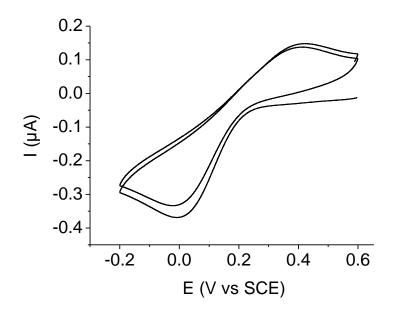
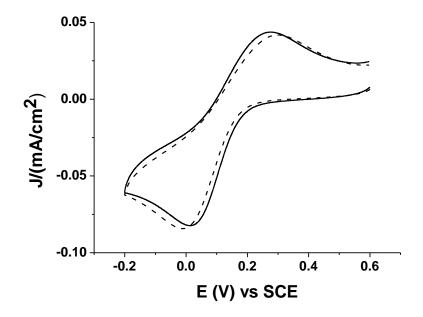
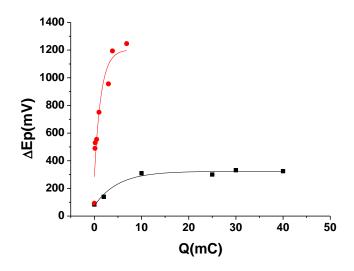
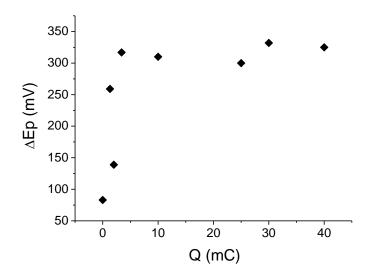

Reductive electrografting of in situ produced diazopyridinium cations: tailoring the interface between carbon electrodes and electroactive bacterial films.

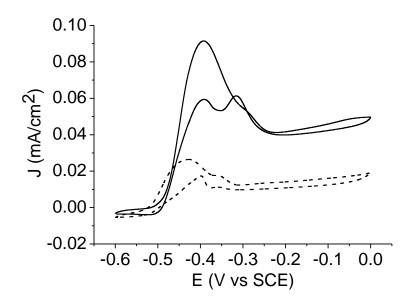
Hassiba Smida, Estelle Lebègue, Jean-François Bergamini, Frédéric Barrière, Corinne Lagrost


Université de Rennes 1, CNRS UMR n° 6226, Sciences Chimiques de Rennes, Equipe MaCSE, France


Figure S1. Cyclic voltammogramms at a glassy carbon electrode for the reduction of 4diazopyridinium cations in situ produced from 20 mM 4-aminopyridine in aqueous 0.5 M HCl in the presence of 40 mM NaNO₂. Scan rate is 0.05 V s⁻¹.


Figure S2. Cyclic voltammetry of 1 mM ferricyanide in aqueous 0.1 M KCl at a bare glassy carbon electrode (black dotted line), at a modified electrode as described in figure S1 at different pH. pH = 2 (black solid line), pH = 7.5 (red solid line), pH = 9 (green solid line). Scan rate is 0.05 V s⁻¹


Figure S3: Cyclic voltammograms of 1 mM ferricyanide in aqueous 0.1 M KCl solution at pH = 9 for a gold electrode modified from electrografting of 4-diazopyridinium cations


Figure S4. Cyclic voltammograms of the reduction of 1 mM ferricyanide (in 0.1 M KCl and 10 mM phosphate buffer adjusted to pH=9 with NaOH) onto glassy carbon electrode modified electrografting of pyridine-4-diazonium cations with a charge consumption equal to Q = 1.3 mC (solid line) and Q = 3.4 mC (dashed line). Scan rate is 0.05 V s⁻¹

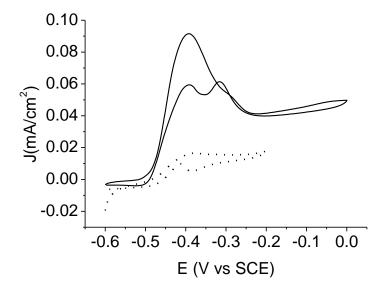

Figure S5. Variation of Δ Ep (peak to peak separation) for the ferricyanide/ferrocycanide electrochemical response at glassy carbon modified through electrografting of diazopyridinium cations (black curve) or of benzenediazonium cations (red curve) as a function of the charge consumed (Q) during the electrografting process. Solid lines are only for guiding eye purpose. Diazopyridinium and benzenediazonium cations were *in situ* produced in acidic 0.5 M HCl in the presence of 2 eq. NaNO₂ from 4-aminopyridine and aniline, respectively.

Figure S6. Variation of Δ Ep (peak to peak separation) for the ferricyanide/ferrocyanide electrochemical response at glassy carbon modified through electrografting of 4-diazopyridinium cations as a function of the charge consumed (Q) during the electrografting process.

Figure S7. Cyclic voltammogramms under acetate saturation conditions of biofilms after 2 days of development on a bare graphite electrode in the absence (dashed line) and in the presence of 0.1 mM of pyridine in the anolyte (solid line).

Figure S8. Cyclic voltammogramms under acetate saturation conditions of biofilms on a bare graphite electrode in the presence of 0.1 mM of pyridine in the anolyte after 2 days of development (solid line) and after a week (dashed line).