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ABSTRACT

Modeling cardiac mechanics is a particularly challenging task, mainly because of the poor understanding of the
underlying physiology, the lack of observability and the complexity of the mechanical properties of myocardial
tissues. The choice of cardiac mechanic solvers, especially, implies several di culties, notably due to the poten-
tial instability arising from the nonlinearities inherent to the large deformation framework. Furthermore, the
veri cation of the obtained simulations is a di cult task because there is no analytic solutions for these kinds
of problems. Hence, the objective of this work is to provide a quantitative veri cation of a cardiac mechanics
implementation based on two published benchmark problems. The rst problem consists in deforming a bar
whereas the second problem concerns the in ation of a truncated ellipsoid-shaped ventricle, both in the steady
state case. Simulations were obtained by using the nite element software GETFEM++. Results were com-
pared to the consensus solution published by 11 groups and the proposed solutions were indistinguishable. The
validation of the proposed mechanical model implementation is an important step toward the proposition of a
global model of cardiac electro-mechanical activity.

Keywords: Cardiac mechanics, Finite element method, hyperelasticity, Getfem, Benchmark validation

1. INTRODUCTION

Modeling of cardiac activity is an active eld of research and the state-of-art is wide and very active. Recent
projects have provided interesting preliminary results towards the use of individualized, computer-based, human
heart models® Most of approaches proposed descriptions, at many di erent levels of detail, of the cardiac elec-
trical activity, *° the excitation-contraction coupling,®” the mechanical activity®? and the mechano-hydraulic
coupling.*? However, translation of these models into clinical practice remains di cult and new methodologi-
cal approaches are still needed in order to bring these model-based approaches to the clinical eld. The global
objective of our project is to propose a model-based method for the analysis of 3D regional cardiac motion and de-
formation, which will be applicable to Cardiac Resynchronization Therapy (CRT) in the pre- and post-operatory
phases.

In order to simulate accurately myocardial deformations, the proposed model should integrate an appropriate
description of cardiac mechanics. The ventricular mechanical activity is usually described as a function of
its active and passive properties. Active properties are the consequence of the shortening and lengthening of
sarcomeres, which are the elementary mechanical contractile elements of myocytes. This mechanical activity is
under the in uence of an electrical activity, since the variation of calcium concentration during the action potential
allows the development of force. Passive properties are mainly related to ber structure and orientation, collagen
properties and metabolic conditions (such as hypoxia or ischemia). This paper mainly focus on the simulation
of passive mechanical properties of cardiac tissues.
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Passive myocardial properties could be described through specic mechanical constitutive laws. Most of
these mechanical laws are hyperelastic, incompressible and anisotropi#!®> The majority of them have been
determined using uniaxial (Mirsky 1976) or biaxial tension tests!* An empiric law based on the description
of sarcomere dynamics has been proposéfl. The simulation of these models is often based on nite element
methods (FEMs).81  Although this kind of formulation requires higher computational resources than other
approaches, it allows a rather detailed description of the myocardium dynamics.

The implementation of FEM-based models implies several di culties such as the de nition of the constitutive
law and boundary conditions, the construction of the mesh, the choice of simulation parameters that ensure
stability and the validation of simulated deformations. One particular issue is the lack of analytic solutions to
the problems. In this context, the use of a published benchmark’ is a consistent way to validate and verify
the accuracy of simulations. Recently, a consortium of several team$ provided a benchmark of three problems
that require the ability to solve accurately actual features that one may come across in cardiac mechanics:
pressure distribution that depends on the deformed con guration , anisotropic material properties or even active
contraction of a ventricle. Such a benchmark was solved by 11 di erent groups and they were able to reach a
consensus. The aim of this paper is to provide a validation of the rst two benchmark problems by using the
nite element software GETFEM++.

The rest of the paper is organized as follows. In Section 2 we introduce some preliminary material to be used
in the rest of the paper. In Section 3, we formulate the mathematical model of the hyperelastic problem and
provide a description of the benchmark problems we solved. Finally, in Section 4, we present numerical results
and confront them with the strain given by the benchmark.

2. FINITE STRAIN ELASTICITY THEORY AND NOTATIONS

In order to introduce the concepts referred to thereafter, we recall brie y the main aspects of the theory of nite
strain elasticity.

Let be the reference con guration and let ' be a deformation of that preserves the orientation, that is
to say:
“: 1 R%with detr '> 0 on : (1)

Now, denote byx = ' (x) the position of a particle x submitted to the deformation
is then de ned by

; the displacement eld

u(x)="((x) x; 3

and we deduce the expression of the gradient of deformatiok

F=r'"=1+ru: (3)

To estimate the gap between a deformed con guration and a so-called rigid body motion, the Green-Lagrange
strain tensor E is used

1 1
E=—— =Zru'ru+ = +ru’): 4
5 2ruru 2(ru ru’) (4)

Note that in the case of linear elasticity, supposedly too restrictive in the context of cardiac mechanics, the
second order term%r u'r u is neglected.

3. MECHANICAL PROBLEMS
3.1 Mathematical model
3.1.1 Hyperelastic constitutive law

In order to take into account ber orientation induced by the anatomical organization of cardiomyocytes, a
transversally isotropic constitutive law was chosen. Its nonlinear strain energy function, the so-called Guccione's
law, is given by

WE)= (@ 1) ©)



with

Q=bEf+b(EL+ EhL+ESR+ ES)+ bs (EfL + E5 + Efy+ ES): (6)
whereEj; are components of the Green-Lagrange strain tensdg , de ned in (4). Note that, in this con guration,
the bers are in the e;-direction.
3.1.2 Strong formulation

We consider a hyperelastic body that occupies the bounded domain , with its boundary, and we denote by
the unit outward normal on . Since the body is clamped on ;, the displacement eld vanishes there. A
volume force of densityf ; acts in , surface tractions of density f , act on ».

The classical formulation of an incompressible solid in steady-state equilibrium can be stated as

Problem P. Find a stress eld R, ! $% and a displacement eldu : R: ! RY such that
=@WF) in (7)
det(F) =1 in ; (8)
Div +fy=0 in ; 9)
u=20 on 1; (10)
=f, on (11)

Now we shortly describe the physical meaning of relations (7)-(11). Equation (7) represents the generic form of
a hyperelastic constitutive law whereW (F) = W (E ) denote the strain energy function de ned at the beginning
of this section and , the rst Piola-Kirchho stress tensor. Note that by using advantageously the properties
of the second Piola-Kirchho stress tensorS = F ! | one can prove that

= F@W(E): (12)

In fact, it is a much easier to work with formulation as the strain energy function used in (5) depends explicitly
on E. The expression (8) describes the incompressibility condition, which means the deformation is isochoric
throught the static process. Relation (9) is the equilibrium equation, where Div represents the divergence operator
for tensor-valued function and f ;, the density of applied volume forces. Condition (10) is the displacement
boundary condition. Next, the traction boundary condition (11) states that the stress vector is given on
part » of the boundary, and is equal to the boundary force of densityf ».

In fact, one has to take into account this very condition with particular care as the direction of the pressure
boundary condition changes with the deformed surface orientation, and its magnitude scales with the deformed
area. Therefore, if we denote byp the blood pressure, this so-called follower load expression is given by

f,= pdet(F)F T : (13)
From now on, as prescribed in the benchmark, we assume that no volume force acts on the body.

3.2 Problems description
In what follows, we present the rst two problems, as they are described in the benchmark/’

3.2.1 Problem 1
The rst problem is the deformation of a bar in static.

=[0 ;10 mm] [0;1 mm] [0;1 mm].

Constitutive parameters: Transversely isotropic, C =2 kPa;bx =8;h =2;bs =4.



Fiber direction:  Constant along the long axis, i.e. (% 0;0).
Dirichlet boundary conditions: The left face (x = 0) is xed in all directions.

Pressure boundary conditions: A pressure of 0004 kPa is applied to the bottom face ¢ = 0).

Figure 1. Reference con guration for the problem 1

3.2.2 Problem 2

Now we consider the in ation of a truncated ellipsoid-shaped ventricle whose parametrization in the undeformed
con guration is given below

o 1 0 1
X I's SiNU COSV

x= @y A =@ rgsinusinv A (14)
z r| cosu

The undeformed geometry is de ned by the volume between:

{ The endocardial surfacers =7 mm;r; =17 mm;u2 [ ; arccos%];v 21 1
{ The epicardial surfacers =10 mm;r; =20 mm;u2 [ ; arccos%];v 21 5 1]
{ The base planez =5 mm which is implicitly de ned by the ranges for u.
Constitutive parameters: Isotropic, C =10 kPa;lx = b = bys = 1.
Dirichlet boundary conditions: The base plane £ =5 mm) is xed in all directions.

Pressure boundary conditions: A pressure of 10 kPa is applied to the endocardium.



Figure 2. Reference con guration for the problem 2

3.3 Numerical methods and stability issues

As stated explicitly in the benchmark, there is no requirement regarding the computational method used to

solve the problem. Here, a generalized Newton's method is used to deal with the nonlinearities arising from
the hyperelastic constitutive law and the Lagrangian method was considered to enforce the incompressibility
condition.

Such an approach leads to the following strain energy function
Wiag = W(E) p(det(F) 1) with det(F)=1; (15)

with p the hydrostatic pressure. Nevertheless, to anticipate stability issues reported by several grougs, we still
followed the suggestions of another articl®® and implemented the stabilized version of a strain energy function
independent of changes in volume. In order to do so, we introduce the isochoric component of the deformation
gradient

F =det(F) ¥°F; (16)
which by de nition is such that det( F) =1 and we deduce that
F'F I bes SN
E = — = det(F) E + (det( F) 1)5: a7)

Then, the expression of the new strain energy is
wsttb = W(E) p(det(F) 1)+ E(det(F) 1) with det(F)=1: (18)

The last term of (18) plays the role of a higher order incompressibility penalty term and is supposed to enforce
more accurately the incompressibility constraint and avoid to some extent the pathological casé$ (non-physical
and unstable) where detf ) < 0.

3.4 Evaluation of the simulation

In order to evaluate the accuracy of our results, we recall here the de nition of the norms used thereafter. Let
u be a vector of sizeN, we have

X

<

kuk, = u(i)? (19)

i=1

kuk; = m?xju(i)j: (20)



For the second problem, we also provide the positions of the endocardial and epicardial apex, before the
deformation, and the position interval obtained by the di erent teams, after the in ation of the ventricle. It will
be used later on as one of the criteria to assess the validity of our solution.

Table 1. Position of the apex before and after the deformation.

Endocardial apex Epicardial apex
Reference position (0;0; 17 mm) (0;0; 20 mm)
Deformed con guration (  z) | 25 mm (one group) 26 27 mm | 27:75 2875 mm

4. RESULTS

The aim of this Section is to provide numerical simulations in order to validate the results. Note that the di erent
numerical methods have been implemented in a code which is based on Finite Element Library in C++ under the
GNU Public license: GEneric Tools for Finite Elements Methods (GETFEM++) developed by Julien Pommier
and Yves Renard. For more details, we refer tchttp://download.gna.org/getfem/html/homepage/

4.1 Problem 1

For the computation, we used the Augmented Lagrangian method, which require the strain energy provided in
(15). We computed the solution with hexahedral elementsQ2 for the displacement andQ1 for the multipliers
which correspond to a problem of 20197 degrees of freedom (with a single load step) in 1012 CPU time (in
seconds) on a computer with Intel Quad core processors (2.8 GHz).

In Figure 1 we plot the deformed bar; just like in the benchmark the reference solution and the computed
solution are indistinguishable. To evaluate and analyse our result, we resort to the di erence between our solution
and the reference solution obtained for the exact same mesh (Table 2). It shows the solution is accurate enough.

Displacement Magnitude
287e+0

4655

Figure 3. Superposition of the deformed con guration computed for the problem 1 and the reference solution given by
the benchmark

Table 2. Accuracy of the solution with respect to the reference solution for the problem 1.

ku ref u getfem k2 ku ref u getfem kl

7 10 3 mm 4:8 10 2 mm



http://download.gna.org/getfem/html/homepage/

4.2 Problem 2

For the computation, we used the isochoric stabilized version, which require the strain energy provided in (18).
We computed the solution with tetrahedral elements P2 for the displacement andP 1 for the multipliers which
correspond to a problem of 41984 degrees of freedom (with 25 load steps) in 1720 CPU time (in seconds) on a
computer with Intel Quad core processors (2.8 GHz).

In Figure 4 we plot the in ated ventricle; just like in the benchmark the reference solution and the computed
solution are still hardly distinguishable which is why we provide the di erence in norm (Table 3).

Figure 4. Superposition of the deformed con guration computed for the problem 2 and the reference solution given by
the benchmark

Table 3. Accuracy of the solution with respect to the reference solution for the problem 2.

ku ref u getfem k2 ku ref u getfem kl

4.29 mm 0.43 mm

While we can not deny the results are not as good as in the rst problem, the discrepancy among the teams
also seems to be enhanced in this very case. Finally, we give in Table 4 the z-coordinate of the endocardial apex
and epicardial apex after the in ation.

Table 4. Z-Position of the endocardial apex and epicardial given by Getfem in absolute value.

Endocardial apex | Epicardial apex
26.59 mm 28.26 mm

One can easily con rm in Table 1 that the obtained value are in an acceptable range in comparison with the
other groups who took part in this benchmark.t’

5. CONCLUSION

This study presented a validation of cardiac mechanics implementation, based on two benchmark problems.
The results, obtained by using the nite element software GETFEM++, were compared to consensus solutions,
provided by a consortium of 11 groups. In terms of three-dimensional deformation as visualized for the 2



problems, the proposed solutions are indistinguishable and the computed errors show only slight di erences.
The validation of the 2 problems implementation is an important step in the process of proposing a global model

of cardiac mechanics. Future works will focus on the proposal of a complete model integrating electro-mechanical
activations.
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