of developing embryos8–10. Depending on a complex balance between the intrinsic condition of 
parents (metabolic resources, health) and environmental conditions (e.g., food resources, weather and human 
activities), the microclimate provided to embryos will be close to the optima (reviewed in11). In extreme cases, 
unfavourable conditions may engender egg neglect, when eggs are left unattended by the parents for abnormally 
extended periods of time12. Most notably, the thermal environment profoundly affects the rate of embryonic 
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development. High temperatures decrease incubation periods, whereas cool temperatures slow down embry-
onic development and delay hatching12,13. In addition, embryonic metabolism (e.g., heart rate, thermoregulation, 
oxygen consumption, lipids use) changes substantially to buffer the consequences of unfavourable temperatures 
(review in14).

Contrary to morpho-physiological traits of avian embryos, which have been well described6,14, the under-
standing of the effects of incubation microclimate on the development of chicks’ behavioural traits and subse-
quent capacities to adapt to their biotic and abiotic environment is very limited. The few studies conducted to date 
show that suboptimal incubation temperatures impair traits related to fitness such as post-hatching growth rates, 
survival and reproductive success in adulthood6. In reptiles, exposure to low temperatures during incubation may 
be critical for survival since it was found to alter hatchlings’ capacities to learn the location of a hide15. Because 
birds and reptiles show very similar morpho-physiological responses to suboptimal temperatures during incu-
bation14, avian embryos may have also evolved a series of responses encompassing both morpho-physiological 
and behavioural traits. Nongenomic contributions of parents are considered a key link between environmen-
tal conditions and resulting phenotypic outcomes16. Currently, nongenomic contributions of parents to behav-
ioural phenotypes have been primarily studied via yolk hormones of maternal origin deposited into the egg17. 
We hypothesized that the temperature during incubation would influence the developmental plasticity of young 
birds’ behaviour.

To test this hypothesis, we examined whether chronic exposure to a suboptimal temperature created conditions 
for the phenotypes of young birds to be shaped by the hypothetical parental environment. We used an experimental 
paradigm under controlled thermal conditions. Our subjects were domestic chicks (Gallus g. domesticus), because 
studies of domestic chickens have long provided important insights into the potential importance of incubation 
temperature for wild birds. In addition, raising precocial chicks without a mother allows us to distinguish the 
effects on development of the prenatal environment from the effect of parental care after hatching. We compared 
the neurobehavioural phenotypes of a control group of chicks incubated in a thermal environment empirically 
considered optimal for hatchability, growth and the quality of hatchlings of layers, with those of a group of exper-
imental chicks exposed repeatedly in ovo to suboptimal temperatures. Until day 12 of incubation, both groups of 
eggs were maintained in the same incubator at the constant optimal temperature of 37.8 °C. From day 12 through 
to 19, the group of experimental eggs was placed twice a day for 1 hour in a similar incubator with equivalent 
hygrometry but maintained at 27.2 ± 0.2 °C. During incubation, we recorded heart rates to evaluate the effects of 
the temperature treatment on embryos. At hatching, we evaluated the expression of the corticotropin-releasing 
factor in neonate brains in different nuclei of the arcopallium/amygdala, a brain region involved in fear-related 
behaviours. Birds and mammals’ corticotropin-releasing factor systems play a key role in the control of the 
hypothalamic-pituitary-adrenal axis and the regulation of fear-related behaviours (like fear of novelty) or social 
behaviours18. The hypothalamic-pituitary-adrenal axis regulates corticosterone plasma levels, the major glucocor-
ticoid hormone in birds. To investigate non-invasively potential differences of adrenocortical activity, we assayed 
levels of fecal corticosterone metabolites19. We characterized the behavioural phenotypes of young chicks main-
tained under controlled thermal conditions and focused our attention in particular on fear of novelty (neophobia). 
Indeed, neophobia is widespread in bird populations, and this plastic trait is related to the capacity of animals to 
adapt to novel food or novel environments20. This trait can be cause for concern for bird welfare on farms as it 
could impair fowl’s capacities to adapt to changes in their feeding regime (feeding transitions)21. Neophobia is often 
thought to play a key role in species’ niche breadth, home range size or dietary choices22,23. The dangerous niche 
hypothesis argues that neophobia protects animals from unknown potential dangers, and that high-risk environ-
ments should favor the expression of this plastic trait20. Given the acknowledged ecological role of neophobia it is 
surprising that environmental factors engendering developmental plasticity still remained unexplored. We eval-
uated social motivation and social discrimination, which are key components of social adaptation for gregarious 
animals. Chicks’ capacities to solve a locomotor detour problem were assessed. According to the literature14, we 
predicted that the differences in the thermal environment during incubation would alter embryonic development 
and hatchlings’ growth. We expected the embryonic temperature to be a source of young birds’ subsequent behav-
ioural plasticity. As birds and fish express greater fearfulness (i.e. propensity to express fear responses) following 
prenatal stress24,25, we expected experimental chicks to express higher neophobia and enhanced reactivity to social 
separation compared with control chicks. As the corticotropin-releasing factor system regulates the expression of 
birds’ fear related behaviours, we expected the density of corticotropin-releasing factor cells to be higher in brain 
nuclei of experimental chicks than in those of control chicks.

Results
Influence of periodic cooling on embryos’ heart rate and growth. Our experimental embryos reacted 
to the temperature variations. On all recorded days, experimental embryos’ heart rates (number of beats per minute) 
decreased significantly during the 1-hour cooling treatment (Table 1), whereas control embryos’ heart rates did 
not differ significantly (Table 1). Hatching success did not differ significantly between the experimental group and 
the control group (86 of the 88 fertile eggs in the experimental group hatched and 75 of the 82 control fertile eggs 
hatched; Chi-square-test, P = 0.06). The cooling treatment increased incubation duration significantly (experimen-
tal chicks: 21.57 ± 0.03 days; control chicks: 20.94 ± 0.02 days, F1,159 = 173.21, P < 0.0001). The cooling treatment 
significantly altered the growth of experimental chicks compared with control chicks (Table 2; treatment effect: 
F1,94 = 7.32, P = 0.008; sex effect: F1,94 = 31.23, P < 0.0001; treatment X sex effect: F1,94 = 3.28, P = 0.85). The mass of 
chicks did not differ significantly between groups at hatching, but the mass of experimental chicks was significantly 
lower than that of control chicks at 10 (F1,1 = 5.53, P = 0.02) and 16 days after hatching (F1,1 = 9.78, P = 0.002), and a 
non-significant trend was apparent on day 25 (F1,1 = 3.19, P = 0.07). Food intake did not differ significantly between 
experimental and control groups on day 11 (29.58 ± 0.86 vs. 28.58 ± 0.95 g, respectively, F1,46 = 0.61, P = 0.44) or 23 
(49.96 ± 2.42 vs. 47.04 ± 2.71 g, respectively, F1,46 = 0.001, P = 0.98).
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Influence of periodic cooling on fear of novelty. We found a significantly higher latency to eat a novel 
food in experimental chicks than in control chicks, thus suggesting a stronger food neophobia in experimental 
chicks (Table 3). Except for a preliminary inhibitory phase, times spent eating during tests did not differ signifi-
cantly between groups. No significant differences were observed between groups when chicks were exposed to a 
novel object (Table 3). Latencies to eat were significantly longer in the novel object test with an unfamiliar trough 
than in the habituation test with the familiar trough for both control (z = −3.63, P < 0.01) and experimental 
chicks (z = −3.65, P < 0.01). Times spent eating during tests were significantly longer in the habituation test 
than in the novel object test for both control (z = −3.18, P < 0.01) and experimental chicks (z = −2.67, P < 0.01). 
Tested individually in a novel environment (open-field test), experimental chicks showed stronger fear reactions 
associated with a stronger behavioural inhibition than did control chicks (Table 3). First step and distress call 
latencies were longer for experimental chicks than for control chicks. The open-field test commonly elicits first 
an acute fear response in response to isolation and novelty. This acute aversive response can be assessed by the 
duration of an initial freezing phase (duration spent immobile or latency of first step). Greater fear responses are 
also associated with reduced activity levels (calling, jumping or walking)26. In line with this, experimental chicks 
expressed fewer distress calls, fewer jumps against the wall and tended to cross fewer lines than control chicks.

Influence of periodic cooling on social behaviour and performance in a detour task. The social 
motivation of chicks did not differ significantly between groups. The results of the runway tests showed that 
neither latencies to join a familiar conspecific nor proportions of time spent in the social zone differed between 
groups (experimental chicks, n = 25 vs. control chicks, n = 24; latency to join the conspecific: 23.32 ± 4.34 vs. 
27.00 ± 5.13 seconds, respectively, U = 1153.50, P = 0.74; proportion of time spent in the social zone: 0.74 ± 0.03 
vs. 0.73 ± 0.03, respectively, U = 1267, P = 0.64). The total proportion of time spent close to conspecifics (famil-
iar or not) in discrimination tests did not differ between groups (0.72 ± 0.04 vs. 0.78 ± 0.04, respectively, 
U = 256, P = 0.39). Within each group, chicks spent significantly more time in the zone close to the familiar 
conspecific than in the zone close to the non-familiar conspecific (experimental chicks, n = 25, 116.87 ± 16.07 vs. 
36.67 ± 9.07 seconds, respectively, z = −2.94, P = 0.003; control chicks, n = 24, 123.08 ± 15.66 vs. 33.84 ± 8.58 sec-
onds, respectively, z = −3.55, P = 0.0004). This clear preference showed that regardless of the treatment, chicks 

Group

Embryonic heart rate (Beats per minute)

ED 12 ED 13 ED 14 ED 15

before after before after before after before after

Experimental eggs (n = 12) 246.04 ± 15.79 116.73 ± 11.29* 265.63 ± 12.36 106.75 ± 5.27* 271.87 ± 6.97 102.54 ± 3.88* 282.51 ± 9.89 111.48 ± 5.36*

Wilcoxon tests z = −3.06 P = 0.002 z = −3.06 P = 0.002 z = −3.06 P = 0.002 z = −3.06 P = 0.002

Control eggs (n = 12) 257.58 ± 16.84 261.18 ± 20.34 257.0 ± 14.54 270.94 ± 11.73 279.18 ± 8.98 281.47 ± 9.58 281.13 ± 8.32 284.30 ± 8.96

Wilcoxon tests z = −0.15 P = 0.85 z = −1.49 P = 0.14 z = −1.33 P = 0.18 z = −0.63 P = 0.53

Table 1. Embryonic heart rates before and after 1 hour of cooling treatment. Mean beats per minute ± s.e.m. 
of experimental and control embryos on embryonic days (ED) 12, 13, 14 and 15 and Wilcoxon tests outcomes 
(intragroup comparisons). *P < 0.05.

Group Sex Day 1 Day 10 Day 16 Day 25

Body mass (g)

Control chicks
Male 43.68 ± 0.54 94.00 ± 1.60 158.66 ± 3.21 291.40 ± 5.80

Female 42.13 ± 0.42 89.54 ± 1.11 145.30 ± 1.78 257.15 ± 3.18

Experimental chicks
Male 43.99 ± 0.53 91.36 ± 1.22 151.96 ± 2.22 284.32 ± 4.18

Female 42.15 ± 0.47 86.20 ± 1.07 138.28 ± 1.69 249.60 ± 3.49

Table 2. Mass of chicks. Mean mass (grams) ± s.e.m. of control (n = 48) and experimental chicks (n = 50) on 
post-hatch days 1, 10, 16 and 25.

Neophobia Tests Parameters Measured
Control chicks 
(n = 25)

Experimental 
chicks (n = 24) U P-values

Habituation
latency to eat (seconds) 63.5 ± 8.38 77.04 ± 9.45 360.50 0.22

time spent eating (seconds) 42.16 ± 5.02 37.48 ± 5.24 264.50 0.50

Novel food
latency to eat (seconds) 18.79 ± 3.12 40.96 ± 3.90 402.00 0.04

time spent eating (seconds) 31.48 ± 4.53 36.88 ± 4.75 252.00 0.33

Novel Object
latency to eat (seconds) 128.04 ± 55.36 141.88 ± 57.67 347.00 0.32

time spent eating (seconds) 16.48 ± 28.56 17.29 ± 24.84 258.50 0.37

Table 3. Neophobia of control and experimental chicks. Parameters measured (mean ± s.e.m.) during the novel 
food, novel object and open-field tests with Mann-Whitney U-tests.
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were able to discriminate conspecifics. Experimental chicks in a detour task with a familiar conspecific as goal 
stimulus, showed significantly higher latencies to go round the barrier than did control chicks (194.96 ± 35.46 vs. 
116.16 ± 29.06 seconds, respectively, U = 413, P = 0.019).

Faecal corticosterone levels. The fecal corticosterone metabolite levels did not differ significantly between 
groups (experimental chicks, n = 25 vs. control chicks, n = 24; 99.16 ± 4.38 vs. 100.58 ± 6.58 ng/g, respectively, 
U = 313, P = 0.80).

Influence of periodic cooling on corticotropin-releasing factor expression in the amygdala. The 
number of corticotropin-releasing factor immunopositive cells in the intermediate (U = 1.5, P = 0.002), medial 
(U = 8.5, P = 0.02), dorsal (U = 7.5, P = 0.01) and posterior amygdaloid (U = 11, P = 0.049) nuclei of the arco-
pallium/amygdala of experimental chicks was significantly higher than in those of control chicks. No significant 
differences were found in the TnA nuclei of the amygdala between groups (U = 18, P = 0.25; Fig. 1).

Discussion
In this study, we provide the first evidence that incubation temperature may affect the neurobehavioural devel-
opment of young birds. Chronic exposure to a suboptimal temperature delayed hatching, decreased growth rate 
and oriented the development of juveniles towards more fearful behavioural profiles. Chicks exposed chronically 
to a suboptimal temperature also showed higher expression of the corticotropin-releasing factor in several nuclei 
of the amygdala, a brain structure involved in fear-related behaviours. Our study thus sheds light on the under-
appreciated role of the incubation microclimate on the development of birds’ behaviour and its neurobiological 
correlates.

In accordance with previous findings27, we found that heart rates decreased approximately 50% after 1 hour 
of exposure to the suboptimal temperature of 27.2 °C. We also found that this exposure slowed embryonic devel-
opment and lengthened incubation duration, traits well described in altricial or precocial bird species exposed 
to hypothermia12,28,29. Temperatures of birds’ allantoic fluid and embryonic heart rates show a linear relationship 
with a rapid decrease for both parameters when exposed to low temperatures30. This rapid adjustment of embry-
onic cardiac function is considered an adaptation that allows modification of oxygen supply under hypother-
mia30. Our treatment did not affect chicks’ mass at hatching or hatching success but did affect experimental chicks 
subsequently as during their first two weeks of life their mass was lower than that of control chicks. Because feed-
ing motivation and faecal corticosterone metabolite levels did not differ between the two groups, this temporary 
alteration of growth could have been due to a higher catabolism of egg proteins and lipids in experimental than in 

Figure 1. Representative photomicrographs of fluorescent corticotropin-releasing factor positive cells (CRF+) 
in the posterior pallial amygdala (PoA) of a control (a) and an experimental chick (b). Scale bar: 50 µm. (c) 
Cresyl Violet of a chick brain section illustrating the location of the posterior pallial amygdala (PoA), the 
Arcopallium dorsale (AD), the Arcopallium mediale (AM) and the Arcopallium intermedium (AI); LAD: 
lamina arcopallialis dorsalis. Scale bar: 1500 µm (d) Median and interquartile distribution ranges of the density 
of corticotropin-releasing factor positive cells (mean number/mm²) in the PoA, TnA, AM, AI and AD of control 
(N = 8) and experimental chicks (N = 7). *Mann-Whitney U-tests, P < 0.05.
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control embryos or higher metabolic rates in experimental than in control chicks31,32. Our results are in accord-
ance with experimental field studies. For instance, experimental cooling of the nest during incubation increased 
the duration of incubation and reduced growth rates in hatchlings of zebra finch (Taeniopygia gutatta)28, blue tits 
(Cyanistes caeruleus)8 and tree swallows (Tachycineta bicolor)33. Cooling of the nest can also reduce tarsus length 
after hatching in great tits (Parus major)34.

Our data revealed an effect of incubation temperature on the behavioural phenotypes of young chicks. In 
the open-field test, experimental chicks took significantly longer latency to take their first step than did control 
chicks, thus indicating a longer duration of the initial freezing phase. Duration of freezing is a parameter clas-
sically used to estimate birds’ and rodents’ fear in novel environments: the longer the freezing the greater their 
fearfulness26. Behavioural inhibition of experimental chicks was stronger as they expressed significantly less social 
reinstatement behaviours (latency of first distress call, number of calls, and number of jumps against the wall of 
the pen) than did controls. Experimental chicks’ longer latencies to eat a novel food also indicated their more pro-
nounced reaction to novelty than that of controls. Similarly, exposure to low temperatures affects the behavioural 
profile of bearded dragons (Pogona vitticeps) that are more neophobic in the short-term than bearded dragons 
incubated in a warmer environment35. Food neophobia, object neophobia and fear of novel environments of 
domestic chicks and other avian species, were recently considered as independent behavioural traits36,37. This 
could explain why we did not observe differences between the groups for all the traits related to neophobia. In 
addition, the latencies observed in the novel object tests were close to the total duration (180 seconds) of the tests 
and a ceiling effect may have masked potential differences. The mechanisms causing behavioural differences 
related to egg incubation temperature remain unexplored in vertebrates.

Our data highlight the fact that prenatal exposure to suboptimal temperatures may drive specific neurode-
velopmental plasticity in birds’ brain. Indeed, we observed a higher density of corticotropin-releasing factor 
cells in different nuclei of the amygdala of birds prenatally exposed to suboptimal temperature compared with 
controls. This effect depended apparently on the sub-region investigated, because no effect of treatment was 
observed in the TnA of the amygdala. Several functional studies demonstrated that the arcopallium/PoA com-
plex, which includes the posterior pallial amygdala (PoA) + medial arcopallium (AM) + intermediate arcopal-
lium (AI) + dorsal arcopallium (AD), is involved in the expression of fear-related behaviours in birds, whereas 
the TnA is primarily involved in sexual behaviour38. The distribution of corticotropin-releasing factor fibers 
in domestic chicken’s brain is comparable to that described for mammals, and the corticotropin-releasing fac-
tor is involved directly in the control of fear-related behaviour, in addition to having a role in the regulation 
of the hypothalamic-pituitary-adrenal (HPA) axis39,40. Corticotropin-releasing factor neurons in the hypothal-
amus begin to function approximately on embryonic day 1441, thus indicating that the system was functional 
during most of the treatment period (between days 12 and 19) of our study. Increased corticotropin-releasing 
factor levels decrease domestic chicks’ and Japanese quail’s (Coturnix c. japonica) expression of social reinstate-
ment behaviours when chicks were separated from conspecifics42. Additional investigations are required to fur-
ther our understanding of these mechanisms. One hypothesis would be that a higher central expression of the 
corticotropin-releasing factor in experimental chicks than in control chicks could explain their higher levels 
of neophobia (both of food and environment) and their lower expression of social reinstatement behaviours 
when isolated from conspecifics in a novel-environment. Social separation is known to be particularly stressful 
for gregarious birds43. Our results are more in line with a stronger emotional reaction to separation (freezing 
and behavioural inhibition) than with a lesser social motivation since no differences were observed between 
our two groups in situations where the test chicks were in the presence of their cage mate. In another precocial 
species, continuous incubation at a low temperature increases baseline corticosterone levels in wood duck (Aix 
sponsa) ducklings44. In our study, levels of fecal corticosterone metabolites did not differ between our two groups 
despite significant differences in density of corticotropin-releasing factor cells in different nuclei of the amygdala. 
These metabolites are good indicators of adrenocortical activity (pooled activity over 1–2 hours in birds)19. As 
we collected faecal samples after a resting period, we cannot exclude the hypothesis that chicks’ stress-induced 
concentrations of corticosterone, for example after novel environment tests, had differed between the two groups. 
In addition, as for mammals, the corticotropin-releasing factor can also intervene centrally in the regulation of 
fear-related behaviours39,40. Embryonic microclimate can also affect nestlings’ subsequent immunity33,45 but this 
study did not address this issue.

Chronic exposure of domestic chickens to a low incubation temperature can cause oxidative damage and 
changes in antioxidant pathways46. Moreover, central administration of the corticotropin-releasing factor in 
one-day-old chicks exposed to low temperature decreases oxidative damage in the brain47. Although we did not 
evaluate potential oxidative stress, temperature-induced oxidative damage has been reported for a large range of 
taxa (from invertebrates to birds)48. Thus, the increase in density of corticotropin-releasing factor cells that we 
observed could indicate a response of the central nervous system in order to cope with the challenge. To cope 
with hypothermia, this response mobilizes both appropriate automatic and neuroendocrine responses to the 
challenge and neuroprotective effects in brain tissues. Long-term effects on the oxidative profiles of chicks would 
be an alternative hypothesis to explain the behavioural differences we observed between our groups. Indeed, 
variations of birds’ expression of neophobia have recently been found to co-vary with the oxidative profiles of 
individuals49. Further investigations are required to test this hypothesis predicting a link between oxidative profile 
and neophobia. It is important to note that our experimental chicks that hatched on day 22 were not included in 
our analysis. We cannot therefore exclude the hypothesis that these chicks might have presented stronger effects 
of the treatment.

Latencies of experimental chicks to perform a detour task were longer than those of controls. In the scincid 
lizard (Bassiana duperreyi), cold-incubated individuals were less able than hot-incubated individuals to learn 
the location of a safe site15. In the honeybee (Apis mellifera), temperature during pupal development is related to 
learning and memory abilities50. However, in our study, the greater emotional reactivity of experimental chicks 
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than of controls could explain their longer latencies to perform the detour. Additional investigations are required 
to determine whether incubation temperature would also alter the development of cognitive abilities. No differ-
ences were found between groups of chicks concerning their social motivation or their capacities to discriminate 
between familiar and unfamiliar conspecifics. Therefore, the differences observed between our two groups in the 
detour task could not be explained by differences in the motivation to join conspecific cage mates. In addition, 
this result indicates that incubation temperature may not alter the capacity of gregarious birds to recognize brood 
mates and to form cohesive flocks.

In conclusion, we provided evidence of strong neurobehavioural plasticity caused by experimental variations 
of embryonic microclimate. Under natural conditions, avian embryos may face much more drastic variations of 
nest temperature than those in our experimental setup. Female galliforms (e.g. waterfowl, grouse) are thought to 
take off-bouts to forage 2 to 5 times a day, the average off-bout lasting 1–2 hours51–53. Blood Pheasant (Ithaginis 
cruentus) females leave their nest once a day for nearly 7 hours every day throughout the 37-day incubation 
period and egg temperatures then cooled to below 10 °C for more than 3 hours54. Superb lyrebirds (Menura 
superb), a large passerine, also present a similar pattern of incubation55. Albeit commonly less drastic, large diur-
nal variations due to parental nest attentiveness are reported for a large range of avian taxa with either mono- or 
bi-parental parental care systems5,56–58. Environmental factors such as the presence of predators59, food resource 
availability12, weather60 and/or human disturbances61 can influence incubation behaviour but less attention has 
been focused on this route of developmental plasticity. Our results support the proposal that incubation temper-
ature variation may be a source of significant inter-individual variability in the expression of fear-related behav-
iours. Our data identify important directions for future research to help understand how embryonic microclimate 
can program the ontogeny trajectory of young birds. According to the Predictive Adaptive Response hypothesis, 
early experience is a source of developmental plasticity that should be adaptive to the environmental conditions 
encountered later in life62. Suboptimal embryonic microclimates could predict future risky (e.g. presence of pred-
ators) or unfavourable environments (e.g. weather, resources) for the offspring. In the context of the Predictive 
Adaptive Response hypothesis, this early embryonic experience may thus be an important route for shaping 
adaptive physiological and behavioural responses. However, in the case of embryonic microclimate, sub-optimal 
temperatures were mostly found to alter offspring quality (e.g. mass, immunity)6 and this could indicate a phys-
iological constraint rather than an adaptation. Birds’ neophobia appears to be plastic and more frequent in indi-
viduals experiencing high-risk environments20. Further field experiments are now required to determine the 
influence of temperature on developmental plasticity and the consequences in term of Darwinian fitness (sur-
vival, reproduction).

Methods
Ethics statement. All birds were maintained at the Experimental Unit PEAT of INRA (Nouzilly, 
France, license number B-37-175-1). All experiments were approved by the Ethics Committee for Animal 
Experimentation of Val de Loire, CEEA Vdl (reference number 02153.02) and were performed in accordance 
with the European Communities Council Directive 2010/63/UE. All animals were sold for rehoming at the end 
of the experiment.

Eggs and temperature treatment. The layer breeder Novogen (SCEA JEGOU, France) provided 180 
eggs from White Leghorn layers, which were separated into two groups with statistically equivalent masses: 
a control group of 90 eggs maintained at a constant temperature (37.8 ± 0.2 °C; 56% relative humidity) and a 
thermo-manipulated group (experimental) of 90 eggs exposed to periodic cooling (27.2 ± 0.2 °C; 56% relative 
humidity) daily and for a one-hour duration between days 12 and 19 of incubation (mean mass ± SEM; control 
eggs: 60.39 ± 0.27 g; experimental eggs: 60.62 ± 0.34 g; ANOVA, F1,178 = 0.28, P = 0.59). Because eggs incubated 
at low temperatures early in incubation have low hatching success63, we started the thermal treatment on incu-
bation day 12 by following a protocol described previously27. Control group chicks were exposed to a thermal 
environment optimal for morpho-physiological development. Although a constant temperature of 37.8 °C does 
not represent the pattern that embryos may experience under natural conditions, this temperature is known to 
be the optimal thermal environment for hatchability, growth and the quality of domestic chicken layer hatch-
lings64. This temperature was chosen because of the lack of data on the effects of more natural thermal patterns 
(variation ranging between 20 °C and 40 °C)5 on phenotype outcomes. Until incubation day 12, both groups 
of eggs were maintained in the same incubator at the constant optimal temperature of 37.8 °C. From days 12 
to 19, the group of thermally manipulated eggs was placed twice daily and for one hour in a similar incubator 
with equivalent hygrometry and automatic turning system but maintained at 27.2 ± 0.2 °C. The temperature of 
27.2 °C was above the physiological zero temperature, 24–26 °C, at which development is suspended5. Domestic 
hens commonly leave their nest for 1–2 hours once a day to forage65. To mimic disrupted parental behaviour, the 
thermo-manipulated embryos were exposed daily to two distinct one-hour cooling periods, one in the morning 
and one in the afternoon. The treatment was applied between 8 AM and 7 PM at a different time each day to avoid 
habituation. On incubation day 20, all eggs were maintained at the constant optimal temperature. At that stage, 
embryos are in the process of actively piercing their egg membranes and when exposed to cool temperatures, they 
express “distress” vocalizations66. These behaviours are a potential non-controlled source of energetic expense. To 
control for the potential influence of additional movements due to the transfer of the eggs between the two adja-
cent incubators (only a few centimetres apart), the tray containing control eggs was taken out and replaced gently 
in the same incubator each time the treated eggs were taken out and placed gently in the adjacent incubator. The 
trays were equipped with individual holes maintaining eggs in a fixed position. Thus, no additional turning was 
produced when the eggs were transferred between incubators.
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Embryonic heart rate. Embryonic heart rates were measured using six digital egg monitors (Buddy™, 
Vetronic Services, UK). Twelve control eggs and 12 experimental eggs were specifically used for this measure-
ment. Although the control eggs were not exposed to the cooling treatment, the heart rates of the control and 
experimental embryos were scored simultaneously. All of the 24 eggs were measured twice a day (before and after 
the 1 hour cooling treatment) on four consecutive days starting on incubation day 12. After day 15, the move-
ments and size of embryos interfere with the infra-red light signal67. The monitors were placed in a room with a 
controlled temperature, and 4 series of 6 eggs were scored simultaneously. The experimenter recorded the number 
of beats per minute every 15 seconds for 90 seconds.

Chicks and housing conditions. We kept 98 chicks (48 controls and 50 experimental) to evaluate their 
behavioural performances. They all hatched between incubation day 21 and 21.5. 94% of the control chicks 
hatched on day 21. The control chicks kept for behavioural and neurobiological investigations were taken ran-
domly from this hatching peak. 24% of experimental chicks hatched on day 21 and 59.3% on day 21.5. The exper-
imental chicks were taken from this population. 27% of the experimental chicks hatched on day 22. They were 
not included in this analysis in order to control age and post-hatching experience between and within groups. 
It ensured homogeneity between groups of chicks kept for behavioural characterization and those kept for neu-
robiological analysis. Each chick was identified with a numbered ring on its leg. The chicks were placed in pairs 
(from the same treatment) in wire-covered plastic cages (50 cm × 40 cm × 30 cm; length × width × height) with 
wood shavings on the floor. Cages were placed in two rooms and balanced for treatment. Chicks were maintained 
under an 11 h light/13 h dark cycle, with water and food available ad libitum. The sex of each chick was deter-
mined by comb size at 4 weeks of age (males have larger combs than females). The control group was composed 
of 33 females and 15 males, and the experimental group was composed of 25 females and 25 males. All the chicks 
were weighed on post-hatch days 1, 10, 16 and 25. Food intake was assessed for each pair of chicks over a 24-hour 
period on post-hatch days 11 and 23 days of age by weighing feeding troughs.

Food and object neopobia. Behavioural responses to novel food or objects were assessed following 
protocols known to induce neophobia36. Each test was performed at the same age for all chicks (8 and 9 days 
old). Each test was run for 180 seconds. Because chicks become distressed when they are socially isolated, we 
tested cage mates together (n = 25 pairs of experimental chicks and n = 24 pairs of control chicks). Tests were 
performed in a different room but in an experimental cage that had the same features as the home cage. Testing 
commenced 90 minutes after the feeder had been removed from the home cage. Pairs were transported to the 
test room in a box and were deposited in an opaque enclosure within the test cage, opposite to the feeding 
trough. After 30 seconds, the enclosure was removed, and an unseen observer, blind to the treatment, recorded 
the behaviour of one marked focal chick of each pair. Focal chicks were chosen randomly when they were 2 
days old and were tagged with a blue-coloured mark on their head (the focal birds were 12 female and 13 male 
experimental chicks and 16 female and 8 male controls). Latency to eat (the moment swallowing was observed) 
and time spent eating were recorded (in seconds). On post-hatch day 7, chicks were familiarized with the test 
cage and handling procedure. Their home cage feeding trough was placed in the test cage, filled with their usual 
food. This familiarization procedure was also used to control food motivation. Food neophobia was tested on 
posthatch day 8 with their feeding trough filled with cracked corn-wheat. Object neophobia was evaluated on 
post-hatch day 9, the novel object was an unfamiliar coloured feeder (yellow and green plastic instead of grey 
metal) containing their familiar food.

Fear of novel environment. A novel environment test (open-field) was conducted on post-hatch days 14 
and 15. The chicks were individually (n = 50 experimental chicks and n = 48 control chicks) placed in the middle 
of an open arena (open-field; 120 cm diameter) for 5 minutes. To assess their locomotor activity, two perpendic-
ular lines were drawn in the arena, dividing the space into four equal parts. Latency of the first step, number of 
times a subject crossed a line, number of jumps against the wall, latency of distress calling and number of distress 
calls were recorded by an unseen experimenter, blind to the treatment.

Social behaviour. To assess social motivation, a runway test was conducted with individual chicks on 
post-hatch days 16 and 17 (n = 50 experimental chicks and n = 48 control chicks). The apparatus was a straight 
145 cm-long wire-mesh tunnel with a cage at the end of the tunnel where the subject’s cage mate was placed. 
The tunnel was divided into three zones of equal size: ‘non-social’ (far from the conspecific), ‘middle’ and 
‘social’ (close to the conspecific) zones. Each pair of chicks was transferred to the test room. Then, the cage 
mate was placed in the cage, and the test chick was placed in the middle zone. One chick per pair was tested 
each day. The side with the social stimulus was counterbalanced between trials. An unseen experimenter, blind 
to the treatment, recorded the time spent in each zone for a 5-minute period (beginning after the subject had 
taken its first step) (in seconds). To evaluate the capacity to discriminate between two conspecifics (social dis-
crimination), we used a simultaneous two-choice test paradigm following the protocol previously described68. 
All tagged chicks of each pair were tested on post-hatch day 18 (n = 25 experimental chicks and n = 24 control 
chicks). This test was performed in a rectangular arena measuring 80 cm × 60 cm × 31 cm (length x width x 
height). Two stimulus birds were placed in 27 cm × 20 cm × 31 cm compartments with a wire mesh top and 
front at the opposite sides of a starting point. One of these compartments contained the subject’s familiar 
cage-mate and the other compartment contained an unfamiliar chick subjected to the same treatment and 
of the same age as the test chick. A “close zone” was delineated in front of each cage (14 × 27 cm). Sides were 
counterbalanced between trials. After 30 seconds, the test bird was released, and the time spent in each close 
zone was recorded for a five-minute period.
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Detour task. This test was performed on post-hatch day 28 in the same arena as the social discrimination test 
except that a single wire-mesh goal compartment was placed at the opposite side of the starting point. All tagged 
chicks of each pair were tested (n = 25 experimental chicks and n = 24 control chicks). For each pair, the cage 
mate was placed in the goal compartment, whereas the test chick was placed 30 cm away in a U-shape barrier with 
a wire-mesh front wall and two opaque, vertical sidewalls. To solve the problem, the chick had to move away from 
its cage mate, lose sight of it and go round one end of the barrier. An unseen experimenter, blind to the treatment, 
evaluated the performances of chicks by the latency to make the detour (cross the barrier with the whole body) 
from the start location.

Corticosterone assays. To evaluate chicks’ corticosterone levels, fecal corticosterone metabolite (FCM) 
concentrations were assayed. On post-hatch day 22, a mix of fresh fecal droppings was collected between 9:00 
and 11:00 a.m. from each home cage. Each sample was homogenized and stored at −20 °C. From each sample, an 
aliquot (0.5 g) was extracted with 60% methanol and analysed by using a cortisone enzyme immunoassay (EIA) 
validated for chickens and previously described in detail69,70. Intra- and interassay coefficients of variation were 
below 10% and 15%, respectively.

Corticotropin-releasing factor (CRF) Immunohistochemistry. On the day of hatching, 8 control 
chicks and 8 experimental chicks were deeply anaesthetized by an intraperitoneal injection of pentobarbital. 
Chicks were perfused transcardially via the left ventricle with 15 mL of 1% sodium nitrite in phosphate buffer 
saline, then with 70 mL of ice-cold fixative (4% paraformaldehyde solution in 0.1 M phosphate buffer, pH 7.4). 
The brain was removed from the skull, post-fixed by immersion for one hour in the same fixative and then cryo-
protected in 20% sucrose for two days71. Brains were frozen in isopentane at −40 °C and stored at −80 °C. Brains 
were cut in 30 µm coronal sections on a cryostat, in a caudal to rostral direction. Seven series of alternate sections 
(with an equal distance of 180 µm to one another) were collected onto SuperFrost® glass slides. One series was 
stained with Cresyl Violet to provide accurate anatomical localization. The other series were stored at −80 °C for 
immunohistochemistry analysis. Immunohistochemistry of CRF was performed on 15 animals (eight control 
and seven experimental chicks). One experimental chick was excluded because of perfusion failure. After incuba-
tion for 20 minutes at −20 °C in acetone, sections were dried and rehydrated for 5 minutes in tris-buffered saline 
(TBS). Sections were then immersed for 1 to 2 hours in TBS-triton-azide (TBSTA)-BSA 1% at room temperature. 
Sections were incubated for 48 hours at 4 °C with a rabbit anti-CRF antibody (Peninsula, USA) diluted 1:2000 in 
TBS-BSA 1% and then rinsed in TBS and incubated for 2 hours at room temperature with donkey anti-rabbit-488 
antibody (Jackson, UK) diluted 1:1000 in TBS-BSA 0.1%. For fluorescence detection of CRF, sections were 
rinsed in TBS and immersed in a Hoechst bath for 2 minutes (Hoechst 33258, 2 µg/mL in water; Invitrogen, 
USA). The sections were rinsed in two baths of water and one bath of TBS and then dried and cover-slipped 
under Fluoromount-G (SouthernBiotech, USA). Positive cell (CRF + cell) measurements were assessed using 
a motorized microscope (Axioskope 2; Zeiss, Germany) connected to the image analysis software Mercator® 
(Exploranova, La Rochelle, France) through a camera. With a 2.5 × objective, the nuclei of interest were outlined. 
We analyzed the expression of CRF in the following subnuclei of the arcopallium/amygdala: intermediate (IA), 
medial (MA), dorsal (DA), and posterior amygdaloid (PoA) and nucleus taeniae (TnA). Several functional studies 
have demonstrated that the arcopallium/PoA complex is involved in the expression of fear-related behaviours by 
birds38. The TnA has been primarily studied for involvement in sexual behaviour; therefore, in this study TnA was 
analysed as a control structure. The amygdala presented large quantities of CRF that is considered the primary 
neurotransmitter in the regulation of fear-related behaviours39. The brain regions were identified in accordance 
with the stereotaxic atlas of the brain of the chick72 and the revised nomenclature73. For each bird and each 
subnucleus of the arcopallium/amygdala, 5 to 8 sections were analyzed, depending on the extent of the region. 
CRF + fluorescent cells in the amygdala were counted manually inside the area of interest, in both hemispheres. 
The counts of the serial sections were averaged (total number of cells divided by the total area of all sections) to 
obtain a single value per brain region. The counter was blind to the treatment.

Statistics. We compared the numbers of chicks hatched from fertile eggs by using a Chi-square test. We 
used a one-way ANOVA to compare the number of days of incubation between groups. The masses of chicks 
were compared by using a two-way repeated-measures ANOVA with treatment and sex as factors and a post hoc 
protected least significant difference Fisher test. Food intake was compared between groups using a one-way 
ANOVA. Even after transformation, the rest of the data were not normally distributed (Shapiro-Wilk test) and 
did not have the homogeneity of variances (Levene tests) required to apply parametric statistics. Wilcoxon tests 
with Monte-Carlo simulations were used, within groups, to compare the mean numbers of heart beats per min-
ute before and after 1 hour of treatment, latencies to eat and times spent eating. Mann-Whitney U-tests with 
Monte-Carlo simulations were used for intergroup comparisons on all behavioural parameters recorded during 
neophobia tests (food, object, environment), during the detour task, on corticosterone metabolite concentrations 
and on the mean numbers of immunoreactive cells. To analyse social motivation (runway and discrimination), 
we compared the proportions of time spent in the social zone (time spent in the social zone/300 seconds) between 
groups using Mann-Whitney U-tests with Monte-Carlo simulations. We compared the time spent in the social 
discrimination test close to the familiar conspecific to the time spent close to the unfamiliar conspecific using 
Wilcoxon tests with Monte-Carlo simulations. Sex effects are mentioned only when significant. All analyses were 
performed with XLSTATS 2016.2 (Addinsoft), with significance accepted at P ≤ 0.05.

The datasets generated and analysed during the current study are available from Zenodo (https://doi.
org/10.5281/zenodo.1135998).

http://dx.doi.org/10.5281/zenodo.1135998
http://dx.doi.org/10.5281/zenodo.1135998
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