%0 Conference Proceedings %T High T/R isolation and phase-noise suppression in millimeter wave FMCW radars %+ Jet Propulsion Laboratory (JPL) %+ Institut d'Électronique et des Technologies du numéRique (IETR) %A Monje, R.R. %A Cooper, K.B. %A Dengler, R.J. %A Bouayadi, T.O.E. %A Gonzalez-Ovejero, D. %< avec comité de lecture %B 42nd International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2017 %C Paris, France %8 2017-08-27 %D 2017 %R 10.1109/IRMMW-THz.2017.8066921 %K Continuous wave radar %K Frequency modulation %K Millimeter waves %K Radar %K Radar measurement %K Radar systems %K Terahertz waves %K Circuit architectures %K Frequency modulated continuous wave radars %K High-directivity %K Millimeter wavelength %K Phase noise analysis %K Phase noise suppression %K Planetary science %K Quasioptical duplexing %K Phase noise %Z Computer Science [cs]/Networking and Internet Architecture [cs.NI] %Z Engineering Sciences [physics]/ElectronicsConference papers %X We present a phase noise analysis on a frequency-modulated continuous-wave (FMCW) radars at millimeter wavelengths to achieve a transmit power up to 1 Watt. To attain high transmit power, we describe a FMCW radar design that satisfy two characteristics. First, high transmit/receive (T/R) isolation better than 80 dB, obtained through a quasioptical duplexing method and high directivity horns. Second, a 'feedforward' circuit architecture that cancels the phase noise to a high degree. We will also present the measurements and simulations results of the T/R isolation and phase noise cancelation measurements using a W-band FMCW radar prototype for a planetary science application. © 2017 IEEE. %G English %L hal-01671562 %U https://univ-rennes.hal.science/hal-01671562 %~ UNIV-NANTES %~ UNIV-RENNES1 %~ CNRS %~ INSA-RENNES %~ IETR %~ STATS-UR1 %~ CENTRALESUPELEC %~ UR1-HAL %~ UR1-MATH-STIC %~ UR1-UFR-ISTIC %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INSA-GROUPE %~ TEST-HALCNRS %~ UR1-MATH-NUM %~ IETR-SUMIT %~ NANTES-UNIVERSITE %~ UNIV-NANTES-AV2022