
HAL Id: hal-01681153
https://univ-rennes.hal.science/hal-01681153

Submitted on 31 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virial stress-based model to simulate the silica glass
densification with the discrete element method
Mohamed Jebahi, Frédéric Dau, Ivan Iordanoff, Jean-Pierre Guin

To cite this version:
Mohamed Jebahi, Frédéric Dau, Ivan Iordanoff, Jean-Pierre Guin. Virial stress-based model to simu-
late the silica glass densification with the discrete element method. International Journal for Numerical
Methods in Engineering, 2017, 112 (13), pp.1909-1925. �10.1002/nme.5589�. �hal-01681153�

https://univ-rennes.hal.science/hal-01681153
https://hal.archives-ouvertes.fr


A
cc

ep
te

d
A

rt
ic

le
Virial stress based model to simulate the silica glass densification

with the discrete element method

Mohamed JEBAHI1,∗, Frédéric DAU1, Ivan IORDANOFF1, Jean-Pierre GUIN2

1Arts et Metiers ParisTech, I2M, UMR 5295 CNRS F-33400, Talence, France
2Univ. Rennes 1, UMR CNRS 6251, IPR, F-35042 Rennes, France

SUMMARY

The discrete element method (DEM) presents an alternative way to model complex mechanical problems of
silica glass, such as brittle fracture. Since discontinuities are naturally considered by DEM, no complex
transition procedure from continuum phase to discontinuum one is required. However, to ensure that
DEM can properly reproduce the silica glass cracking mechanisms, it is necessary to correctly model
the different features characterizing its mechanical behavior before fracture. Particularly, it is necessary to
correctly model the densification process of this material which is known to strongly influence the fracture
mechanisms. The present paper proposes a new and very promising way to model such process which is
assumed to occur only under hydrostatic pressure. An accurate predictive-corrective densification model
is developed. This model shows a great flexibility to reproduce extremely complex densification features.
Furthermore, it involves only one calibration parameter, which makes it very easy to apply. This new model
represents a major step towards accurate modeling of materials permanent deformation with the discrete
element method, which has long been a huge challenge in applying this method for continuum problems.
Copyright c⃝ 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Silica glass, which is typical of amorphous solids, belongs to the category of anomalous glasses
[13, 14] and is known to exhibit a complex mechanical behavior. Under hydrostatic pressures up
to approximately 8GPa, this material behaves in a perfectly elastic manner. Beyond 8GPa, it
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begins to exhibit signs of permanent deformation known as densification [12, 38, 40, 59, 60, 71].
Densification of silica glass which is defined as permanent volume change (or permanent density
change) is quite different from plasticity of crystalline solids. Indeed, this last phenomenon is
volume-conservative and can only occur under shear stress. Once initiated, the densification process
continues to evolve with pressure until approximately 20GPa, at which the permanent volume
change can reach 17.4% [36, 38, 40, 59]. During this process, the mechanical properties of
silica glass increase with increasing pressure [12, 13, 14, 38, 59, 63]. According to references
[36, 38], Young’s modulus and Poisson’s ratio of silica glass present a spectacular augmentation
of respectively 46% and 56% at the end of densification. Beyond 20GPa, the densification process
stops evolving and the material regains its elastic behavior. Although the role of hydrostatic pressure
on the densification of silica glass is now well known, the role of shear stress on this phenomenon
has been a contentious issue since the first work on the subject [12]. Several experimental works
investigating this issue can be found in the literature, some of which are controversial. Some
works [17, 18, 21] state that shear stress has no influence on the final densification level (it may
only have kinetic effects, i.e. effects on the rate at which silica glass densifies under hydrostatic
pressure), whereas others [16, 45, 59, 67] hold the opposite view. To corroborate these works, several
numerical studies have also been conduced [32, 39, 40]. In a recent previous paper [32], a silica glass
model has been developed using an assumption of no shear effects on densification. Application of
this model to simulate various silica glass problems at both microscopic and macroscopic scales
has led to acceptable numerical results, which favors the relevance of the adopted assumption.
Further research effort is required to get over this issue. Another challenging feature of silica glass
is concerned with its fracture behavior. The great complexity of this behavior lies in the fact that it
depends on several parameters such as microscopic defects and flaws existing in the material, but
also on the environmental conditions which can strongly modify the fracture properties [49, 68, 69].

Due to its anomalous and complex mechanical behavior, accurate description and modeling of
silica glass has long been a challenge for continuum methods, such as the finite element method
(FEM) [73, 74], and the smoothed particle hydrodynamics (SPH) [42, 43, 56]. Indeed, certain
inherent drawbacks caused by the reliance of these methods on continuum mechanics, generally
requiring computation mesh, and unsuitability in dealing with discontinuities are still not adequately
addressed. In contrast, discrete (or discontinuum) methods [6, 19, 20, 33, 34, 41, 54, 55], which
are based on discrete (Newtonian) mechanics and do not rely on any kind of mesh, can naturally
provide solutions for major of these drawbacks. Using these methods, the domain of interest is
modeled by a set of discrete elements (particles) that can interact with each other. According to
the analysis scale, the discrete methods most commonly used can be classified into three classes:
quantum mechanical (or ab initio) methods (QMs), atomistic methods (AMs) and discrete element
methods (DEMs) [33, 44]. QMs are used for material simulation at the atomic scale (∼ 10−9 m),
in which the electrons are the players. The molecules are treated as collections of nuclei and
electrons whose interaction is directly dictated by their quantum mechanical state, without any
reference to chemical bonds. Examples of QMs are quantum Monte Carlo [24], density-functional
theory [26]. These methods are generally very accurate since they hold out the possibility of
performing simulations without prior need for tuning. However, they are extremely expensive
and can only be applied on very small domains of a few nanometers size. AMs are used for
material simulation at the microscopic scale (∼ 10−6 m), where atoms are the players. These
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methods ignore the electronic motions and compute the energy of a system as a function of the
atomic positions only. The interaction laws between particles (atoms) can be described by empirical
interatomic potentials that encapsulate the effects of bonding between them. Examples of AMs
are molecular mechanics (statics) (MM) [29], molecular dynamics (MD) [3, 4, 51]. Although
they are less accurate than QMs, the atomistic methods can be applied to much larger systems
involving up to 109 atoms [1]. However, their application to simulate realistic engineering problems
remains at present elusive due to overwhelming computation costs. DEMs are used for material
simulation at the mesoscopic scale (∼ 10−4 m), where lattice defects such as dislocations, crack
propagation, and other microstructural elements are the players. These methods can broadly be
regarded as a generalization of the atomistic methods, where more complex interaction laws (derived
by calibration or from phenomenological theories) are used. The atomic degrees of freedom are not
explicitly treated and only larger-scale particles are considered. Although DEMs were originally
developed for granular materials (e.g. grains [35] and powders [47]), they have become an alternative
way to model complex continuum problems, for which traditional continuum methods may not
provide the most appropriate computational framework. Different variations of discrete element
methods can be found in the literature. The reader is invited to read the interesting review papers
recently published by Lisjak and Grasselli [41] and Potyondy [55] for more details. These variations
are distinguished according to several criteria, including the type of contact between bodies, the
representation of deformability of solid bodies, the methodology for detection and revision of
contacts, and the solution procedure for the equations of motion [37]. Examples of DEMs are
the distinct element method developed by Cundall and Strack [19, 20], which is considered as
the factory method of DEMs, and the bonded-particle method (BPM) developed by Potyondy et
al. [53, 54, 55] to model rocks. With the latter approach, a material is modeled as a statistically
generated assembly of non-uniform-sized rigid circular of spherical particles that may be bonded
together at their contact points. Mainly, two types of bonds are used in BPM: contact bond and
parallel bond [54]. In the contact bond model, an elastic spring with constant normal and shear
stiffnesses acts at the contact points between particles, allowing only forces to be transmitted. In the
parallel bond model, both forces and moments are transmitted between particles using a set of elastic
springs uniformly distributed over a finite-sized section lying on the contact plane and centered at
the contact point. In the context of DEMs, a particular approach can also be cited: the combined
(hybrid) finite-discrete element method (FDEM) [46, 50, 57, 70]. With this variation, the simulation
starts with a continuous representation of the domain of interest, then, upon satisfying some failure
criterion, formation of new discrete bodies is allowed. This approach blends continuum techniques
(for the computation of internal forces and for the evaluation of a failure criterion, etc.) with discrete
concepts (for detecting new contacts and for dealing with the interaction between the newly formed
discrete bodies, etc.). Recently, another variation of DEMs has been developed by André et al.
[6, 7, 33] to model continuum problems, for which the continuity assumption can become disabled
during simulation. In this approach, the neighboring discrete elements (rigid spheres) are bonded
by permanent cohesive beam bonds, of which mechanical properties are determined by calibration.
The Euler–Bernoulli beam theory [65] is used to compute the beam forces and moments.

As mentioned by André et al. [6, 7, 33], their approach is well adapted to model complex
continuum problems. Particularly, it seems to be well suited to the simulation of silica glass
problems that involve fracture [8, 32]. Since discontinuities are naturally taken into account by
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this DEM variation, there is no need for complex transition procedure from continuum phase to
discontinuum one. However, to ensure that this method can properly reproduce the silica glass
cracking mechanisms, it is necessary to correctly model the different features characterizing its
mechanical behavior before fracture. Particularly, it is necessary to correctly model the densification
process which is known to drastically modify the fracture behavior of this material [9, 27]. To
meet this need, a densification model based on the cohesive beam bonds between the discrete
elements was recently developed in a previous paper [32]. Although it provides relatively good
results in quasi-statics, this model involves a large number of calibration parameters, which
makes the calibration procedure tedious and very time-consuming. Furthermore, it lacks flexibility
and can only be applied in quasi-statics where silica glass densification presents a nearly linear
evolution with pressure. However, its application to reproduce the complex densification features
characterizing the silica glass response in highly dynamics is very challenging [31]. To overcome
these limitations, the present paper proposes a new and very promising way to model silica glass
densification under hydrostatic pressure. An accurate predictive-corrective densification model is
proposed. As will be seen later, this model shows a great flexibility to reproduce extremely complex
densification features. In addition, it is very easy to apply, since it involves only one calibration
parameter.

Following this introduction, the present paper is divided into four sections. Section 2 gives a brief
review of the variation of discrete element methods for continuous materials used in this work.
Section 3 details the predictive-corrective densification model developed in the present paper to
model silica glass densification under hydrostatic pressure. Section 4 tries to validate this model
through its application to simulate the response of a silica glass sphere subjected to high hydrostatic
compression. Section 5 presents some conclusions.

2. DISCRETE ELEMENT METHOD FOR CONTINUOUS MATERIALS

The variation of discrete element methods used in this work is that developed by André et al.
[6, 7, 33, 34] to model continuous materials. For simplicity, this variation will simply be referred
to as the discrete element method (DEM) in the remainder of this paper. This approach can be
regarded as an “hybrid” approach between lattice methods [61, 62] and particle methods [19, 20].
A continuum is represented by a discrete domain having the same outside dimensions and made up
of a set of rigid spherical discrete elements (particles). This discrete domain must satisfy several
geometrical conditions to take into account the structural properties of the modeled continuum. For
example, in the case of silica glass, two main structural properties must be considered: homogeneity
and geometrical isotropy. According to several works in the literature [23, 25], homogeneity can be
taken into account in the discrete domain by satisfying two criteria. The first criterion is concerned
with the average coordination number ncoord (average number of discrete element neighbors) which
must be larger than 6 [25]; and the second criterion is concerned with the volume fraction vf (ratio of
the volume occupied by the discrete elements to the total volume of the discrete domain) which must
be lager than 0.63 [23]. To ensure the geometrical isotropy of the discrete domain, the directions of
the contacts between each discrete element and its neighbors must be evenly distributed in the 3D
space. André et al. [7, 33] have shown that the use of polydisperse discrete elements with a uniform
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radius distribution of χ = 25% seems to guarantee the minimum required for the discrete domain
to be considered as geometrically isotropic. Indeed, using polydisperse discrete elements, a highly
irregular discrete domain can be obtained, with no preferential directions.

To ensure the cohesion of this domain, the adjacent discrete elements are connected by cylindrical
cohesive beam bonds (fig. 1). This type of bonds seems to be the best adapted to model continua
using spherical particles. Indeed, both forces and torques are computed on the discrete elements,
which makes it possible to properly consider shear effects in the modeled continuum. The contact
detection procedure is only activated one time at the beginning of the simulation to detect the
adjacent discrete elements that must be connected by cohesive beam bonds. During the simulation,
the interaction between these elements is governed by the bonds, provided that there is no fracture.
This permits significant computation time saving. When fracture takes place, an optimized contact
process can be activated to deal with the interaction between the fractured elements and the
remainder of the discrete domain. To compute the forces and torques in the cohesive beam bonds,
the Euler–Bernoulli beam theory [65] is used:

FDE1
µ = +EµSµ

∆lµ
lµ

x+
6EµIµ
l2µ

(−(θ2z + θ1z)y + (θ2y + θ1y)z) (1)

FDE2
µ = −EµSµ

∆lµ
lµ

x− 6EµIµ
l2µ

(−(θ2z + θ1z)y + (θ2y + θ1y)z) (2)

TDE1
µ = +

GµIoµ
lµ

(θ2x + θ1x)x−
2EµIµ
lµ

((θ2y + 2θ1y)y + (θ2z + 2θ1z)z) (3)

TDE2
µ = −GµIoµ

lµ
(θ2x + θ1x)x−

2EµIµ
lµ

((2θ2y + θ1y)y + (2θ2z + θ1z)z) (4)

Where:

• R(x,y, z) is the beam local frame where x is the beam axis (fig. 1).
• R(x1,y1, z1) and R(x2,y2, z2) are local frames associated with the discrete elements 1 and
2.
• FDE1

µ and FDE2
µ are the beam force reactions acting on the discrete elements 1 and 2

(connected to this beam bond).
• TDE1

µ and TDE2
µ are the beam torque reactions acting on the discrete elements 1 and 2.

• lµ and ∆lµ are the initial beam length and the longitudinal extension.
• θ1(θ1x, θ1y, θ1z) and θ2(θ2x, θ2y, θ2z) are the rotations of the beam cross sections expressed

in the beam local frame.
• Sµ, Ioµ and Iµ are respectively the beam cross-sectional area, the polar moment of inertia and

the second moment of area with respect to the y and z axes.
• Eµ and Gµ are respectively the Young’s and shear moduli.

The microscopic quantities (of the cohesive beam bonds) are subscripted with “µ” to be
distinguished from the macroscopic ones (of the material being modeled) that are subscripted with
“M” hereafter.

The numerical resolution of the DEM system of equations is performed using the velocity Verlet
scheme which is an explicit integration scheme [58]. The discrete element position p and velocity
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Figure 1. Cohesive beam bond between two discrete elements (Taken from [7])

ṗ are estimated from the linear acceleration p̈ as follows:

p (t+∆t) = p (t) + ∆t ṗ (t) +
∆t2

2
p̈ (t)

ṗ (t+∆t) = ṗ (t) +
∆t

2
[p̈ (t) + p̈ (t+∆t)]

(5)

where t and ∆t are respectively the current time and the integration time step. In the present DEM
variation, the discrete element orientations are described by quaternions, noted q, which allow an
efficient way to compute the rotation of the local frames associated with the discrete elements [52].
For more details on the use of quaternions, the reader is referred to references [5, 52]. The velocity
Verlet scheme is also applied to the quaternions as follows:

q (t+∆t) = q (t) + ∆t q̇ (t) +
∆t2

2
q̈ (t)

q̇ (t+∆t) = q̇ (t) +
∆t

2
[q̈ (t) + q̈ (t+∆t)]

(6)

where q̇ and q̈ are respectively the first and second time derivatives of q. As for the linear
acceleration, q̈ is calculated using the Newton second law (angular momentum part) [5, 52]. To
prevent q numerical drift, the quaternion must be normalized at each time step. Algorithm 1 presents
the resolution steps of the DEM calculation using the velocity Verlet scheme [7].
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Algorithm 1 Explicit DEM resolution [7]

Require: p(0) ṗ(0) p̈(0) q(0) q̇(0) q̈(0)

t← 0

for all iteration n do
for all discrete element i do

pi(t+∆t)← Application of Eq. (5)
f i(t+∆t)← Sum of all the forces acting on i

p̈i(t+∆t)← Newton second law
ṗi(t+∆t)← Application of Eq. (5)

qi(t+∆t)← Application of Eq. (6)
qi(t+∆t)← Normalization
ti(t+∆t)← Sum of all the torques acting on i

q̈i(t+∆t)← Newton second law (angular momentum law)
q̇i(t+∆t)← Application of Eq. (6)

end for
end for

Equations (1), (2), (3) and (4) involve several microscopic parameters that must be determined so
as to ensure the expected macroscopic elastic behavior of the considered continuum, some of which
are interdependent. Based on the works of André et al. [7, 33], only two independent microscopic
parameters influence the macroscopic elastic behavior: the dimensionless radius r̃µ (defined as the
ratio of the beam radius to the average particle radius) and the microscopic Young’s modulus Eµ.
These parameters must be determined by calibration procedure using discrete domains prepared
in such a way as to satisfy the geometrical conditions dictated by the structural properties of the
modeled continuum, as explained above. Furthermore, these domains must be constructed using at
least nDE = 10 000 discrete elements. Indeed, André et al. [7] have demonstrated in their study
that, for a given set of microscopic parameters (r̃µ, Eµ), the resulting macroscopic elastic behavior
(of the modeled domain) depends upon the number of discrete elements up to approximately
nDE = 10 000 (fig. 2). Beyond this value, the macroscopic elastic properties converge towards limit
values (i.e. the macroscopic behavior becomes nearly independent of nDE). Therefore, to minimize
the influence of nDE on the calibrated values of the microscopic parameters, discrete domains
made up of at least nDE = 10 000 discrete elements must be used in the calibration procedure. To
simplify this procedure, micro-macro relationships relating the microscopic parameters (Eµ and r̃µ)
to the macroscopic elastic properties (EM and νM ) were determined numerically, using numerical
samples having the following geometrical settings: average coordination number ncoord = 13.2,
volume fraction vf = 0.68, uniform radius distribution χ = 25% and number of discrete elements
nDE = 10 000. These relationships take the following forms:

r̃µ = f (νM )

Eµ = g (r̃µ) EM

(7)
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where f and g are polynomials. Unless otherwise specified, the geometrical settings used to obtain
the micro-macro relationships will be held to construct all the discrete domains that will be used in
the remainder of the present paper. Using these relationships, table I presents the calibrated values
of Eµ and r̃µ corresponding to silica glass.
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Figure 2. Evolution of the macroscopic elastic properties EM and νM as a function of the number of discrete
elements, for given microscopic beam bond parameters (taken from [7]).

Silica glass macroscopic properties EM = 72GPa νM = 0.17
Beam bonds microscopic properties Eµ = 129GPa r̃µ = 0.6

Table I. Silica glass mechanical properties and the associated calibrated microscopic parameters

Using the microscopic parameters of table I, it is now possible to model the macroscopic elastic
behavior of silica glass. The next section deals with the development of an accurate model to
describe the densification behavior of this material which is assumed to occur only under hydrostatic
pressure.

3. MODELING OF DENSIFICATION UNDER HYDROSTATIC PRESSURE

As seen in the previous section, the DEM variation used in this work models a continuum by a set of
rigid spherical particles linked with cohesive beam bonds which model the mechanical behavior of
the studied material. Therefore, the natural way to model permanent deformation with this method
is to enrich these bonds to take into account such phenomenon. Almost all the models proposed
in the literature to model permanent deformation with DEM are based on this way [31, 32, 64].
Although these models were successfully applied to simulate permanent deformation of several
materials, they suffer from several difficulties. Indeed, they generally involve a large number of
calibration parameters, which makes the calibration procedure very challenging. Furthermore, they
can only be applied on materials for which the permanent deformation behavior is relatively simple.
To overcome these difficulties, the present section proposes a new approach to model permanent
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deformation of materials with the discrete element method. More specifically, this approach is
developed to model densification of materials, e.g. silica glass, under hydrostatic pressure.

The key idea behind this new approach is that, in the framework of traditional continuum
methods, several techniques have already been proposed and successfully applied to model complex
mechanical behaviors. Therefore, it would be beneficial to apply these techniques for the discrete
element method. However, to achieve this aim, it is necessary to establish relationships between
certain microscopic (of discrete elements) and macroscopic (of continua) quantities, allowing for
discrete-continuum bridging. Pioneering work in this respect has been done by Born and Huang
[11] who have used an elastic energy approach to evaluate the stress in lattices by means of the
Cauchy-Born hypothesis for homogeneous deformation. Subsequently, other formulations have
been proposed to calculate the stress in molecular dynamics (MD). Chief among them is the virial
stress which is a generalization of the virial theorem of Clausius (1870) for gas pressure. This
formulation has become very popular and widely used in different discrete methods [28]. Therefore,
it is retained in this work to bridge the discrete and continuum mechanics in order to develop the
new densification model.

3.1. Virial stress

3.1.1. Formulation As originally established [48], the expression of virial stress includes two
parts: the first part depends on the mass and velocity (or, in some versions, velocity fluctuation)
of the particles; the second part, which provides a continuum measure of the internal mechanical
interactions between particles, depends on the inter-particle forces and the particle positions. Using
this expression, the average virial stress over a volume Ω around a particle i is given by:

Π̄ =
1

Ω
(−mi u̇

i ⊗ u̇i +
1

2

∑
j ̸=i

lij ⊗ f ij) (8)

where mi and u̇i are respectively the mass and velocity of the particle i, lij = lj − li is the vector
from particle i to particle j, li is the position vector of particle i, f ij is the inter-particle force
exerted by particle j on particle i, and⊗ denotes the tensor product. Expression (8) has been used to
compute the stress in discrete systems. Recently, Zhou [72] has demonstrated that this quantity is not
a measure for mechanical forces between material points and cannot be regarded as a measure of a
mechanical stress. This author has proposed another formulation to compute the average mechanical
stress, including only the second part of (8). In a region of volume Ω around a particle i, the average
stress is given by:

σ̄ =
1

2Ω

∑
i∈Ω

∑
j ̸=i

lij ⊗ f ij (9)

This expression (9) was developed for molecular dynamics (MD), where the inter-particle forces
are only derived from a pair potential Φ(lij) and the distance between particles lij =

∥∥lij∥∥:

f ij =
∂Φ(lij)

∂lij
lij

lij
(10)

In this case, the resulting stress tensor would be symmetric. However, this cannot be generalized
to all other discrete methods. Several papers studying the symmetry of the equivalent stress tensor
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(obtained using different techniques) in discrete systems can be found in the literature [2, 10, 15, 30].
Based on these papers, in a general case, the symmetry of such a tensor can only be guaranteed
when the inter-particle forces f ij are parallel to the vectors linking the particle centers lij . This is
particularly true when the particles are linked by spring bonds. This problem is due to the limitations
of the existing techniques used in the framework of discrete systems to assess this tensor, which lack
accuracy. Further research effort is needed in this direction to get over these limitations. The DEM
variation used in this work, where the inter-particle forces are computed based on the cohesive beam
bonds, does not guarantee the symmetry of the obtained tensor, although the non-symmetric effects
are generally small. A solution to obtain a quasi-symmetric stress tensor with this approach is to
assess this tensor by averaging over a large volume that contains a sufficient number of discrete
elements. However, this solution makes the calculation of such a tensor very time-consuming and
can strongly affect the robustness of any densification model based on this solution. In the present
work, a symmetrized form of (9) is used to compute the average stress in a region Ω around a
discrete element i:

σ̄ =
1

2Ω

∑
i∈Ω

∑
j ̸=i

1

2
(lij ⊗ f ij + f ij ⊗ lij) (11)

This solution, which is used in the literature to quickly assess an equivalent stress tensor in discrete
systems [8, 32, 66], generally provides a fair compromise between accuracy and computation cost.
Based (11), a Cauchy-like stress tensor can be approximated in each discrete element i as follows:

σi =
1

2Ωi

ni∑
j=1

1

2

(
lij ⊗ f ij + f ij ⊗ lij

)
(12)

where ni is the number of the discrete elements connected to particle i and Ωi is an effective
volume associated to this particle. The spherical part of this tensor (P i

num = 1
3 tr(σ

i)) will be
used to develop the densification model. Note that this part and then the densification model that
will be developed are not influenced by the symmetrization of the stress tensor. The question that
arises here is how to choose the effective volumes of the discrete elements so as to ensure that the
numerical pressure P i

num in a discrete element i is equal to the real pressure in this element. The
next subsection tries to answer this question.

3.1.2. Choice of the effective volume of the discrete elements Since the present work deals with
the modeling of densification under hydrostatic pressure, the choice of the effective volumes to be
assigned to the discrete elements will be performed taking into account only the spherical part
of the Cauchy-like stress (12). These volumes must be determined in such a way as to ensure
equality between the numerical pressure computed using (12) and the true pressure in the discrete
elements. Due to lack of theoretical basis, there is no analytical approach allowing for obtaining
such volumes in a simple and effective manner. The present subsection proposes to investigate this
task numerically. Various proposals of effective volumes will be tested using a spherical specimen
of 100mm diameter subjected to hydrostatic pressure. This specimen is discretized using 10 000

discrete elements. The same microscopic parameters as those presented in table I are used to model
the elastic behavior of the specimen. To evaluate each proposal of effective volume, the evolution
of the numerical pressure in the specimen as a function of the specimen volume change will be
plotted and commented. To minimize numerical fluctuations, average pressure computed using all
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the specimen discrete elements (or in some cases using the boundary discrete elements to study the
boundary effects) will be used instead of individual discrete element pressures. In the following, the
average pressure obtained using all the specimen discrete elements will be referred to as “specimen
numerical pressure” and that obtained using only the boundary discrete elements will be referred to
as “boundary numerical pressure”.

First, the volume occupied by each discrete element i, which is constant, is chosen to be the
effective volume of this element Ωs

i (fig. 4):

Ωs
i =

4

3
π r3i (13)

where ri is the radius of the discrete element i. Using (13), figure 3 presents the evolution of
the specimen numerical pressure with the specimen volume change. To investigate the boundary
effects, the evolution of the boundary numerical pressure with the specimen volume change is
also presented in this figure. Using constant effective volumes, nonlinear dependence between the
numerical pressures and the specimen volume change is obtained, which makes no mechanical
sense. Furthermore, there is a relatively large difference between the numerical pressure calculated
using all the discrete elements and that calculated using only the boundary discrete elements.
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Figure 3. Evolution of the specimen numerical pressure and the boundary numerical pressure with the
specimen volume change for constant effective volumes

To overcome the problem of nonlinearity, it is necessary to take into account the variation of the
effective volumes of the discrete elements with pressure. To this end, the effective volume of each
discrete element i is chosen to be the volume of a sphere having as radius (rvi ) half the average
length of the cohesive beam bonds connected to this element (fig. 4):

Ωv
i =

4

3
π (rvi )

3
with rvi =

1

ni

ni∑
j=1

lij

2
(14)

where ni is the number of the beams connected to the discrete element i and lij is the length of the
beam linking discrete elements i and j. Since the beam lengths vary with the applied pressure, the
effective volumes will vary accordingly. Using (14), figure 5 shows the evolution of the specimen
and the boundary numerical pressures with the specimen volume change. The use of variable
effective volumes corrects the problem of nonlinear dependence between the numerical pressure
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and the specimen volume change. However, it does not help to reduce the boundary effects which
underlie an underestimation of the numerical pressure computed using only the boundary discrete
elements (fig. 5).

Figure 4. Variable effective volumes of the discrete elements
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Figure 5. Evolution of the specimen numerical pressure and the boundary numerical pressure with the
specimen volume change for variable effective volumes

To reduce these effects, it is necessary to correct the effective volumes of the boundary discrete
elements so as to take into account their truncation by the specimen boundary (fig. 6). However,
this issue is not straightforward. Indeed, it requires prior knowledge of the precise positioning of
these elements with respect to the boundary which is generally difficult to draw. To alleviate this
problem, the effective volume of each discrete element i (14) is multiplied by a boundary correction
parameter cbi defined as the ratio between the number of the cohesive beams bonds connected to
this element (ni) and the average number of the cohesive beam bonds connected to internal discrete
elements (nmean):

Ωb
i = cbi × Ωv

i with cbi =
ni

nmean
(15)

Figure 6 illustrates schematically the influence of this parameter. It should be noted that, for internal
discrete elements, cbi is close to 1 (cbi ≈ 1). Applying (15), the difference between the numerical
pressure obtained using all the discrete elements and the numerical pressure obtained using only
the boundary discrete elements is considerably reduced (fig. 7). An error of less than 3% is noted
between these pressures. This error could be acceptable, especially a few number of discrete
elements (only those belonging to the boundary) are affected by it.
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Figure 6. Variable effective volumes of the discrete elements with boundary correction
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Figure 7. Evolution of the specimen numerical pressure and the boundary numerical pressure with the
specimen volume change for variable effective volumes with boundary correction

In the above paragraphs, the effective volumes of the discrete elements are corrected so as to
alleviate numerical difficulties related to the boundary effects and the nonlinear pressure dependence
of the volume change. The question that arises here is whether the numerical pressure obtained using
these corrections would accurately represent the real pressure. To answer this question, the specimen
numerical pressure computed using (15) is compared with the hydrostatic pressure imposed on
the specimen (fig. 7). An error of approximately 9% is found between the pressures. Since the
densification model that will be proposed in the following is based on the pressures in discrete
elements, this error must be reduced to ensure a correct functioning of this model. A potential source
of such error could be the definition of the effective volumes which should again be corrected to
take into account shape irregularity. A final correction is then made to the definition of the effective
volumes by multiplying their expressions (15) by a parameter c which is the same for all the discrete
elements:

Ωc
i = c× Ωb

i (16)

The parameter c has to be determined by calibration and can be interpreted as a shape correction
parameter that takes into account the shape irregularity of the effective volumes. It is the only one
calibration parameter, very easy to calibrate, of the densification model that will be developed in the
following. To obtain this parameter, it is sufficient to simulate the response of an elastic numerical
sample subjected to hydrostatic pressure, while using c = 1. The right value of c is simply the ratio
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of the specimen numerical pressure to the imposed pressure. The right value of c corresponding to
silica glass can be determined using figure 7: c = 1.09. Figure 8 compares the specimen numerical
pressure obtained using this value with the imposed pressure. These pressures are in very close
agreement, which proves the validity of the calibrated value of the shape correction parameter c.
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Figure 8. Comparison between the specimen numerical pressure and the hydrostatic pressure imposed on
this specimen after shape correction of the effective volumes (c = 1.09)

One major issue generally encountered in discrete methods is that the calibration parameters can
depend upon the number of the discrete elements (nDE) used to discretize the numerical sample.
The influence of this number on the calibration of the shape correction parameter c must then be
studied. To this end, the same numerical test of spherical specimen under hydrostatic pressure is
used with different nDE (from 2 000 to 18 000). Figure 9 presents the associated calibration results.
Beyond nDE = 10 000, the calibrated value of c becomes very weakly affected by the discrete
element number. This result is in accordance with the results of André et al. [7] who have shown
that beyond nDE = 10 000 the microscopic elastic parameters determined by calibration become
nearly independent of nDE .
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Figure 9. Variation of the shape correction parameter c with the number of the discrete elements used to
discretize the numerical sample

In summary, the effective volume that must be assigned to each discrete element i to ensure 

the equivalence between the numerical pressure and the real pressure in this element is defined as .
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follows:

Ωc
i =

4

3
π c

ni

nmean

(
1

ni

ni∑
j=1

lij

2

)3

(17)

where c is a calibration parameter, ni is the number of the cohesive beams bonds connected element
i, nmean is the average number of the cohesive beam bonds connected to internal discrete elements,
and lij is the length of the cohesive beam bond linking elements i and j. Using this definition, it
would be possible to approximate the pressure in the discrete elements. This opens the floodgates to
a new way to model densification with the discrete element method as will be seen in the following
subsection.

3.2. Predictive-corrective technique to model densification

Based on (12) and (17), a new densification model inspired by the “predictive-corrective” technique
for plasticity is developed (fig. 10). At each time step, the volume change (∆Ωc

i/Ω
c
i 0, with ∆Ωc

i =

Ωc
i − Ωc

i 0 and Ωc
i and Ωc

i 0 are respectively the current and initial effective volumes of a discrete
element i) and the numerical pressure (P i

num) in each discrete element i can be approximated
using respectively (17) and (12). Based on a given (for example experimentally measured) curve
of pressure versus volume change (fig. 10), the expected pressure in the discrete element i (P i

exp)
corresponding to ∆Ωc

i/Ω
c
i 0 can be determined and compared to P i

num. If ∆P i
num = P i

exp − P i
num

is nonzero, the pressure difference (∆P i
num) must be returned to the DEM system. However, this

is not as simple as one might think because this quantity (in its pressure form) cannot directly be
considered in the DEM computation which only supports forces and torques. To achieve this aim,
it is necessary to convert ∆P i

num into correction forces to be injected in the cohesive beam bonds
linking the discrete element i to its neighbors. The following derivation shows how this can be
possible.

Figure 10. Predictive-Corrective densification model

Since the numerical pressure P i
num in a discrete element i is expressed:

P i
num =

1

3
(σi

11 + σi
22 + σi

33)

where σi is the stress tensor computed in the discrete element i, ∆P i
num can also be expressed as

follows:
∆P i

num =
1

3
(∆σi

11 +∆σi
22 +∆σi

33) (18)
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To avoid numerical problems, each ∆σi
kk (k ∈ [1, 2, 3]) must satisfy:

∆σi
kk

∆P i
num

=
σi
kk

P i
num

(19)

Using (19), the correction part of each diagonal term of the stress tensor can be determined. In a
similar way, ∆σi

kk can be expressed as:

∆σi
kk =

ni∑
j=1

∆σij
kk (20)

where ni is the number of discrete elements connected to i and σij
kk is the contribution of the cohesive

beam bond connecting the discrete element i to the discrete element j in the computation of σi
kk.

Each ∆σij
kk must also satisfy:

∆σij
kk

∆σi
kk

=
σij
kk

σi
kk

(21)

Knowing (21), it is possible to determine ∆f ij that must be introduced in the cohesive beam bond
between the discrete elements i and j:

∆f ij
k =

2Ωc
i ∆σij

kk

lijk
k ∈ [1, 2, 3] (22)

lij is the oriented length of the beam linking the particles i and j and Ωc
i is effective volume of the

discrete element i (17). Keeping in mind equations (19) and (21), equation (22) can be simplified as
follows:

∆f ij =
∆P i

num

P i
num

f ij (23)

The last expression translates ∆P i
num into correction forces supported by the discrete system

and makes it possible to correct the current mechanical state of the considered discrete element.
This is the last step of the “predictive-corrective” densification model proposed in this work. This
model presents a great flexibility to reproduce very complex densification behaviors with only one
calibration parameter. The next section attempts to apply this model to simulate the densification
behavior of silica glass under hydrostatic pressure.

4. APPLICATION: HYDROSTATIC COMPRESSION OF SILICA GLASS

As mentioned in the introduction, silica glass can densify under high hydrostatic pressures.
Based on references [36, 38, 59], the densification behavior of this material takes place between
approximately 8GPa and 20GPa, at which the permanent volume change can reach 17.4%. Figure
11 shows the silica glass mechanical behavior under hydrostatic pressure, which is inferred from
ex-situ experimental results collected in reference [40]. During this process, the Young’s modulus
and the Poisson’s ratio increase with the applied hydrostatic pressure (fig. 12). At the end of
densification, these properties show an augmentation of respectively 46% and 56%.
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Figure 11. Silica glass behavior under hydrostatic pressure (inferred from the experimental results collected
in reference [40])
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Figure 12. Variation of the silica glass mechanical properties with pressure (taken from [36])

The present section aims to simulate the silica glass densification behavior as well as the
associated mechanisms, using the proposed predictive-corrective model. A silica glass sphere of
100mm diameter is used in this simulation. This sphere is constructed using the same geometrical
settings as presented in section 2 and discretized using 20 000 discrete elements. The microscopic
elastic parameters of the cohesive beam bonds corresponding to silica glass are given in table I.
The shape correction parameter that corresponds to silica glass is c = 1.09. The densification curve
presented in figure 11 is used as reference curve on which the mechanical state of each discrete
element is projected at every time step. Concerning the variation of the silica glass mechanical
properties during densification, it is assumed for simplicity in this work that these properties evolve
linearly with the applied pressure in the region of densification and remain constant everywhere
else (fig. 12). Using this assumption, it is very easy to take into account such variation with the
proposed predictive-corrective model. For each time step, the hydrostatic pressure in each discrete
element i (P i

num) is assessed using (12). If 8GPa ≤ P i
num ≤ 20GPa, this pressure is first corrected

to become equal to the expected pressure in this element (P i
num = P i

exp). Then, the macroscopic
mechanical properties associated to P i

exp are determined using figure 12. Finally, the corresponding
microscopic properties (Ei

µ and r̃iµ) are calculated using (7). By doing so, the elastic parameters of
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a cohesive beam bond linking elements i and j can be determined and updated as follows:

Eij
µ =

Ei
µ + Ej

µ

2
and r̃ijµ =

r̃iµ + r̃jµ
2

(24)

Taking into account the variation of the mechanical properties with densification, figure 13
presents the response of the silica glass sphere subjected to high hydrostatic compression. The
numerical response compares very favorably with the reference one, which means that the developed
predictive-corrective model faithfully reproduces the silica glass mechanical behavior. To analyze
the evolution of the densification level with the applied pressure, the silica glass sphere is subjected
to different hydrostatic pressures. The associated permanent volume changes measured after
relaxation are presented in figure 14. The numerical results are in very close agreement with the
experimental ones obtained by Rouxel et al. [59] and Deschamps et al. [22]. These results are
much better than other numerical results obtained in a previous paper [32] using a beam-based
densification model. The numerical results obtained in this section shows the great ability of the
developed predictive-corrective densification model to simulate the nonlinear mechanical behavior
of silica glass, with only one calibration parameter. This model will be used in a future work to
study the behavior of silica glass in highly dynamics.
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Figure 13. Response of the silica glass sphere subjected to hydrostatic compression; comparison between
numerical result obtained using the present model and experimental result inferred from ex-situ experimental

data collected in reference [40])

5. CONCLUSION

The present paper dealt with the development of a densification model adapted for DEM to simulate
the nonlinear mechanical behavior of silica glass under hydrostatic pressure. This model is based
on the computation of a Cauchy-like stress in the discrete elements using a modified expression of
the virial stress which is widely used in the literature to assess the stress in discrete systems. One
major difficulty in application of this expression to compute the stress in the discrete elements is
related to the choice of the effective volumes of these elements. To get over this difficulty, various
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Figure 14. Evolution of permanent density change with pressure: comparison between experimental results
[22, 59], numerical results obtained using the present densification model and numerical results obtained

using a beam-based densification model [32]

proposals of effective volumes were numerically studied. Based on this study, variable effective
volumes were retained to ensure linear dependence between the pressure and the volume change
in the region of elasticity. The effective volume of each discrete element is chosen to be a sphere
having as radius half the average length of the cohesive beam bonds connected to this element.
This volume is multiplied by two correction parameters: boundary correction parameter and shape
correction parameter. The first parameter is calculated by dividing the number of the cohesive beam
bonds connected the considered discrete element by the average number of the cohesive beam bonds
connected to internal discrete elements. The second parameter is determined by calibration. After
determining this parameter, it is possible to assess the Cauchy-like stress, and then the hydrostatic
pressure, in a given discrete element. Using the hydrostatic pressures in the discrete elements, a
new densification model inspired by the predictive-corrective technique for plasticity is developed.
The mechanical state in each discrete element, given in terms of volume change versus hydrostatic
pressure, is determined and corrected with respect to a reference state. To validate this model, it
was applied to simulate the silica glass densification behavior which is assumed to occur only
under hydrostatic pressure. The associated numerical results are in very close agreement with
the experimental results, which proves the effectiveness of the proposed model. Since only one
calibration parameter is involved in this model, it is very easy to apply. This new model represents a
major step towards accurate modeling of materials permanent deformation with the discrete element
method. In a future work, it will be extended to model plasticity of crystalline solids.
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7. D. André, I. Iordanoff, J. L. Charles, and J. Néauport. Discrete element method to simulate continuous material
by using the cohesive beam model. Computer Methods in Applied Mechanics and Engineering, 213-216:113–125,
2012.

8. D. André, M. Jebahi, I. Iordanoff, J. L. Charles, and J. Néauport. Using the discrete element method to simulate
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