Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water
M. Kamagaté, A.A. Assadi, T. Kone, S. Giraudet, L. Coulibaly, K. Hanna

To cite this version:

HAL Id: hal-01695555
https://univ-rennes.hal.science/hal-01695555
Submitted on 9 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water

Mahamadou Kamagate¹², Aymen Amin Assadi¹, Tiangoua Kone², Sylvain Giraudet¹, Lacina Coulibaly², Khalil Hanna¹*

¹Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, F-35708 Rennes Cedex 7, France

²Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.

*Corresponding author. Tel: +33(0)223238027, Fax: +33(0)223238120, E-mail: khalil.hanna@ensc-rennes.fr
Abstract

Although there is a growing interest in Fenton oxidation processes based on natural catalysts, the use of laterite soil to promote sequential adsorption/oxidation treatments of fluoroquinolone antibiotics has been scarcely investigated. In this work, the ability of an african laterite containing goethite and hematite to remove flumequine (FLU), used as a representative compound of fluoroquinolone antibiotics, was evaluated under dark and UVA irradiation. Batch experiments and liquid chromatography analyses showed that the presence of laterite can enhance FLU removal from heavily contaminated water through both sorption and oxidation reactions (up to 94% removal of 77 µmol L$^{-1}$ of FLU and 72% of mineralization). The heterogeneous reaction rate is dominated by the rate of intrinsic surface chemical reactions including sorption and oxidation of FLU, and light-induced reduction of FeIII sites to produce FeII. Based on the probe and scavenging experiments, *OH radicals were mainly involved in the heterogeneous oxidation reaction. The photo-assisted Fenton process showed a high efficiency of FLU removal even in the presence of a second fluoroquinolone antibiotic, norfloxacin (NOR), which can be co-found with FLU in affected environments. Determinations of kinetic rate constants and total organic carbon (TOC) for five sequential adsorption/oxidation cycles showed that laterite exhibited no deactivation of surface sites and an excellent catalytic stability. This cost-effective and environmentally friendly remediation technology may appear as a promising way for the removal of fluoroquinolone antibiotics from multi-contaminated waters.

Keywords: Laterite; fluoroquinolone antibiotics; sorption; oxidation; stability; UVA irradiation.
1. Introduction

Fenton reaction based on generation of highly reactive oxygen species (ROS) has attracted continuous attention during the past decades, and is considered as a powerful oxidative method for the treatment of persistent organic pollutants (Anipsitakis and Dionysiou 2004; Pignatello et al. 2006). In homogeneous Fenton process, dissolved iron and H$_2$O$_2$ are used to produce ROS (Anipsitakis and Dionysiou 2004; Pignatello et al. 2006). In heterogeneous system, iron oxy-hydroxides, iron bearing minerals and/or iron immobilized diverse supports are generally used to promote the Fenton reaction (Lin and Gurol 1998; Kwan and Voelker 2003; Matta et al. 2007; Gonzalez-Olmos et al. 2009; Guo et al. 2010; Ghauch et al. 2011; Gonzalez-Olmos et al. 2012; Wang et al. 2015; Lan et al. 2015). The latter process offers many advantages over its homogeneous counterpart, such as no sludge formation, operation at near neutral pH, easy separation/recovery of catalyst, etc. (Martínez et al. 2007; Gonzalez-Olmos et al. 2009; Guo et al. 2010; Herney-Ramirez et al. 2010; Gonzalez-Olmos et al. 2012; Minella et al. 2014). Because the decomposition rate of organic contaminants in heterogeneous system is slower than in classic homogeneous Fenton reaction, different ways have been developed to enhance the oxidation efficiency while keeping the benefits of heterogeneous system. Among these processes, the photo-assisted Fenton reaction using light energy can accelerate the reaction rate by decomposing H$_2$O$_2$ into most powerful oxidizing species, and by reducing FeIII to FeII and/or converting FeIII back to FeII after the reaction (Martínez et al. 2007; Herney-Ramirez et al. 2010; Gonzalez-Olmos et al. 2012; Minella et al. 2014).

Different synthetic materials have been used as a catalyst in heterogeneous Fenton processes, e.g. iron oxides (Matta et al. 2007; Minella et al. 2014; Wang et al. 2015), zeolite (Gonzalez-Olmos et al. 2009; 2012), clay (Bohu et al. 2008; Herney-Ramirez et al. 2010), and modified iron-carbon (Lan et al. 2015). However, the use of these materials for high-scale applications
in water and wastewater treatment may be limited due to their low effectiveness and/or high costs (Garrido-Ramirez et al. 2010; Litter et al. 2017). Indeed, the high cost of supported or composite catalysts leads the researchers to propose a cheaper alternative, particularly in the developing countries.

Laterite soil is abundant in some parts of the earth including Africa. Although some studies were dedicated to the use of laterite in Fenton reactions (Karale et al. 2013; Khataee et al. 2015), much remains to be learned on the sorption/oxidation activity of this mineral surface and its catalytic stability. In addition, the binding and transformation mechanisms of organic compounds interacted with laterite surfaces remain unclear.

This work aims to develop an effective heterogeneous Fenton process based on the use of a natural catalyst and light source in order to effectively remove emerging contaminants from contaminated water. FLU, an antimicrobial agent belonging to the second generation of synthetic quinolones and frequently used in veterinary medicine (Gothwal and Shashidhar 2015), is selected here as a model of emerging pharmaceutical compounds. Due to its continuous release into the environment and its persistence, 2.5-50 ng L⁻¹ (Pozo et al. 2006; Tamtam et al. 2008) and 6.9 µg kg⁻¹ (Tamtam et al. 2011) of FLU residues have been detected in aquatic environments and in the soil, respectively. To the best of our knowledge, the removal of fluoroquinolone antibiotics using laterite soil as sorbent/catalyst was rarely investigated. Here, the FLU removal was investigated at two pH values (pH 3 as an acidic pH to ensure a high solubility of iron and pH 6.5, closer to near-neutral conditions of real effluents) and with and without UVA irradiation. The influence of laterite loading and initial concentrations of FLU and oxidant (H₂O₂) on the removal efficiency rate was also investigated.

Higher concentrations of FLU than those encountered in real contaminated effluents were used in order to test the removal capacity of laterite in heavily loaded contaminated waters,
e.g. multi-components contaminated water. Effect of co-occurring antibiotic on the FLU degradation was also evaluated using norfloxacin (NOR), a fluoroquinolone antibiotic, which can be co-found with FLU in affected environments (Tamtam et al. 2008). The Langmuir and Langmuir–Hinshelwood models were used to describe the surface interactions with FLU in the absence and the presence of oxidant (H₂O₂), respectively. Moreover, possible deactivation of surface sites as well as the catalytic stability of laterite were assessed by conducting sequential oxidation cycles, TOC measurements and solid characterization.

2. Experimental

2.1. Materials

Flumequine (99% purity), norfloxacin (99% purity), hydrogen peroxide (35% w/w), 1,10-phenanthroline (>99% purity), sodium acetate (>99% purity), ferrous ammonium sulfate hexahydrate ((NH₄)₂Fe(SO₄)₂·6H₂O), 2-propanol (C₃H₈O), and chloroform (CHCl₃) were provided from Sigma–Aldrich. Solutions were prepared with high-purity water obtained from a Millipore Milli-Q system.

2.2. Laterite soil characterization

Laterite soil was collected from Sinématialy town (9°34'60" N and 5°22'60" W) in the north of Ivory Coast. The sample was grinded and passed through 250 µm sieve. The obtained fraction was washed several times with pure water, and then dried at 50 °C.

In order to determine the crystal structure of natural mineral, sample of laterite (≤ 250 µm) was analyzed by X-ray powder diffraction (XRD). The XRD data were collected with a D8 Bruker diffractometer, equipped with a monochromator and a position-sensitive detector. The XRD peaks (Fig. S1) were attributed to quartz, goethite, hematite, kaolinite and gibbsite. However, the most abundant phases in our sample are quartz, goethite and hematite, which is in agreement with a previous work (Coulibaly et al. 2016). Consistently, the TEM-EDX
indicated a composition of Fe, Al and O (i.e. under oxide forms), together with two major elements Ca and Mg (Fig. S1). More details are given in the supporting information. To determine the metal contents in laterite, elements were analyzed using an inductively coupled plasma atomic emission spectrometer (ICP-AES, Jobin-Yvon JY 70 Type HORIBA) after acid digestion of the sample (Table S1). Potentiometric titrations of the laterite were conducted in thermostated double walled pyrex cell at 293 K in 0.001, 0.01 and 0.1 M NaCl solutions. The pH value of the suspensions was adjusted and kept constant with titrant solutions (HCl or NaOH) at pH 3 or 6.5. The B.E.T. specific surface area and the Point Zero Charge (PZC) of laterite soil were 23 ± 1 m² g⁻¹ and 6.5 ± 0.3, respectively.

2.3. Photoreactor and photodegradation experiments

All experiments were performed in a 500 mL capacity batch photoreactor (made of borosilicate glass) at room temperature (20 ± 2 °C). The reactor was designed in a column shaped in 34 cm high and 3.8 cm diameter. This setup has an enclosed chamber comprising a reactor; an UVA lamp 24 W (Philips PL-L) placed in the center of the glass cell emitting in a wavelength region 320–400 nm with emission peak centered at \(\lambda_{\text{max}} = 360 \) nm, yielding a irradiation intensity of 16 mW cm⁻² as detected with a UVA Radiometer (VLX- 3W equipped with a sensor CX 365, ALYS Technologies, Switzerland). The solution with catalyst was continuously stirred with a magnetic bar at 180 rpm. The pH of the sample solution was measured by means of VWR instruments 6000 pH-meter. Monitoring of suspension temperature indicated no significant fluctuation (20 ± 2 °C) along the experiment. The UV-visible spectrum of FLU is shown in Figure S2.

Two different experiments were conducted at room temperature. In a first experiment, the suspension of FLU and laterite was stirred in the dark for 4 h to reach the adsorption equilibrium without UVA irradiation and oxidant (H₂O₂). In the second test, FLU, oxidant, and laterite were mixed simultaneously under UVA irradiation. In both experiments, 500 mL
of a FLU solution of known concentration were prepared and the appropriate amount of
catalyst was added. In order to keep it constant, the pH of the solution was adjusted by HCl
and NaOH (0.1 M). Then, the required volume of H$_2$O$_2$ (35% w/w) was added to the solution.
At time intervals, 5 mL of the solution were collected and analyzed.
Aqueous organic compound concentrations were determined using a high performance liquid
chromatography (Waters 600 Controller) equipped with a reversed-phase C18 column (250
mm×4.6 mm i.d., 5 μm) and UV detector (Waters 2489). The detector was set to 246 nm for
FLU and 277 nm for NOR. The mobile phase was mixture of acetonitrile/water (20/80 v/v)
containing 0.1% formic acid. The flow rate was set at 1 mL min$^{-1}$ in isocratic mode. Total
Organic Carbon (TOC) was determined using a TOC-meter (Shimadzu TOC-VCSH) using 10
mL of solution. Total dissolved iron concentrations were measured by the 1,10-
phenantrholine method at 510 nm (Tamura et al. 1974). All these experiments were repeated 2
times and showed a good reproducibility with a standard deviation of 3%.

3. Results and discussion

3.1. Preliminary characterization of removal capacity of the investigated laterite

To characterize the sorption capacity of laterite, adsorption isotherms were determined at two
pH values (3 and 6.5) (Fig.1). Preliminary kinetic batch experiments conducted over 24 h
showed that equilibrium was achieved within 4 h of reaction time. The experimental isotherm
data were best fitted to the equation of Langmuir through linear regression ($r^2 = 0.99$). The
linear form of the Langmuir equation is given by:

$$\frac{C_e}{q_e} = \frac{1}{K_a q_m} + \frac{1}{q_m} C_e$$

where q_m (μmol m$^{-2}$) is Langmuir maximum sorbed amount and K_a (L μmol$^{-1}$) is the
Langmuir isotherm constant. The progressive saturation of the surface sites shows that the
adsorption followed the Langmuir assumption with a maximum adsorption capacity of 1.40
µmol m\(^{-2}\) at pH 3 and 1.19 µmol m\(^{-2}\) at pH 6.5. As typically encountered for anionic ligands, FLU adsorption was greatest under acidic to circumneutral pH, and lowest under alkaline conditions (See Fig. S3 for distribution of FLU species at various pH values). The \(K_a\) values estimated from Langmuir model are 1.95 L µmol\(^{-1}\) at pH 3 and 0.37 L µmol\(^{-1}\) at pH 6.5.

The removal of FLU was then evaluated under different oxidation systems in presence and in absence of laterite (Fig. 2). The heterogeneous process (\textit{i.e.} UVA/H\(_2\)O\(_2\)/Laterite) showed the best removal performance at both pH values, 77\% and 62\% of removal at pH 3 and 6.5, respectively. In both experiments, the direct photolysis is less than 12\%. To account for the sorption on laterite, desorption tests (adding NaOH to have pH 11) were performed and total amounts of FLU in aqueous phase were plotted against time (Fig. 2). The amounts of degraded FLU lied at 56\% at pH 3, and 43\% at pH 6.5 and after 420 min of reaction time. It is worth noting that pre-equilibration of FLU with laterite suspension for 4 h in the dark before irradiation did not significantly change the kinetics behavior (Fig.S4). TOC measurements over 540 min confirmed the oxidative degradation in UVA/H\(_2\)O\(_2\)/Laterite system, whereas 45\% and 33\% of mineralization was achieved at pH 3 and 6.5, respectively. As explained below, optimization of experimental parameters improved the FLU degradation up to 94\%, and mineralization up to 72\%.

The higher degradation performance at pH 3 may result from (i) changes in surface interactions between FLU and laterite as more adsorption was observed at pH 3, (ii) high formation rate of radical species at acidic pH (Buxton et al. 1988) and/or (iii) possible leaching of Fe from laterite surfaces contributing to a homogeneous Fenton reaction. The latter was excluded since the amount of iron leaching was found very low (< 6 µg.L\(^{-1}\)) even if it is relatively higher at acidic pH than at pH 6.5 (Fig. S5). The possible release of trace
elements such as Cr, Cu, Co, Ni and Zn was also checked by ICP/AES, which indicated that these elements were under quantification limits under our experimental conditions.

We note an increase of FLU degradation in UVA/H$_2$O$_2$/Laterite compared to UVA/H$_2$O$_2$ system. This improvement could be attributed to the higher generation of active species, e.g. hydroxyl radicals and iron ferrous (FeII) (Martínez et al. 2007; Gonzalez-Olmos et al. 2012; Minella et al. 2014). First, direct photolysis of H$_2$O$_2$ under UVA irradiation may generate highly oxidizing species ($i.e.$ 'OH radicals). Moreover, the UVA irradiation may also enhance the heterogeneous Fenton activity on the surface, by promoting the photo-assisted reduction of FeIII to FeII, which subsequently reacts with H$_2$O$_2$ generating 'OH radicals. Therefore, addition of H$_2$O$_2$ led to an acceleration of reaction rate, as compared to the UVA/Laterite system, further confirming the synergetic effect of laterite and H$_2$O$_2$.

3.3. Optimization of operating conditions

The influences of H$_2$O$_2$ concentration, laterite dosage and initial concentration on the removal of FLU were investigated at pH 3 and 6.5. The experiments, which were repeated 2 times, showed a good reproducibility with a 5% of averaged standard deviation.

3.3.1. Effect of H$_2$O$_2$ concentration

Removal kinetics of FLU were determined at a wide range of H$_2$O$_2$ concentration (1 - 9 mmol L$^{-1}$) and two pH values (3 and 6.5). The degradation of organic compounds by HO$^-$ is typically described as a second-order reaction [1-6]:

$$\frac{d[FLU]}{dt} = -k[FLU][HO^-]$$ (2)

where [HO$^-$] is steady-state concentration of hydroxyl radical, [FLU] is concentration of FLU in water, k is the second-order rate constant, and t is the reaction time. By assuming that HO$^-$
instantaneous concentration is constant, the kinetics of degradation of FLU in water can be described according to the pseudo-first-order equation as given below:

\[[FLU]_t = [FLU]_0 \exp(-k_{app}t) \]

(3)

where \(k_{app} \) is the pseudo-first-order apparent rate constant (min\(^{-1}\)). \(k_{app} \) (min\(^{-1}\)) obtained by linear regression of \(\ln \left(\frac{C_t}{C_o} \right) \) versus time \(t \), was plotted against \(\text{H}_2\text{O}_2 \) concentration. The \(k_{app} \) constants were higher at pH 3 than pH 6.5. Since the degradation of FLU solution is directly related to the concentration of hydrogen peroxide and formation of radicals, the removal kinetic of FLU was enhanced when the \(\text{H}_2\text{O}_2 \) concentration increased from 1 to 4 mmol L\(^{-1}\). However, a decrease in \(k_{app} \) was observed at higher \(\text{H}_2\text{O}_2 \) concentrations (Fig. 3), thereby suggesting scavenging effects of radicals by hydrogen peroxide \((k_{\text{H}_2\text{O}_2/\text{HO}^*} = 2.7 \times 10^7 \text{ M}^{-1} \text{s}^{-1}) \) (Mechakra et al. 2016) and/or recombination of radicals (Buxton et al. 1988; Litter et al. 2017). At much higher \(\text{H}_2\text{O}_2 \) concentration, there is a competitive reaction between FLU and \(\text{H}_2\text{O}_2 \) towards the reaction with ROS.

3.3.2. Effect of laterite dosage

The pseudo-first-order apparent rate constants \((k_{app} \text{ (min}^{-1})) \) were determined as previously explained, and plotted against laterite loading (0.5 to 4 g L\(^{-1}\)) in Figure 4. As for previous experiments, the observed pseudo-first order rate constant firstly increased with laterite loading increasing and then reduced. This phenomenon can be explained by screening effects occurring at high loading of solid in aqueous suspension, as previously reported for heterogeneous photo-Fenton reactions (Bohu et al. 2008; Mechakra et al. 2016). In addition, the generated radicals can be scavenged by metal oxide surfaces \((k_{\text{oxide}/\text{HO}^*} = 8 \times 10^{11} \text{ (g mL}^{-1})^{-1} \text{s}^{-1}) \) (Miller and Valentine 1999).
It is interesting to note that the optimal laterite loading of FLU removal is around 1 g L\(^{-1}\) regardless of the tested pH \((k_{app} = 6.4 \times 10^{-3} \pm 0.0003 \text{ min}^{-1} \text{ and } 4.6 \times 10^{-3} \pm 0.0003 \text{ min}^{-1} \text{ at pH 3 and pH 6.5, respectively}).

3.3.3. Effect of initial flumequine concentration

The pseudo first-order rate constants \((k_{app})\) at various initial concentrations of FLU were determined with the optimum conditions for laterite loading and oxidant concentration (Fig. 5). There is a decrease of \(k_{app}\) from \(1.87 \times 10^{-2} \pm 0.0003\) to \(6.2 \times 10^{-3} \pm 0.0003 \text{ min}^{-1}\) at pH 3 and from \(9.4 \times 10^{-3} \pm 0.0003\) to \(4.1 \times 10^{-3} \pm 0.0003 \text{ min}^{-1}\) at pH 6.5 when FLU concentration increased from 19 to 77 µmol L\(^{-1}\). This expected phenomenon can be explained by the competition of species (here FLU and \(\text{H}_2\text{O}_2\)) with each other for interactions with a fixed number of active sites on solid surfaces. At higher FLU concentration, adsorption may occupy a greater number of Fe\(^{III}\)-sites, which become unavailable to generate Fe\(^{II}\) upon irradiation and/or interact with \(\text{H}_2\text{O}_2\). This is consistent with previous works where photon absorption by catalyst or photo-assisted reduction of surface sites to trigger the oxidation reaction is considered as the rate-limiting step (Avetta et al. 2015). Furthermore, higher FLU concentrations may lead to a decrease of photons entering into solution thereby lowering the performance of photo-assisted Fenton reaction, as previously reported (Rivas et al. 2015).

The Langmuir-Hinshelwood model that is widely used in heterogeneous catalysis was tested here (Turchi et al. 1990) to describe the oxidation process at the oxide surface. This Langmuir-Hinshelwood model can be expressed as:

\[
k_{app} = \frac{k_{int} K_s}{1 + K_s C_0}
\]

and linear expression:

\[
\frac{1}{k_{app}} = \frac{C_0}{k_{int}} + \frac{1}{k_{int} K_s}
\]
where k_{app} is the initial pseudo-first-order rate constant (min$^{-1}$), k_{int} is the intrinsic reaction rate constant (μmol L$^{-1}$ min$^{-1}$), and K_s is the adsorption constant of FLU over laterite surfaces (L μmol$^{-1}$). The linear correlations ($r^2 = 0.99$) between $1/k_{app}$ and C_0 are good at both pH (3 and 6.5), indicating that surface reactions of FLU including sorption and oxidation played a key role in determining the rate of the whole reaction. The values of k_{int} and K_s obtained are 0.51μmol L$^{-1}$ min$^{-1}$ and 0.12 μmol L$^{-1}$ at pH 3 and 0.33μmol L$^{-1}$ min$^{-1}$ and 0.06 μmol L$^{-1}$ at pH 6.5. The K_s values estimated from L-H model are lower than the constants determined in the absence of oxidant by Langmuir model (1.95 L μmol$^{-1}$ at pH 3 and 0.37 L μmol$^{-1}$ at pH 6.5), underscoring competition effects between species at laterite surfaces.

3.4. Implication of radical species in the degradation process

Different ROS may be formed during heterogeneous photo-Fenton reaction such as ‘OH and/or HO$_2^•$/O$_2^•$ (Martínez et al. 2005; Xue et al. 2009). In order to better understand the process involved in the degradation of FLU, 2-propanol was used as scavenger as it can react with ‘OH radical with relatively high reaction rate constant ($k = 1.9 \times 10^9$ M$^{-1}$ s$^{-1}$). Chloroform was also used as the scavenger of HO$_2^•$/O$_2^•$ radical due to its relatively high reaction rate constant with hydrated electron ($k = 3.0 \times 10^{10}$ M$^{-1}$ s$^{-1}$) and relatively low reaction rate constant with ‘OH radical ($k = 7.4 \times 10^6$ M$^{-1}$ s$^{-1}$) (Anbar and Neta, 1967). Because the pKa of HO$_2^•$/O$_2^•$ is 4.8, the hydroperoxide anion HO$_2^•$ is the predominant form at pH 3 while the superoxide anion O$_2^•$ is preponderant at pH 6.5 (Bielski et al. 1985).

First, 10 mmol L$^{-1}$ of 2-propanol fully inhibited the FLU degradation (only oxidation is considered here as the total FLU concentration was plotted versus time, Fig. S6), suggesting that the ‘OH radical was by far the dominant species in the FLU degradation at pH 3. At pH 6.5, 2-propanol did not fully stopped the FLU degradation, while the effect of chloroform is
more pronounced than at pH 3, suggesting that hydroxyl radicals still predominantly degrade FLU, but to a lower extent.

In the presence of 10 mmol L\(^{-1}\) of chloroform, the percentage of removed FLU fell down from 50% in the absence of chloroform to around 37% at pH 6.5, suggesting that O\(_2^•\) radicals may play a role in FLU degradation (Fig. S6). O\(_2^•\) can promote the formation of *OH through the reduction of Fe\(^{III}\) to Fe\(^{II}\) (Bielski et al. 1985; Lin and Gurol 1998):

\[
\equiv\text{Fe}^{\text{III}} + \text{O}_2^• \rightarrow \equiv\text{Fe}^{\text{II}} + \text{O}_2 \quad k = 1.2 \times 10^6 \text{M}^{-1}\text{s}^{-1} \quad (6)
\]

Nevertheless, the use of 2-propanol at both tested pH led to relatively high inhibition of degradation, confirming that the oxidation of FLU is mainly due to *OH radicals.

3.5. Effect of co-occurring antibiotic on the FLU degradation

The influence of presence of co-solute on the degradation efficiency of FLU was evaluated with the optimum conditions for laterite loading and oxidant concentration and at two pH values (3 and 6.5). The photo-assisted degradations of FLU ([k\(_{\text{FLU}, \cdot\text{OH}}\) = 8.26 x 10\(^9\) M\(^{-1}\) s\(^{-1}\) at pH 7 (Santoke et al. 2009)) and NOR ([k\(_{\text{NOR}, \cdot\text{OH}}\) = 6.18 x 10\(^9\) M\(^{-1}\) s\(^{-1}\) at pH 7 (An et al. 2010)) were evaluated in separate system (FLU or NOR) and binary system (an equimolar mixture of FLU and NOR) (Fig.6).

Firstly, the degradation of each compound in the mixture decreased with respect to the single system, probably due to competition of compounds for reaction with hydroxyl radicals.

As an attempt to better understand the competition effect, the percentage of the hydroxyl radical (*OH) reacted with FLU can be estimated using the following equation (Huang et al. 2013):

\[
R_{\text{Flu}} = \frac{k_{\cdot\text{OH, Flu}} [\text{Flu}]_o}{k_{\cdot\text{OH, Flu}} [\text{Flu}]_o + k_{\cdot\text{OH, Nor}} [\text{Nor}]_o + k_{\cdot\text{OH, H}_2\text{O}_2} [\text{H}_2\text{O}_2]_o} \quad (7)
\]
Where \([k_{\text{'OH, FLU}}, k_{\text{'OH, NOR}}]\) and \([k_{\text{'OH, H}_2\text{O}_2}]=2.7\times10^7\,\text{M}^{-1}\,\text{s}^{-1}\) (Buxton et al. 1988).

\([\text{FLU}]_0, [\text{NOR}]_0\) and \([\text{H}_2\text{O}_2]_0\) were their initial concentrations. The same equation can be used to determine the percentage of the hydroxyl radical ('OH) reacted with NOR, by replacing \([\text{FLU}]_0\) by \([\text{NOR}]_0\) in the numerator of eq. 12. Since the reaction rate constants of FLU \(\left([k_{\text{'OH, FLU}}]=8.26\times10^9\,\text{M}^{-1}\,\text{s}^{-1}\right)\) (Santoke et al. 2009) and of NOR \(\left([k_{\text{'OH, NOR}}]=6.18\times10^9\,\text{M}^{-1}\,\text{s}^{-1}\right)\) (An et al. 2010) with the hydroxyl radical are relatively close, 41% and 31% of 'OH reacted with FLU and NOR, respectively. It is worth noting that these reaction rate constants were determined at pH buffered to 7 (i.e. pKa1 <pH< pKa2) for NOR where the zwitterionic form is the predominant species, and pH > pKa3 for FLU where the anionic form is predominant), which is different from the working pH value (6.5 ± 0.1) in the present study. Nevertheless, we can conclude that the degradation of each compound (FLU or NOR) is not considerably affected by the presence of the other, underscoring potential benefits of the investigated process in the treatment of multi-components contaminated systems.

3.6. Stability and reusability of laterite

The reusability of catalyst is a critical parameter, from an economical point of view, for its usage in large scale reactors (Nidheesh 2015). The reusability of laterite has been evaluated in successive oxidation cycles, with the above-mentioned optimum conditions and at two pH conditions (Fig. 7). At the end of the oxidation process, the solid is easily removed from the reactor, washed with ultra-pure water, and dried at 50°C overnight, and then used for next experiment. The degradation using the recovered catalyst showed a slight difference with the first oxidation cycle, suggesting that the catalytic activity kept constant after five cycles of oxidation reaction. The removal rates of FLU were about 6.4 x10^{-3}\,\text{min}^{-1} at pH 3 and 4.4 x10^{-3}\,\text{min}^{-1} at pH 6.5, whereas percentage efficiencies lied at 94 ± 2% and 70 ± 2%, respectively.
The excellent stability of UVA/H₂O₂/Laterite system was then confirmed through TOC measurements at the end of each oxidation cycle. 72 ± 4% of mineralization was achieved at pH 3 and 50 ± 4% at pH 6.5, and this value remains constant even after 5 oxidation cycles. The dissolved iron concentration measurements showed a very low release of Fe from laterite surfaces (less than 2 wt.% of total Fe initially present in laterite). In addition, XRD diffractogram recorded at the end of oxidation reaction was found to be quite similar with that recorded before reaction (Fig. S1). The excellent stability of the catalytic activity could be, therefore, attributed to the very low iron leaching during oxidation cycles and to the structural stability of the solid.

4. Conclusion

We have notably demonstrated that laterite can be effectively used for the removal of flumequine under UVA irradiation and at two pH values 3 and 6.5. The photo-assisted Fenton oxidation using laterite as iron source is dependent on H₂O₂ dose, laterite loading and initial concentration of FLU. The degradation rate firstly increased with the dosage of H₂O₂ or with laterite loading, reached an optimum value and then decreased. The occurrence of these optimums values could be explained by the parasite’s scavenging reactions and/or light-screening effects. The apparent heterogeneous reaction rate is dominated by the rate of intrinsic surface chemical reactions including sorption and light-induced reduction of Fe³⁺, which are crucial to enhance the oxidation reaction. The laterite-promoted degradation of FLU is not dramatically affected by the presence of NOR, which can be co-found in affected environmental systems. The laterite can be re-used for several oxidation cycles without structural changes or deactivation of surface sites. This environmentally friendly remediation technology may appear as a promising way for water treatment in developing countries, using
a low cost natural catalyst and solar light for the removal of fluoroquinolone antibiotics from multi-contaminated waters.

Acknowledgements

This work was supported by a bilateral governmental program, Ivory Cost (Contract C2D) and Campus France. We gratefully acknowledge Dr. M. Pasturel (Rennes University) for XRD analysis and Dr. S. Rtimi (EPFL, Lausanne) for TEM analysis.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version.

Capture Figures

Fig.1. Adsorption isotherms of flumequine (FLU) on laterite at pH 3 and 6.5: [FLU]₀ = 19 - 77 µmol.L⁻¹; [Laterite] = 1 g L⁻¹. Solid lines represent the Langmuir model.

Fig.2. Kinetics of flumequine (FLU) removal for various oxidation processes at pH 3 and pH 6.5: [FLU]₀ = 77 µmol L⁻¹; [H₂O₂] = 1 mmol L⁻¹; [Laterite] = 1 g L⁻¹; [FLU]ₐq = aqueous (residual) concentration of flumequine. [FLU]ₜot = total concentration of flumequine representing both aqueous (residual) concentration and adsorbed concentration obtained after desorption. Solid lines represent the pseudo-first order model.

Fig.3. Effect of H₂O₂ concentration on flumequine (FLU) removal by heterogeneous photo-Fenton process at pH 3 and pH 6.5: [FLU]₀ = 77 µmol L⁻¹; [Laterite] = 1 g L⁻¹; UVA irradiation; reaction time = 420 min.

Fig.4. Effect of laterite dosage on flumequine (FLU) removal by heterogeneous photo-Fenton process at pH 3 and pH 6.5: [FLU]₀ = 77 µmol L⁻¹; UVA irradiation; [H₂O₂] = 4 mmol L⁻¹; reaction time = 420 min.

Fig.5. Kinetic rate constants of flumequine (FLU) versus initial concentration of flumequine in heterogeneous photo-Fenton processes at pH 3 and pH 6.5: [FLU]₀ = 19-77 µmol L⁻¹; [laterite] = 1 g L⁻¹; [H₂O₂] = 4 mmol L⁻¹; UVA irradiation; reaction time = 420 min.

Fig.6. Total concentration of flumequine (FLU) and norfloxacin (NOR) degraded versus time in single and binary systems in the heterogeneous photo-Fenton process at two pH values (3 and 6.5): [FLU]₀ = [NOR]₀ = 19 µmol L⁻¹; [laterite] = 1 g L⁻¹; [H₂O₂] = 4 mmol L⁻¹; UVA irradiation; reaction time = 300 min.

Fig.7. Reusability cycles of laterite in the heterogeneous photo-Fenton process at pH 3 and pH 6.5: [FLU]₀ = 77 µmol L⁻¹; [laterite] = 1 g L⁻¹; [H₂O₂] = 4 mmol L⁻¹; UVA irradiation; reaction time = 420 min. Solid line represents pseudo-first order kinetic model.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7