%0 Journal Article %T Robust Ultraminiature Capsule Antenna for Ingestible and Implantable Applications %+ University of West Bohemia [Plzeň ] %+ Institut d'Électronique et des Technologies du numéRique (IETR) %A Nikolayev, Denys %A Zhadobov, Maxim %A Le Coq, Laurent %A Karban, Pavel %A Sauleau, Ronan %Z BodyCap Company %Z French Ministry of Foreign Affairs and International Development %Z French National Center for Scientific Research %Z Ministry of Education, Youth and Sports of the Czech Republic under the RICE-New Technologies and Concepts for Smart Industrial Systems [LO1607] %< avec comité de lecture %@ 0018-926X %J IEEE Transactions on Antennas and Propagation %I Institute of Electrical and Electronics Engineers %V 65 %N 11 %P 6107-6119 %8 2017 %D 2017 %R 10.1109/TAP.2017.2755764 %K Biotelemetry %K conformal antennas %K implantable antennas %K in-body %K ingestible antennas %K ISM (industrial %K scientific %K and medical) band %K MedRadio (medical device radio communications service) band %K microstrip antennas %K miniature antennas %Z Computer Science [cs]/Networking and Internet Architecture [cs.NI] %Z Engineering Sciences [physics]/ElectronicsJournal articles %X Progress in implantable and ingestible wireless biotelemetry requires versatile and efficient antennas to communicate reliably from a body. We propose an ultraminiature 434 MHz antenna immune to impedance detuning caused by varying electromagnetic properties of the surrounding biological environment. It is designed for a standard input impedance of 50 Omega. The antenna is synthesized and miniaturized using a hybrid analytical-numerical approach, and then optimized to conform to the inner surface of a 17 mm long biocompatible encapsulation (7 mm diameter). The substrate is 50 mu m thick. The capsule antenna is analyzed both in simplified and anatomically realistic heterogeneous phantoms. It remains matched at common implantation sites and through the whole gastrointestinal tract. Enhanced robustness allows using the antenna for a wide range of in-body applications. Computed reflection coefficients and radiation performance both show good agreement with measurements. The far field is characterized with the direct illumination technique using an analog fiber optic link. The realized gain (measured max. value -19.6 dBi) exceeds the counterparts by about 3 dBi. The proposed antenna contributes to the further development of a new generation of miniature in-body devices that involve complex and dense integration of sensors, logic, and power source. %G English %L hal-01684558 %U https://univ-rennes.hal.science/hal-01684558 %~ UNIV-NANTES %~ UNIV-RENNES1 %~ CNRS %~ INSA-RENNES %~ IETR %~ STATS-UR1 %~ CENTRALESUPELEC %~ UR1-HAL %~ UR1-MATH-STIC %~ UR1-UFR-ISTIC %~ IETR-WAVES %~ IETR-BEAMS %~ IETR-ADH %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INSA-GROUPE %~ TEST-HALCNRS %~ UR1-MATH-NUM %~ IETR-SUMIT %~ IETR-EWAVES %~ NANTES-UNIVERSITE %~ UNIV-NANTES-AV2022 %~ TEST3-HALCNRS