Supporting Information

From 2- to 3-Substituted Ferrocene Carboxamides or How to Apply Halogen 'dance' to the Ferrocene Series

Mehdi Tazi,[†] William Erb,^{*,†} Yury S. Halauko,^{*,‡} Oleg A. Ivashkevich,[‡] Vadim E. Matulis,[§] Thierry Roisnel,[¶] Vincent Dorcet[¶] and Florence Mongin[†]

[†] Equipe Chimie Organique et Interfaces, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Bâtiment 10A, Case 1003, Campus Scientifique de Beaulieu, 35042 Rennes Cedex, France

[‡] UNESCO Chair of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus

[§] Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus

[¶] Centre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Bâtiment 10B, Campus de Beaulieu, 35042 Rennes Cedex, France

william.erb@univ-rennes1.fr, hys@tut.by

Table of Contents

Optimization of the halogen 'dance' reaction	S 1
Experimental data on the compounds 1-4 and 6	S 3
X-ray diffraction data on the compounds 1-4, 6 and 13	S4
NMR tables for ferrocene, iodoferrocene and the compounds 1-9	S5
NMR spectra of the compounds 1-10 and 13-15	S 6
Variable-temperature NMR of the compounds 1 and 5	S49
References	S 51

Optimization of the halogen 'dance' reaction

Table A. Optimization of the halogen 'dance' reaction time from 5 using LiTMP (1.1 equiv) in THF at -50 $^{\circ}$ C.

Table B. Optimization of the halogen 'dance' base from 5 using LiTMP or LiDA (1.1 equiv) in THF at -50 °C for 14 h.

Table C. Optimization of the halogen 'dance' reaction time using LiDA (1.1 equiv) in THF at -50 °C.

Table E. Optimization of the halogen 'dance' temperature from 7 using LiTMP (1.1 equiv) in THF for14 h.

 Table F. Halogen 'dance' reaction at 1.0 and 4.0 mmol scale from the 2-iodoferrocenecarboxamides 6 and 8.

Table G. Halogen 'dance' reaction from 5 using LiTMP in THF at -50 °C for 6 h before hydrolysis or iodolysis.

Experimental data on the compounds 1-4 and 6

N,*N*-Diisopropylferrocenecarboxamide (1). The general procedure 2 using diisopropylamine (8.5 mL) gave 1 (eluent: heptane-AcOEt 80:20; $R_f = 0.33$) in 94% yield as an orange powder: mp 74 °C; IR (ATR): 806, 824, 1026, 1042, 1369, 1463, 1473, 1627, 2972, 3085 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 298 K) δ 1.20 (br s, 6H, CH₃), 1.46 (br s, 6H, CH₃), 3.41 (br s, 1H, *CH*Me₂), 4.21 (s, 5H, Cp-H), 4.25 (t, 2H, *J* = 1.9 Hz, Cp-H), 4.54 (t, 2H, J = 1.9 Hz, Cp-H), 4.59 (br s, 1H, *CH*Me₂); ¹H NMR (500 MHz, (CD₃)₂SO, 303 K) δ 1.28 (br s, 12H, CH₃), 3.49 (br s, 1H, *CH*Me₂), 4.23 (s, 5H, Cp-H), 4.33 (br s, 2H, Cp-H), 4.48 (br s, 2H, Cp-H), 4.65 (br s, 1H, *CH*Me₂); ¹H NMR (500 MHz, (CD₃)₂SO, 383 K) δ 1.31 (d, 12H, *J* = 6.7 Hz, CH₃), 4.04 (sept, 2H, *J* = 6.9 Hz, *CH*Me₂), 4.23 (s, 5H, Cp-H), 4.31 (br s, 2H, Cp-H), 4.51 (br s, 2H, Cp-H); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ 21.3 (4CH₃), 46.3 (*C*HMe₂), 49.6 (*C*HMe₂), 68.9 (2CH), 69.8 (5CH), 70.0 (2CH), 81.3 (*C*-C=O), 169.4 (C=O). The spectral data were found similar to those already reported.¹

N,*N*-Diethylferrocenecarboxamide (2). The general procedure 1 using ClCONEt₂ (1.6 mL, 7.5 mmol) gave **2** (eluent: heptane-AcOEt 90:10; $R_f = 0.09$) in 86.5% yield as an orange powder: mp 68 °C (lit.² 66-67 °C); IR (ATR): 761, 818, 1001, 1106, 1115, 1280, 1378, 1413, 1451, 1462, 1481, 1607, 2932, 2971 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 298 K) δ 1.17 (t, 6H, *J* = 6.4 Hz, CH₃), 3.46 (br s, 4H, CH₂), 4.17 (s, 5H, Cp-H), 4.25 (t, 2H, *J* = 2.0 Hz, Cp-H), 4.57 (t, 2H, *J* = 2.0 Hz, Cp-H). These data correspond to those already published.² ¹³C NMR (126 MHz, CDCl₃, 298 K) δ 12.9 (CH₃), 14.8 (CH₃), 40.9 (CH₂), 42.6 (CH₂), 69.3 (2CH), 69.7 (5CH), 70.3 (2CH), 78.9 (*C*-C=O), 169.5 (C=O).

N,*N*-Dimethylferrocenecarboxamide (3). The general procedure 1 using ClCONMe₂ (1.2 mL, 12.5 mmol) gave **3** (eluent: heptane-AcOEt 70:30; $R_f = 0.12$) in 77% yield as an orange powder: mp 112-113 °C (lit.³ 114-115 °C); IR (ATR): 682, 763, 818, 845, 861, 940, 1000, 1035, 1062, 1103, 1230, 1264, 1390, 1455, 1501, 1611, 2922, 3081 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 291 K) δ 3.09 (br s, 6H, CH₃), 4.20 (s, 5H, Cp-H), 4.28 (t, 2H, *J* = 1.9 Hz, Cp-H), 4.60 (t, 2H, *J* = 1.9 Hz, Cp-H); ¹³C NMR (75 MHz, CDCl₃, 291 K) δ 36.8 (CH₃), 38.8 (CH₃), 69.4 (2CH), 69.9 (5CH), 70.7 (2CH), 78.6 (*C*-C=O), 170.9 (C=O). These data correspond to those already published.⁴

(4-Morpholinocarbonyl)ferrocene (4). The general procedure 1 using 4-morpholinocarbonyl chloride (1.75 mL, 7.5 mmol) gave 4 (eluent: heptane-AcOEt 70:30; $R_f = 0.12$) in 76% yield as a yellowish powder: mp 126 °C (lit.² 127-128 °C); IR (ATR): 674, 757, 825, 911, 941, 1001, 1021, 1047, 1063, 1106, 1175, 1254, 1281, 1301, 1411, 1473, 1615, 2050, 2971 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 291 K) δ 3.66-3.69 (m, 4H, CH₂), 3.72-3.75 (m, 4H, CH₂), 4.24 (s, 5H, Cp-H), 4.31 (t, 2H, *J* = 1.9 Hz, Cp-H), 4.54 (t, 2H, *J* = 1.9 Hz, Cp-H). These data correspond to those already published.² ¹³C NMR (75 MHz, CDCl₃, 291 K) δ 45.5 (br s, 2CH₂), 67.0 (2CH₂), 69.3 (2CH), 69.9 (5CH), 70.3 (2CH), 78.4 (*C*-C=O), 169.8 (C=O). The ¹³C NMR data are similar to those reported previously.⁵

N,N-Diethyl-2-iodoferrocenecarboxamide (6, racemic mixture). As already shown,⁶ the general procedure 3 using *N*,*N*-diethylferrocenecarboxamide (2, 0.855 g) gave 6 (eluent: heptane-AcOEt 90:10; $R_f = 0.55$) in 88% yield as an orange powder: mp 57 °C; IR (ATR): 688, 808, 1003, 1360, 1442, 1476, 1612, 2966, 3109 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 291 K) δ 0.98 (br t, 3H, CH₃), 1.21 (br t, 3H, CH₃), 3.09 (br q, 2H, *J* = 6.4 Hz, CH₂), 3.23 (br q, 1H, *J* = 6.4 Hz, CH₂), 3.72 (br q, 1H, *J* = 6.3 Hz, CH₂), 4.20 (t, 1H, *J* = 2.5 Hz, Cp-H), 4.34 (s, 5H, Cp), 4.35 (dd, 1H, *J* = 2.6 and 1.4 Hz, Cp-H), 4.45 (dd, 1H, *J* = 2.4 and 1.3 Hz, Cp-H); ¹H NMR (500 MHz, CDCl₃, 298 K) δ 0.96 (br s, 3H, CH₃), 1.19 (br s, 3H, CH₃), 3.07 (br s, 2H, CH₂), 3.21 (br s, 1H, CH₂), 3.69 (br s, 1H, CH₂), 4.18 (t, 1H, *J* = 2.45 Hz, Cp-H), 4.32 (s, 5H, Cp-H), 4.33 (br s, 1H, Cp-H); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ 13.05 (CH₃), 14.3 (CH₃), 39.7 (CH₂), 41.1 (C-I), 43.1 (CH₂), 67.8 (CH), 68.1 (CH), 72.9 (5CH, Cp), 74.1 (CH), 89.7 (*C*-C=O), 167.0 (C=O). These data correspond to those reported previously.⁶ It is worth mentioning that the ¹H NMR spectrum recorded in C₆D₆ at 340 K shows only one signal for the six protons of the methyl groups and one signal for each CH₂.⁶

X-ray diffraction data for the compounds 1-4, 6 and 13

Figure 1. ORTEP diagrams (30% probability level) of the ferrocenecarboxamides 1 ($C^6-C^{10}-C^{11}-O^{12}$ torsion angle: -66.62°), 2 ($C^9-C^{10}-C^{11}-O^1$: -22.90°), 3 ($C^9-C^{10}-C^{11}-O^{12}$: 36.07°), 4 ($C^6-C^{10}-C^{11}-O^{12}$: 46.24°), 6 ($C^9-C^{10}-C^{11}-O^{12}$: -91.57°) and 13.

Crystal data for *N***,***N***-diisopropylferrocenecarboxamide** (1). The obtained crystal structure was found to be similar to that described (CCDC 1298115; XUXKUW).⁷

Crystal data for *N*,*N*-**diethylferrocenecarboxamide** (2). $C_{15}H_{19}FeNO$, M = 285.16, T = 293(2) K, orthorhombic, $P \ 2_1 \ 2_1 \ 2_1$, a = 7.5270(11), b = 9.3585(12), c = 19.310(3) Å, V = 1360.2(3) Å³, Z = 4, d = 1.392 g cm⁻³, $\mu = 1.096$ mm⁻¹. A final refinement on F^2 with 3106 unique intensities and 167 parameters converged at $\omega R(F^2) = 0.0888$ (R(F) = 0.0357) for 2923 observed reflections with $I > 2\sigma(I)$. CCDC 1565036.

Crystal data for *N*,*N*-dimethylferrocenecarboxamide (3). $C_{13}H_{15}FeNO$, M = 257.11, T = 150(2) K, orthorhombic, *P n a* 2_1 , *a* = 22.0483(8), *b* = 17.3768(6), *c* = 5.8961(2) Å, *V* = 2258.97(14) Å³, *Z* = 8, *d* = 1.512 g cm⁻³, $\mu = 1.311$ mm⁻¹. A final refinement on *F*² with 4979 unique intensities and 293 parameters converged at $\omega R(F^2) = 0.0497$ (R(F) = 0.0228) for 4638 observed reflections with $I > 2\sigma(I)$. CCDC 1565037. These structural data were found close to those already described (CCDC 1298114; XUXKOQ).⁷

Crystal data for (4-morpholinocarbonyl)ferrocene (4). $C_{15}H_{17}FeNO_2$, M = 299.14, T = 150(2) K, monoclinic, $P 2_1$, a = 5.7178(8), b = 9.4557(13), c = 12.0419(15) Å, $\beta = 92.803(5)$ °, V = 650.28(15) Å³, Z = 2, d = 1.528 g cm⁻³, $\mu = 1.156$ mm⁻¹. A final refinement on F^2 with 2919 unique intensities and 173 parameters converged at $\omega R(F^2) = 0.0653$ (R(F) = 0.0246) for 2871 observed reflections with $I > 2\sigma(I)$. CCDC 1565038. Note that a similar structure to compound **4** was reported in 2005.⁸

Crystal data for *N*,*N*-diethyl-2-iodoferrocenecarboxamide (6, racemic mixture). C₁₅H₁₈FeINO, M = 411.05, T = 150(2) K, monoclinic, $P 2_1/c$, a = 11.0250(14), b = 13.6395(16), c = 11.4498(14) Å, $\beta = 117.212(4)$ °, V = 1531.2(3) Å³, Z = 4, d = 1.783 g cm⁻³, $\mu = 2.993$ mm⁻¹. A final refinement on F^2 with 3561 unique intensities and 175 parameters converged at $\omega R(F^2) = 0.0790$ (R(F) = 0.0297) for 3105 observed reflections with $I > 2\sigma(I)$. CCDC 1565039.

Table SI-1. Selected ¹H and ¹³C NMR data (δ) of 1-4 in CDCl₃.^{*a*}

Compound	H^{α}	H ^β	H ^{Cp}	C ^{ipso}	C ^α	C ^β	CCp
1	4.54	4.27	4.21	81.3	70.0	68.9	69.8
2	4.57	4.25	4.17	78.9	70.3	69.3	69.7
3	4.60	4.28	4.20	78.6	70.7	69.4	69.9
4	4.54	4.31	4.24	78.4	70.3	69.3	69.9

^{*a*} Tentative assignment based on chemical shifts (¹H)⁹ and on HSQC NMR experiment (¹³C).

Table SI-2. Selected ¹H and ¹³C NMR data (δ) of 5-8 in CDCl₃.

Compound	H^3	H^4	H^5	Ср		
5^{a}	4.38	4.13	4.24	4.30		
6 ^b	4.43	4.18	4.33	4.32		
7^{b}	4.37	4.13	4.26	4.21		
8^{b}	4.49	4.25	4.36	4.34		
Compound	C	C^2	C	C^4	C	Ср
5^{a}	92.6	40.5	73.6	67.7	66.8	72.7
6 ^b	89.7	41.1	74.1	68.1	67.8	72.9
7^{b}	87.7	40.3	74.4	68.4	68.3	72.7
8^{b}	87.6	40.2	74.8	68.8	67.0	73.1

^{*a*} Unambiguous assignment based on advanced NMR studies (see Supporting Information). ^{*b*} Tentative assignment based on chemical shifts (¹H)⁹ and on HSQC NMR experiment (¹³C).

Table SI-3. Selected ¹H and ¹³C NMR data (δ) of ferrocene (Fc-H), iodoferrocene (Fc-I), 1, 5 and 9 in CDCl₃.

Compound	H^1	H^2	H^3	H^4	H^5	Ср
Fc-H	4.18	4.18	4.18	4.18	4.18	4.18
\mathbf{Fc} - \mathbf{I}^{a}	-	4.43	4.17	4.17	4.43	4.21
1^{a}	-	4.54	4.27	4.27	4.54	4.21
5 ^b	-	-	4.38	4.13	4.24	4.30
9 ^b	-	4.73	-	4.51	4.58	4.30
			-		-	
Compound	C^1	C^2	C ³	C^4	C ⁵	Ср
Compound Fc-H	C ¹ 68.1	C ² 68.1	C ³ 68.1	C ⁴ 68.1	C ⁵ 68.1	Cp 68.1
Compound Fc-H Fc-I ^a	C ¹ 68.1 39.9	C ² 68.1 74.6	C ³ 68.1 68.9	C ⁴ 68.1 68.9	C ⁵ 68.1 74.6	Cp 68.1 71.2
Compound Fc-H Fc-I ^a 1 ^a	C ¹ 68.1 39.9 81.3	C ² 68.1 74.6 70.0	C ³ 68.1 68.9 68.9	C ⁴ 68.1 68.9 68.9	C ⁵ 68.1 74.6 70.0	Cp 68.1 71.2 69.8
$\begin{tabular}{c} \hline Compound \\ \hline Fc-H \\ Fc-I^a \\ 1^a \\ 5^b \end{tabular}$	C ¹ 68.1 39.9 81.3 92.6	$ \begin{array}{c} C^2 \\ 68.1 \\ 74.6 \\ 70.0 \\ 40.5 \end{array} $	C ³ 68.1 68.9 68.9 73.6	C ⁴ 68.1 68.9 68.9 67.7	C ⁵ 68.1 74.6 70.0 66.8	Cp 68.1 71.2 69.8 72.7

^{*a*} Tentative assignment based on chemical shifts (¹H)⁹ and on HSQC NMR experiment (¹³C). ^{*b*} Unambiguous assignment based on advanced NMR studies (see Supporting Information).

Table SI-4. Chemical shift increments for α, β and Cp positions relative to ferrocene at room temperature in CDCl₃.

Substituent	Η ^α	H^{β}	H ^{Cp}	
CONiPr ₂	+0.36	+0.09	+0.03	_
I	+0.25	-0.01	+0.03	
Substituent	C ^α	C^{β}	C ^{Cp}	C ^{ipso}
CONiPr ₂	+1.9	+0.8	+1.7	+13.2
I	+6.5	+0.8	+3.1	-28.2

NMR spectra

Compound 1

¹H NMR (500 MHz, CDCl₃, 298 K)

¹H NMR (500 MHz, (CD₃)₂SO, 383 K)

¹³C NMR (126 MHz, CDCl₃, 298 K)

Compound 2

¹H NMR (500 MHz, CDCl₃, 298 K)

CONEt₂

¹³C NMR (126 MHz, CDCl₃, 298 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

HMBC (300 MHz, CDCl₃, 298 K)

Compound 3

CONMe₂

¹H NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (75 MHz, CDCl₃, 291 K)

¹³C NMR (126 MHz, CDCl₃, 298 K)

HSQC (300 MHz, CDCl₃, 298 K)

HMBC (300 MHz, CDCl₃, 298 K)

Compound 4

¹³C NMR (75 MHz, CDCl₃, 291 K)

Compound 5

CONiPr₂

¹³C NMR (126 MHz, CDCl₃, 298 K)

¹³C NMR (75 MHz, CDCl₃, 291 K)

¹H NMR (500 MHz, (CD₃)₂SO, 383 K)

COSY NMR (500 MHz, CDCl₃, 298 K)

HSQC NMR (500 MHz, CDCl₃, 298 K)

HMBC NMR (500 MHz, CDCl₃, 298 K)

NOESY NMR (500 MHz, CDCl₃, 298 K)

Compound 6

¹H NMR (500 MHz, CDCl₃, 298 K)

CONEt₂

¹³C NMR (126 MHz, CDCl₃, 298 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

COSY (500 MHz, CDCl₃, 298 K)

HSQC (500 MHz, CDCl₃, 298 K)

NOESY (500 MHz, CDCl₃, 298 K)

Compound 7

CONMe₂

¹H NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (75 MHz, CDCl₃, 291 K)

¹³C NMR (126 MHz, CDCl₃, 298 K)

COSY (300 MHz, CDCl₃, 291 K)

HMBC (300 MHz, CDCl₃, 291 K)

Compound 8

¹H NMR (300 MHz, CDCl₃, 291 K)

¹³C NMR (75 MHz, CDCl₃, 291 K)

Compound 9

¹H NMR (500 MHz, CDCl₃, 298 K)

CONiPr₂

¹H NMR (300 MHz, CDCl₃, 291 K)

¹³C NMR (126 MHz, CDCl₃, 298 K)

¹³C NMR (75 MHz, CDCl₃, 291 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

COSY NMR (500 MHz, CDCl₃, 298 K)

HSQC NMR (500 MHz, CDCl₃, 298 K)

HMBC NMR (500 MHz, CDCl₃, 298 K)

NOESY NMR (500 MHz, CDCl₃, 298 K)

Compound 10

¹H NMR (500 MHz, CDCl₃, 298 K)

CONEt₂

¹³C NMR (126 MHz, CDCl₃, 298 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

COSY NMR (500 MHz, CDCl₃, 298 K)

HSQC NMR (500 MHz, CDCl₃, 298 K)

HMBC NMR (500 MHz, CDCl₃, 298 K)

NOESY NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (126 MHz, CDCl₃, 298 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

COSY NMR (500 MHz, CDCl₃, 298 K)

HSQC NMR (500 MHz, CDCl₃, 298 K)

HMBC NMR (500 MHz, CDCl₃, 298 K)

NOESY NMR (500 MHz, CDCl₃, 298 K)

¹³C NMR (75 MHz, CDCl₃, 291 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

COSY NMR (500 MHz, CDCl₃, 298 K)

HSQC NMR (500 MHz, CDCl₃, 298 K)

HMBC NMR (500 MHz, CDCl₃, 298 K)

NOESY NMR (500 MHz, CDCl₃, 298 K)

∫NiPr₂

¹³C NMR (126 MHz, CDCl₃, 298 K)

DEPT-135 (126 MHz, CDCl₃, 298 K)

COSY NMR (500 MHz, CDCl₃, 298 K)

HSQC NMR (500 MHz, CDCl₃, 298 K)

HMBC NMR (500 MHz, CDCl₃, 298 K)

NOESY NMR (500 MHz, CDCl₃, 298 K)

Compound 1. ¹H NMR (500 MHz, (CD₃)₂SO, 383 K), bottom to top: 303 K, 308 K, 318 K, 328 K, 338 K, 348 K, 358 K, 368 K, 378 K, 383 K

Compound 5. ¹H NMR (500 MHz, (CD₃)₂SO, 383 K), bottom to top: 298 K, 308 K, 318 K, 328 K, 338 K, 348 K, 358 K, 368 K, 378 K, 383 K

References

- (1) (a) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685-686. (b) Kumar, S.; Singh, H. B.; Wolmershäuser, G. Organometallics 2006, 25, 382-393.
- (2) Szarka, Z.; Skoda-Földes, R.; Kuik, A.; Berente, Z.; Kollár, L. Synthesis 2003, 545-550.
- (3) Hu, J.; Barbour, L. J.; Gokel, G. W. New J. Chem. 2004, 28, 907-911.
- (4) Petter, R. C.; Rao, S. J. J. Org. Chem. 1991, 56, 2932-2934.
- (5) Ekti, S. F.; Hür, D. Inorg. Chem. Commun. 2008, 11, 1027-1029.
- (6) Dayaker, G.; Sreeshailam, A.; Chevallier, F.; Roisnel, T.; Radha Krishna, P.; Mongin, F. Chem. Commun. 2010, 46, 2862-2864.
- (7) Howell, J. A. S.; Yates, P. C.; Fey, N.; McArdle, P.; Cunningham, D.; Parsons, S.; Rankin, D. W. H. *Organometallics* **2002**, *21*, 5272-5286.
- (8) Matesanz, A. I.; Cuadrado, I.; Mosa, J.; García, I.; Souza, P. Z. Anorg. Allg. Chem. 2005, 631, 1979-1981.
- (9) Pickett, T. E.; Richards, C. J. Tetrahedron Lett. 1999, 40, 5251-5254.