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Highlights 
 Hospital Big data offers new opportunities in the monitoring of flu epidemics. 

 Clinical data are more highly correlated with the Sentinel network than queries from 

Google internet-user activity. 

 Near real-time forecasting of ILI epidemics could use Hospital Big Data. 
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Abstract 

Background and Objective 

Influenza epidemics are a major public health concern and require a costly and time-consuming 

surveillance system at different geographical scales. The main challenge is being able to predict 

epidemics. Besides traditional surveillance systems, such as the French Sentinel network, several 

studies proposed prediction models based on internet-user activity. Here, we assessed the 

potential of hospital big data to monitor influenza epidemics.  

Methods  

We used the clinical data warehouse of the Academic Hospital of Rennes (France) and then built 

different queries to retrieve relevant information from electronic health records to gather weekly 

influenza-like illness activity.  

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Results  

We found that the query most highly correlated with Sentinel network estimates was based on 

emergency reports concerning discharged patients with a final diagnosis of influenza (Pearson’s 

correlation coefficient (PCC) of 0.931). The other tested queries were based on structured data 

(ICD-10 codes of influenza in Diagnosis-related Groups, and influenza PCR tests) and performed 

best (PCC of 0.981 and 0.953, respectively) during the flu season 2014-15. This suggests that 

both ICD-10 codes and PCR results are associated with severe epidemics. Finally, our approach 

allowed us to obtain additional patients’ characteristics, such as the sex ratio or age groups, 

comparable with those from the Sentinel network.  

Conclusions 

Hospital big data seem to have a great potential for monitoring influenza epidemics in near real-

time. Such a method could constitute a complementary tool to standard surveillance systems by 

providing additional characteristics on the concerned population or by providing information 

earlier. This system could also be easily extended to other diseases with possible activity changes. 

Additional work is needed to assess the real efficacy of predictive models based on hospital big 

data to predict flu epidemics. 

Keywords: Health Big Data; Clinical Data Warehouse; Information Retrieval System; Health 

Information Systems; Influenza; Sentinel surveillance 

 

 

1 Introduction 

Currently, flu activity monitoring remains challenging and is a costly and time-consuming 

task [1]. Flu epidemics are a major public health issue because each year, they cause 250,000 to 

500,000 deaths worldwide and they destabilize health care systems, resulting in overcrowding of 

primary care centers and emergency departments [2–4]. Many actors are involved in influenza 

monitoring, at the local, regional, national and international level. National surveillance systems 

are the cornerstone of this system. For instance, the US influenza Sentinel Provider Surveillance 

Network, belonging to the Center for Disease Control and Prevention (CDC), in the United States 
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of America, and the Sentinel network in France, both provide weekly flu activity reports based on 

data collected from general practitioners [5,6].  

Such national flu surveillance systems provide a fine-grained description of what happens at the 

regional or national level and allow researchers to observe inter-annual epidemic variations. 

However, these reports are usually available with a delay of one to two weeks and need to be 

refreshed until all data from a given week have been reported. This delay in data availability 

limits their use for real-time monitoring purposes. Moreover, data reported by the Sentinel 

network provide very few details about patients, beside age or sex. Yet, it would be of great 

interest to better describe, for instance, the comorbidities (e.g., International Classification of 

Diseases, 10
th

 revision, ICD-10, codes), or to identify subgroups of patients who are more likely 

to catch influenza or to develop influenza-related complications.  

For these reasons, influenza surveillance now relies also on other data sources that gather 

additional information, such as self-reporting from patients, viral surveillance or data from 

emergency departments (ED) [2,7,8]. In France, the French Public Health Agency launched an 

additional monitoring system based on data collected from 86% of all French EDs, thus covering 

most of the French territory [9]. This project provides a better understanding of flu epidemic 

severity, especially in relation to cases that require hospitalization. 

There is also a growing interest in finding other ways that rely on alternative data sources to 

achieve near real-time monitoring. Many studies have assessed the use of internet-user activity 

data because they can produce real-time indicators [10–18]. Several data sources have been 

explored, including Wikipedia, Twitter or Google search-engine data. For instance, Google 

created a project dedicated to influenza monitoring: Google Flu Trends (GFT). This project uses 

search queries connected with influenza-like illnesses (ILI) from Google.com to produce 

influenza activity estimates [2]. Since its launch in the United States in 2008, GFT predictions 

have proven to be very accurate when compared to CDC reports. Moreover, GFT data are 

available 7-10 days before those of the CDC [12]. GFT was extended to other countries and its 

estimates confirmed to be accurate. However, GFT yielded inaccurate data during several periods 

[19,20]. In 2009, it produced lower estimates at the start of the H1N1 pandemic; in 2013 its 

estimates were almost twice those from the CDC. As a result, GFT is currently closed to the 

public. GFT appeared to be sensitive to uncommon flu epidemics, to media coverage, to changes 

in the internet users’ habits and to modifications of the algorithm in the Google search engine 

[11,20]. Consequently, other studies proposed to combine traditional surveillance systems and 

web data, to benefit from the advantages of both systems. One example is the recently published 

work on the ARGO model that could be considered to be a GFT update. It combine Google and 
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CDC ILI activity data with a dynamic statistical model (least absolute shrinkage and selection 

operator, LASSO) to  weekly redefine the best predictors for the current week and readjust their 

coefficients [11]. This model seems very promising because it can produce near real-time flu 

activity indexes that are very accurate compared with those produced by the CDC, with a 

correlation coefficient of predicted values for the flu seasons of the 2010-2014 period ranging 

from 0.928 to 0.993. 

However, neither standard systems nor the current web-based models are designed to monitor flu 

activity at a smaller scale, such as that of a hospital. Yet, flu epidemics strongly contribute to the 

overcrowding of adult and pediatric EDs. A study by Dugas et al, showed a high correlation 

between city-level GFT data (Baltimore) and the number of patients visiting adult (r = 0.885) and 

pediatric EDs (r = 0.652). Specifically, GFT data correlation with standard overcrowding 

measures was high for pediatric EDs (r = 0.641 to 0.649) and moderate for adult EDs (r = 0.421 

to 0.548) [21].  

With the widespread adoption of Electronic Health Records (EHRs), hospitals also are producing 

a huge amount of data - collected during the course of clinical care - that offer a window into the 

medical care, status and outcomes of a varied population who is representative of the actual 

patients [22,23]. This huge amount of data holds the promise of supporting a wide range of 

medical and health care functions, including, among others, clinical decision-making support, 

disease surveillance or population health management [24]. 

Hospitals are currently deploying information technologies and tools intended to facilitate access 

to clinical data for secondary-use purposes. Among these technologies, clinical data warehouses 

(CDWs) come forth as one of the solutions to address Hospital Big Data (HBD) exploitation [25]. 

Different projects have developed CDWs with different architectures, tools and services 

dedicated to the reuse of patient data coming from EHRs [26–31]. Depending on their Extract-

Transform and Load process, CDWs can collect data in real-time, such as the STRIDE CDW of 

Stanford University [30]. The most famous CDW technology is the Informatics for Integrating 

Biology & the Bedside project (i2b2), developed by Harvard Medical School, that is now used 

worldwide in clinical research and can be updated in real-time [32,33]. At our academic hospital 

in Rennes (France), we developed our own CDW technology, called eHOP (formerly named 

Roogle [31]). Structured (laboratory, prescriptions, ICD-10 diagnoses) and unstructured 

(discharge summaries, histopathology, operative reports) data can be integrated in eHOP in real 

time. Unlike i2b2 data models, eHOP integrates the chain of clinical events into its design and 

allows the direct access to EHRs. eHOP consists of a powerful search engine system that can 

identify patients who match specific criteria retrieved either from unstructured data, via 
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keywords, or from structured data, by querying terminology-based codes. The eHOP CDW is 

used routinely for clinical research purposes, such as feasibility studies, cohort detection and pre-

screening, at Rennes academic hospital. The eHOP technology is currently implemented in the 

other five academic hospitals of the Western region of France (Angers, Brest, Nantes, Poitiers 

and Tours). Its use will constitute a great source of health data that cover a large part of the 

population of the West of France who has access to health care facilities linked to eHOP (about 

11 million inhabitants; 800,000 visits per year) [34].  

We believe that CDWs can help to monitor influenza-like illness (ILI) thanks to their ability to 

provide data in near real-time and at a local scale. Moreover, the richness of the data produced 

during patient management will allow a better patient characterization. 

In this paper, we present a feasibility study on the production of accurate near-real-time estimates 

of ILI activity based on the CDW eHOP. 

2 Methods 

We extracted data from the eHOP CDW of the academic hospital of Rennes, from September 1, 

2010 to August 31, 2015. This corresponds to the last five winter seasons defined by the Sentinel 

network (beginning on the first day of September of every year and ending on 31 August of the 

following year). The data integration and storage method was the same during the entire study 

period. As a reference, we used French Sentinel network data on Brittany for the same period 

(https://websenti.u707.jussieu.fr/sentiweb/?page=table). Brittany is the French region from where 

most patients at Rennes academic hospital come. We also considered internet-based ILI estimates 

from GFT for Brittany, from September 1, 2010 to August 10, 2015 (date of GFT closure) as an 

additional source for comparison (https://www.google.org/flutrends/about/data/flu/fr/data.txt). 

We tested two main approaches with the purpose of identifying patients who might have ILI, 

from data stored in eHOP (see S1 Table for a complete query description). The first approach was 

based on three different full-text queries to retrieve documents that match the following keywords 

and constraints: 

₋  Flu query: documents matching the keywords “flu”, in the absence of “flu vaccination,” and 

“avian flu.” 

₋  Symptoms query: documents matching the keywords “fever” or “pyrexia” and “ache” or 

“muscle pain.” 
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₋  Emergency query: ED discharge summaries where “flu” was the final diagnosis. Only 

applicable to discharged patients (i.e., documents belonging to patients who were further 

hospitalized were not considered). 

The first two queries could retrieve any kind of document, including discharge summaries of 

inpatients or outpatients, emergency discharge summaries, operative reports, laboratory results, 

Diagnosis-Related Groups (DRGs), X-ray reports or histopathology reports. The third query was 

focused on retrieving documents from the ED. 

The second approach involved querying CDW structured data for the following appropriate 

terminologies: 

⁻  ICD-10 query: DRGs having at least one code belonging to the influenza-related ICD-10 

chapters: J09.x, J10.x or J11.x. 

⁻  Biology query: We relied on the local terminology used by the laboratory information 

system to retrieve all flu PCR test results (negative and positive). The aim was to have a 

signal connected with ILI symptoms and not only with flu. 

Given that the study purpose was not to assess query accuracy or recall, we made the assumption 

that potential noise was constant over time. Hence, we did not manually validate the relevance of 

patients retrieved by the query and we retained the entire list of patients. We then processed the 

weekly incidences for each query. Our definition of ILI case covered any patient visit for which a 

document that matched a given query was generated. The date of the case was thus the patient’s 

admission date. A null incidence estimate was inputted for all weeks without cases. The entire 

process was performed using anonymous data from the eHOP CDW. 

As additional variables, we retrieved the patients’ birthdate to perform analyses based on patients’ 

age groups at the time of the visit: 0 to 4 years, 5 to 14 years, 15 to 64 years and 65 years and 

more. The aim was to assess whether the epidemic severity could be extrapolated from such data. 

We considered that severe epidemics might affect especially younger and/or older people among 

all hospitalized patients compared with the population covered by the Sentinel network. We 

computed the distribution of age groups on a calendar year basis, following a process similar to 

that of the Sentinel network, with the aim of comparing both distributions. 

To evaluate ILI detection by our system, we compared our weekly ILI incidence results with the 

weekly incidences rates from the reference Sentinel network by calculating the Pearson’s 

correlation coefficient (PCC) for the entire study period and for each winter season. For 

comparison purposes, we did the same comparison between weekly GFT estimates and weekly 

incidence rates from the Sentinel network. 
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As an illustration of eHOP’s ability to monitor flu epidemic data, we also replicated the Serfling 

periodic regression analysis that is currently used by the Sentinel network to identify influenza 

epidemic periods [35]. We used the Sentinel’s R script, available at 

http://marne.u707.jussieu.fr/periodic, and the parameters currently employed in routine practice 

by the Sentinel network [36]: a pruning threshold corresponding to the 85
th

 quantile, a 95
th

 

unilateral confidence interval to detect the start (when the observed data exceed this threshold for 

two consecutive weeks) and the end (when the observed data are below the threshold for two 

consecutive weeks) of ILI epidemics. We fitted the following linear regression model for the 

whole study period: 

 ( )                 (
   

 
  )         (

   

 
  )     ( ),  

where µ is a constant, α a linear term, k the harmonic number, βk and γk are period terms. The 

period T is equal to 52.18 weeks and k is equal to 2. The residual error corresponds to the ε(t) 

term. 

We assessed the periodic regression performance by calculating the shift between the dates (start 

and end of epidemics) identified with eHOP estimates and the dates identified from Sentinel 

network estimates. 

All analyses were performed using the R software, version 3.2.3 [37].  

This study was approved by the local Ethics Committee of Rennes Academic Hospital. 

3 Results 

3.1 Information retrieval results 

 

The study period included lists of patients retrieved from eHOP queries between September 1, 

2010 and August 31, 2015. For this period, 14,873,482 documents were available in the eHOP 

CDW, as well as 2,220,741 patient visits. Performing the five eHOP queries and then processing 

the data to produce weekly ILI estimates took approximately 7 minutes (6m 30s for queries on 

unstructured data and 30s for queries on structured data) on a standard desktop computer. The 

“flu query” (the keyword “flu”, in the absence of “flu vaccination” and “avian flu”) retrieved 

19,522 documents, among which there were 4,604 emergency reports (24%), 3,773 laboratory 

results (19.3%), 3,344 outpatient discharge summaries (17.1%), 2,882 inpatient discharge 

summaries (14.8%) and 798 DRGs (4%). The “symptoms query” (association of fever or pyrexia 

and ache or muscular pain) retrieved 2,916 documents, among which there were 1,436 
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emergency room reports (49.2%), 524 outpatient discharge summaries (18%) and 482 inpatient 

discharge summaries (16.5%). The remaining documents were connected with unclear or missing 

document types. The last three queries were connected with specific types of documents, 

particularly with emergency reports, laboratory results or DRGs. The patients’ distribution 

according to the different settings (outpatients, inpatients and ED) is illustrated in Fig 1. 

 

Fig 1 : Patients' settings.  
Results from queries to retrieve patients with at least one document matching the following conditions: flu 

query = keyword “flu” in the absence of flu vaccination and avian flu; symptoms query = keywords 

“fever” or “pyrexia” and “ache” or “muscle pain”; emergency query = discharge summaries from the 

emergency department with “flu” as final diagnosis; ICD-10 query = DRGs with at least one code 

belonging to the ICD-10 chapters on influenza (i.e., J09.x, J10.x or J11.x.); biology query = PCR-based 

flu tests (negative or positive results). 

Emergency defined a stay in the emergency department without further hospitalization. 

3.2 Overall estimates 

 

Weekly ILI estimates computed from the eHOP query results are displayed in Fig 2. During the 

entire study period, the ILI estimates retrieved from the query focused on ED data were the most 

highly correlated with the Sentinel Network’s (PCC of 0.931 compared with PCCs between 0.869 

and 0.679 for other queries) (Table 1). As a comparison, the PCC for GFT with the Sentinel 

network was 0.925.  

GFT was the data source that correlated most with the Sentinel network for the seasons 2010–11 

and 2012–13 (PCC = 0.967 and 0.947, respectively). For the seasons 2011–12 and 2013–14, the 

eHOP query focused on EDs showed the highest correlation with the Sentinel network, but with a 

PCC below 0.9. For the season 2014–15, the eHOP ICD-10 query performed best, with a PCC of 

0.981. The query based on symptoms was the only one with a PCC below 0.9 for this last season. 

For the 2013–14 flu season, both eHOP queries and GFT had PCC values below 0.9. The last 

complete season (2014–15) yielded the best correlations because all queries matched the Sentinel 

network data with PCC values up to 0.9, except for the symptoms query. 
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Fig 2. Weekly influenza-like illness estimates from the different data sources and periods of 

detected epidemics.  
The reference is data from the Sentinel network for the Brittany region. Estimates from Google 

Flu Trends are for comparison purposes. Black curves correspond to the estimates computed 

from the different data sources or queries. Red curves are the upper bound of the 95% prediction 

interval of the periodic regression models, computed using the Serfling method to determine 

epidemic periods. Green areas are periods that match the Sentinel network epidemic periods. Red 

areas are epidemic periods not detected from data sources or queries. Blue areas are detected 

periods that do not match true epidemics. 

In Figure months should have a capital letter at the beginning (ex., june into June) 
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Table 1. Pearson correlation coefficients between ILI activity estimates from eHOP queries 

or Google Flu Trends and ILI incidence rates from the Sentinel network. 

Data source /query 
Entire 

period 

Winter flu seasons  

(from September 1 to August 31 of the following 

week) 

  2010–11 2011–12 2012–13 2013–14 2014–15 

GFT (up to 2015-08-

10) 

0.925 0.967 0.735 0.947 0.850 0.940 

eHOP flu 0.869 0.871 0.862 0.911 0.818 0.939 

eHOP symptoms 0.679 0.784 0.664 0.652 0.298 0.837 

eHOP emergency 0.931 0.941 0.864 0.933 0.853 0.972 

eHOP ICD-10 0.829 0.854 0.789 0.758 0.732 0.981 

eHOP biology 0.801 0.813 0.796 0.863 0.777 0.953 

 

 

3.3 Sex and age group estimates 

 

In the Sentinel network data, the male to female ratio was 1, 0.96, 0.97, 0.93 and 1.01, 

respectively, for epidemics from 2010 to 2014. In comparison, the sex ratio observed in eHOP 

queries ranged from 0.94 to 3.2 in 2010, from 1.07 to 1.90 in 2011, from 0.94 to 1.36 in 2012, 

from 1.02 to 1.78 in 2013 and from 0.92 to 1.16 in 2014. The highest sex ratio values were found 

in the results obtained with the biology query, indicating that PCR tests were more often 

performed for male patients. There was no significant difference in the age group distribution 

between male and female patients for the patients retrieved with this query (p = 0.41 using the 

Chi-square test). 

Regarding the age group distribution, eHOP queries yielded more pediatric cases (0 to 4 years), 

compared with the Sentinel network data (Fig 3). The biology query retrieved more pediatric and 

elderly patients than the other queries.  

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
 

Fig 3. Age group distributions retrieved from the different eHOP queries.  

Red bars show the age group distribution from the different eHOP queries. Green bars show the 

age group distribution from the Sentinel network.  

P-values were calculated with the use of the Chi-square test or the Fisher exact test (indicated 

with an asterisk) 

See legend to Fig 1 for a description of the eHOP queries. 

 

 

3.4 Epidemic periods  

 

For each GFT and eHOP query, we computed a periodic regression model (i.e., Serfling 

regression model) to detect epidemic periods, as done by the Sentinel network’s current 

surveillance system (red line in Fig 2). We compared epidemic periods from GFT and eHOP with 

reference data from the Sentinel network for the region of Brittany (Table 2). 
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Table 2. Summary of epidemic detection delays using the different data sources or queries 

Data source/query 
No. of detected 

epidemics 

Average delay to detect 

the epidemic start* 

(week) 

Average delay to detect 

the epidemic end* 

(week) 

Sentinel network 5 0 0 

GFT 5 -1 ± 1 -1.4 ± 1.51 

eHOP emergency 5 -0.8 ± 1.09 1 ± 1.22 

eHOP flu 6 0 ± 1.58 0 ± 2.24 

eHOP symptoms 3 3 ± 2.64 -2.67 ± 1.53 

eHOP ICD-10 7 -0.6 ± 2.30 1 ± 1.22 

eHOP biology 5 -0.8 ± 2.59 2.6 ± 1.67 

* Delays are related to epidemics overlapping with the true epidemic periods from the Sentinel 

network 

 

GFT detected the beginning and the end of epidemics from 0 to 2 weeks before the Sentinel 

network. Among the different eHOP queries, the flu symptoms query yielded the worst results, 

particularly because it could not detect all epidemics. Laboratory and ICD-10 queries resulted in 

longer epidemics, particularly for the last two seasons: they anticipated the start of the two 

epidemics by 2 to 4 weeks and delayed the end by 2 to 5 weeks (Fig 2). The eHOP query on flu 

keywords and the emergency query gave the best results. Particularly, the emergency query 

detected the start of epidemics from 1 to 2 weeks before the Sentinel network, except in 2013, 

when there was a delay of one week. For the epidemic end, the emergency query tended to 

produce longer epidemics, ending 0 to 3 weeks after the Sentinel network’s estimates (Fig 2). 

4 Discussion 

 

This study demonstrates the great potential of HBD for monitoring flu epidemics. CDWs, 

such as eHOP, allow researchers to leverage the richness of heterogeneous clinical data from 

EHRs. eHOP added value is that it provides the possibility of querying both structured and 

unstructured data that appear to be great candidate data sources for efficient monitoring of 

diseases activity. However, as it is the case with every information retrieval system, part of the 

results yielded by our system corresponds to noise, that is, patients who do not have ILI. The 
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result precision depends partly on the query used. For instance, the “symptoms” query is 

particularly subject to noise and thus, does not seem to be specific enough for ILI monitoring. It 

also depends on the type of queried data. Unstructured data are, of course, more prone to produce 

noisy results. The main reasons are the mentioning of a personal or family history of influenza 

and the exclusion of influenza diagnoses in discharge summaries, although our system has 

several natural language processing capabilities, such as detection of negative sentences. 

Structured data are less susceptible to noise: laboratory results or ICD-10 codes ascertain the fact 

that the patient has ILI. The drawback is the lack of recall for such data sources, for instance, 

during epidemics the severity of which does not lead to hospitalization (i.e., without diagnosis-

related groups), or with diagnoses that do not require any laboratory test. Thus, we cannot control 

the performance of our information retrieval system. This can be seen as a limitation of our 

approach: we cannot validate every potential case retrieved by the system, and we cannot ensure 

the retrieval of all patients with ILI. We could have investigated the system precision because 

eHOP provides the possibility to access the original documents to check whether the retrieved 

patients truly had ILI. However, the purpose of this study was not to assess the performance of 

our information retrieval system, but to show that it can produce ILI activity indexes in the same 

way as internet-based monitoring. Hence, our system is not intended to be as reliable as a 

traditional monitoring system, such as the Sentinel network, for producing weekly incidence 

rates. Nevertheless, it provides a good picture of weekly ILI activity in primary care through the 

ED data and in hospitalized patients.  

We believe that the strength of our system is its capability to generate near real-time estimates 

from hospital big data. Our estimates are generated using health care activity suspected of being 

connected with ILI and, due to the proximity to actual ILI cases, they could be more reliable than 

internet-based indexes. Indeed, we can produce estimates based on data connected with patients 

who presented symptoms severe enough to require visiting the ED or to be transferred to hospital. 

On the contrary, internet-based estimates may also incorporate data from healthy internet users 

who can potentially be influenced by the media or are simply searching information about 

influenza.  

The possibility to produce a fine-grained description of the diseased population is an additional 

strength of our system. We demonstrated this potential for simple attributes (age groups and sex 

ratio) that were also available in the Sentinel network annual reports, for comparison purposes. 

This allowed showing some differences between the population coming to hospital and the 

population captured by the reference system. Our system found more pediatric and geriatric cases 

than the Sentinel network. Particularly, the younger cases may explain the predominance of male 
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patients found with the PCR query because it seems than male patients are more prone to 

respiratory infectious diseases than female patients [38]. 

In addition, eHOP allows a better characterization of ILI patients by using the data available in 

the CDW, such as comorbidities or episode severity (e.g., requiring hospitalization or intensive 

care), all in near-real time. 

However, one must be aware that the eHOP data loading process has various delays, depending 

on the data source. As a result, this process involves a high degree of heterogeneity in the 

availability of the data used to produce ILI estimates. For instance, discharge summaries are often 

generated several days after the patient’s stay, which is not compatible with real-time monitoring. 

Conversely, ED discharge summaries are produced during the patient’s visit and are made 

available as soon as the patient leaves the hospital or is transferred to a conventional unit. 

Similarly, laboratory results are produced during the patients’ stay. Therefore, these two data 

sources are available in the CDW with a lag of one day, because they are uploaded in eHOP 

every night. 

Another of the system’s limitations is that we currently only have access to hospital data. This is 

the main cause of the differences in ILI activity compared with the Sentinel network. From the 

perspective of our hospital physicians working on infectious diseases this is not really a 

drawback, because the differences in duration and magnitude may reflect the severity of 

epidemics that cause more hospitalizations during a longer period. The higher estimates resulting 

from ICD-10 and laboratory queries also seem to be connected with more severe epidemics, as 

was the case in 2014–15. Moreover, local ILI activity estimates could be compared with other 

local indexes, such as the global hospital activity, bed occupation rates or average hospitalization 

length, to produce more appropriate estimates of the overcrowding risk.  This is a key point for 

hospitals, as estimates from traditional surveillance systems do not allow them to anticipate 

overcrowding during severe epidemics, resulting in higher rates of hospitalization. However, we 

also produced estimates comparable to those of the Sentinel network, when using appropriate 

queries from the ED (PCC of 0.931) that correlated more closely with the Sentinel network 

estimates than any of the Google Correlate internet-based queries (the Google query most 

correlated with ILI activity from the Sentinel network for the region of Brittany and for our study 

period was “Tamiflu”, with a PCC of 0.9265). 

In our study, we were limited to the population of Rennes academic hospital that, in addition, 

does not entirely cover the geographical territory of Brittany. As mentioned in the Introduction, 

the eHOP technology is going to be deployed in all academic hospitals of the West of France. By 

extending the study reach, we could obtain a complete view of influenza dynamics and activity at 
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a larger scale. We also believe that our approach is transposable to other CDW technologies, such 

as the i2b2 standard [32], with appropriate real-time data integration. This could allow 

aggregating estimates from different institutions, using a SHRINE data sharing network at 

different scales [39]. Indeed, the SHRINE technology allows building a multi-node, peer-to-peer 

infrastructure for connecting i2b2 CDWs to research networks. We are also exploring this 

approach by feeding an i2b2 instance with limited sets (i.e., only patients retrieved through our 

queries) of structured data from eHOP. Another approach could be based on the OHDSI initiative 

that proposes a common data model for observational studies employing other standardization 

procedures [40]. However, we have not yet investigated this approach. 

Finally, this study only gives the proof of concept concerning the HBD potential for ILI 

monitoring. The next step will be to assess eHOP prediction capabilities with appropriate 

statistical models, using such data to predict the data generated by the Sentinel network. Several 

models have been explored in previous studies with promising results. Recently, Harvard 

University proposed an alternative model to GFT also based on Google users’ activity [11]. 

Briefly, for each weekly ILI activity to be predicted, a model is built using predictors consisting 

of the 2-year history of the CDC ILI activity, submitted to an autoregressive process of order 52, 

and the 100 Google queries most highly correlated with the CDC ILI activity for the same period. 

The model uses a LASSO method to perform variable selections to only keep the most 

informative predictors. This kind of model could easily use our eHOP query results as covariates 

instead of internet-based data. Another interesting approach could be to build models that 

combine internet-based data and hospital data. Besides predicting ILI activity at a population 

level, we also want to assess whether our data can be used for predicting ED activity that might 

help to better manage issues connected with overcrowding. Our results also suggests that this 

approach could be used for monitoring the activity of other diseases that are emerging or that 

require precise follow-up, especially when the population is not yet worried about them.  

5 Conclusions 

Our study shows that HBD are a valuable data source for ILI activity monitoring. Specific data 

sources, such as laboratory results or DRGs, and the patient characteristics that are available in 

CDWs allow a fine description of epidemics. However, further investigation is necessary to 

assess the near real-time prediction capabilities of models that use such data sources, and to 

demonstrate its extensibility to other diseases. 
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