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A test of the hierarchical model of litter decomposition

Our basic understanding of plant litter decomposition informs the assumptions underlying

widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2 . Here, we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France -and capturing both within and among site variation in putative controls -we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales.

Further, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local-and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

The dominant conceptual model of litter decomposition posits that the primary controls on the rate of decomposition are climate, litter quality and decomposer organisms [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF] . These controls are hypothesized to operate hierarchically in space, with climate and litter quality co-dominant at regional to global scales [START_REF] Cornwell | Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[END_REF][START_REF] Freschet | A plant economics spectrum of litter decomposability[END_REF][START_REF] Makkonen | Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[END_REF] , and decomposers operating only as an additional local control whose effect is negligible at broader scales [START_REF] Swift | Decomposition in terrestrial ecosystems[END_REF] . Consequently decomposers have been omitted as controls from biogeochemical models, whereas a recent surge of interest in their inclusion has shown that carbon-cycle projections depend strongly on whether and how microbial decomposers are represented [START_REF] Buchkowski | Applying population and community ecology theory to advance understanding of belowground biogeochemistry[END_REF][START_REF] Sulman | Microbedriven turnover offsets mineral-mediated storage of soil carbon under elevated CO 2[END_REF][START_REF] Tang | Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[END_REF][START_REF] Wieder | Global soil carbon projections are improved by modelling microbial processes[END_REF] . Yet evidence that microbial decomposers regulate decomposition rates at regional-to global-scales, independent of climate variables such as temperature and moisture, is generally lacking. One possibility for this lack of evidence is suggested by scaling theory, where the influence of mechanisms that act locally can be obscured in emergent, broad-scale patterns [START_REF] Levin | The problem of pattern and scale in ecology[END_REF] .

Pattern and scale has been described as the central issue in ecology, where the inherent challenge to prediction and understanding lies in the elucidation of mechanisms, which commonly operate at different scales to those on which the patterns are observed [START_REF] Levin | The problem of pattern and scale in ecology[END_REF] . This scale mismatch appears true for at least some ecosystem processes, such as plant productivity [START_REF] Levin | The problem of pattern and scale in ecology[END_REF][START_REF] Lauenroth | Long-term forage production of North American shortgrass steppe[END_REF] .

Decomposition processes, also, are controlled by variables operating at finer scales than those at which the variables are typically measured and evaluated [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF] . For example, extensive empirical support for the hierarchical model of litter decomposition has been provided through multi-site climate gradient studies [12][START_REF] Harmon | Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison[END_REF][START_REF] Moore | Litter decomposition rates in Canadian forests[END_REF][START_REF] Wall | Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent[END_REF] . These multi-site studies have some common characteristics, which include collecting few observations (typically 2 to 4 per site per litter species per collection)from which a mean decomposition rate is determined -and also use of site-mean data to estimate climatic controls [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF] . Yet the hierarchical model, and its representation in the structure of biogeochemical models, is based on the assumption that controls act at the microsite level, by regulating the activities of decomposer organisms [START_REF] Swift | Decomposition in terrestrial ecosystems[END_REF][START_REF] Bonan | Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4)[END_REF] . That is, the hierarchical model is conceptually grounded in local (i.e. microsite) dynamics, but has been developed and substantiated with site-mean data that represents climate control of decomposition as an amongsite relationship.

Understanding controls on litter decomposition across regional scales is then necessarily intertwined with scaling theory. This body of theory [START_REF] Levin | The problem of pattern and scale in ecology[END_REF] suggests that broad-scale patterns might emerge from distinct, local-scale causative relationships, which contrasts with the assumption of the hierarchical model that among-site patterns in decomposition approximate patterns operating at the microsite (Fig. 1). We refer to this as the "assumption of scale invariance" (Fig. 2a). Two lines of evidence question the validity of the assumption of scale invariance for litter decomposition. The first is that the activities of decomposer communities are shaped by environmental selection for a subset of functional traits, which then uniquely dictate how decomposition rates respond to changing climatic controls [START_REF] Averill | Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture[END_REF][START_REF] Strickland | Climate history shapes contemporary leaf litter decomposition[END_REF][START_REF] Fierer | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[END_REF][START_REF] Evans | Climate change alters ecological strategies of soil bacteria[END_REF] . The second is that microclimate can vary widely within a site 21,[START_REF] Scherrer | Infra-red thermometry of alpine landscapes challenges climatic warming projections[END_REF] . As such, site-mean climate data are likely a poor surrogate for the range in microclimate experienced by decomposer organisms within a site 21 . Both lines of evidence support the possibility that among-site patterns in decomposition rates emerge from distinct microsite-level relationships (the "assumption of scale dependence", Fig. 2b).

We use a multi-site, litter decomposition study to test between the competing assumptions of scale invariance and dependence (Figs. 1,2). We worked across a climate gradient in Europe at six grassland sites spanning boreal climate in northern Sweden to Mediterranean climate in southern France. We predicted two specific patterns would emerge if the assumption of scale invariance were to be falsified. Prediction 1 was that relationships between climate and decomposition rates should differ when site-mean versus microsite-level climate data are analysed. That is, the emergent regional-scale pattern from microclimate data should differ from the pattern observed with site-mean climate data. Prediction 2 was that any variable expected to be an important control at the microsite-level (e.g. microbial biomass), should have a strong effect when regional-scale patterns are analysed using microsite-level data.

Litter quality was included in our experimental design, by using two grass species with contrasting litter functional traits, but was not under test. Instead, standardizing known controlling variables can improve estimated effects of other controls under study. In addition, litter traits are expected to interact with controls such as temperature [START_REF] Meentemeyer | Macroclimate and lignin control of litter decomposition rates[END_REF] and so including this variable allowed us to test this possibility. In total, we measured four controls (temperature, moisture, microbial biomass and soil nitrogen availability) that naturally varied among microsites. All four variables are expected to act as strong local and, in the case of the climate variables, broad-scale controls on decomposition [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF][START_REF] Swift | Decomposition in terrestrial ecosystems[END_REF][START_REF] García-Palacios | Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[END_REF][START_REF] Tenney | Composition of natural organic materials and their decomposition in the soil: IV. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions[END_REF] . We then built a set of regression models, structured to represent and test between assumptions of scale invariance versus dependence in controls (see Methods), to compare the estimated effect sizes of these different variables on litter decomposition rates.

Results and discussion

Decomposition rates varied within and among sites and between the two litter types (Fig. 3a,b).

As expected, mass carbon (C) loss over the 3-month field incubations was approximately twice as great for the higher quality Holcus litter (33.8±11.62%; mean±SD) than for the Festuca litter (16.8±7.15%). However, there was considerable variation, with loss rates for Holcus ranging from 7.72 to 53.7%, and for Festuca from 0.50 to 35.3%. Similarly there was marked variation in the values of the climate controls, temperature and moisture, although they had contrasting within versus among site distributions. Soil temperatures clustered within sites, meaning that variation was much greater among sites (Fig. 3c), ranging from 10.0 to 25.3°C for the most northern to southern site means. In contrast, microsite litter moisture only clustered around the site mean at the two most southern sites, where mean site moisture was lowest (11.7 and 7.5%).

At the most northern site the mean moisture was 51.6% but varied among microsites from 12.8 to 81.3% (Fig. 3d). Microsite soil nitrogen (N) availability and microbial biomass were more clustered than moisture but within-versus among-site variation was still large (Figs. 3e,f). Soil N varied among sites from means of 9.0 to 32.8 μg N g soil -1 but within the most northern site alone from 2.3 to 70.6 μg N g soil -1 . Equally, microbial biomass site means varied ~2-times from 0.96 to 2.03 μg CO 2 g soil -1 h -1 , but within sites from about 1.6-times (most northern) to about 2.75-times (most southern).

Prediction 1 was that emergent patterns between mean-site climate and decomposition might fail to capture relationships occurring at the microsite scale. We found no support for this prediction for temperature, with the "Microclimate" and "Site-mean climate" models (see Methods) giving similar temperature coefficients (Table 1) and effect sizes (Fig. 4a). That is, the temperature-decomposition relationship was scale invariant (Fig. 1). This perhaps is not surprising given that microsite soil temperature clustered around the site mean (Fig. 3c). Consequently the regional temperature-decomposition relationship should be, and was, approximately equivalent whether microsite or site-mean values were explored (Fig. 4a). There is evidence that microsite temperature can differ markedly to the site mean in some environmental contexts [START_REF] Scherrer | Infra-red thermometry of alpine landscapes challenges climatic warming projections[END_REF] . However across 60 sites spanning a broad range in eco-climatic conditions, Loescher et al. 21 found that microsite soil temperatures were representative of the site mean, suggesting that our finding that the temperature-decomposition relationship is scale invariant might generalize to numerous ecosystem types.

In contrast, the moisture-decomposition relationship was strongly scale dependent: there was a pronounced moisture-decomposition relationship for the Microsite model but a weak one for the emergent pattern estimated from the Site-mean model (Table 1, Fig. 4b). Specifically, across the large observed range of microsite moisture availability (5.7 to 83.2%), the Site-mean model projected mass loss values ranging from a low of 27.4% to a high of 28.7%. In contrast, the Microclimate model estimated a shift in decomposition across the same range in moisture from 23.9 to 33.2% mass loss (Fig. 4b). Site means therefore poorly captured regional heterogeneity in microsite moisture availability, generating a scale mismatch between local mechanism and broad-scale pattern. Our data (Fig. 4b) consequently suggest that patterns emerging from among-site comparisons of site-mean moisture may fail to represent causative relationships operating at the much finer spatial scales at which decomposer organisms respond to the environment. These findings raise questions about the use of site-mean (or coarser resolution) hydroclimatic data to parameterise ecosystem models. Overall, our data suggest that assumptions of the hierarchical model about scale invariance in climatic control are variable dependent, cautioning against its general application as a conceptual and numerical representation of controls on decomposition.

Using the "Microsite interactions" model (see Methods), we evaluated Prediction 2 that variables considered locally important should retain a strong influence at broad spatial scales. Following this prediction, the effect size of microbial biomass on decomposition rates was of similar magnitude to those for the climatic variables (Fig. 5a). Specifically, estimated decomposition rates varied by ~16% mass C loss with temperature change, ~11% with moisture change, and ~12% with microbial biomass change (Fig. 5a). Not surprisingly, given that we experimentally generated marked differences in litter quality, estimated mass loss increased ~24% (from 17 to 41%) with increasing initial litter N (Fig. 5a). The soil N effect size was by contrast small, leading to about a 2% positive change in estimated mass C loss but, as with all the other variables, the main effect coefficient was significant (P<0.05; Table 1, Fig. 5a). Although some 2-way interaction coefficients were of comparable or greater magnitude to the main effects for temperature, moisture and microbial biomass (Table 1), qualitatively the estimated effect sizes of these variables from the Microsite interactions and Microsite main effects models were similar (Figs. 4, 5b). That is, when interactions were removed, litter quality, temperature, moisture and microbial biomass all retained strong control on decomposition at the regional scale of our study (Table 1, Supplementary Fig. 1).

Exclusion of soil animal decomposers does alter litter decomposition rates in at least some biomes [START_REF] Wall | Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent[END_REF][START_REF] García-Palacios | Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[END_REF][START_REF] Handa | Consequences of biodiversity loss for litter decomposition across biomes[END_REF][START_REF] Powers | Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient[END_REF][START_REF] Crowther | Biotic interactions mediate soil microbial feedbacks to climate change[END_REF] but microbial effects were not explicitly examined. However, the representation of microbial biomass or growth in biogeochemical models can improve predictive power [START_REF] Wieder | Global soil carbon projections are improved by modelling microbial processes[END_REF]29 and such variables are argued to relate most directly to spatial and temporal variation in biogeochemical process rates [START_REF] Sulman | Microbedriven turnover offsets mineral-mediated storage of soil carbon under elevated CO 2[END_REF][START_REF] Tang | Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[END_REF][START_REF] Hall | Understanding how microbiomes influence the systems they inhabit: Insight from ecosystem ecology[END_REF] . In support of these arguments, the absolute size of our estimated effects of microclimate on decomposition depended strongly on microbial biomass. Specifically, using the Microsite interactions model we set microbial biomass at five values representing the observed range of microsite variation, and then varied temperature and moisture (Fig. 5c,d). Higher microbial biomass values generated a much greater absolute change in decomposition rates with increasing temperature or moisture (Fig. 5c,d). For example, estimated mass loss rates across the microsite moisture range only varied by ~5% in absolute terms when microbial biomass was low, to as much as ~25% (from 28.5 to 54.2% mass loss) when it was high. This influence of microbial biomass was primarily additive given that, when it was dropped from the modelling (giving the Microclimate model), there was minimal influence on the relative effect sizes of litter quality, temperature and moisture (Fig. 4, Table 1). An outstanding question is whether the microbial traits selected by a site's climatic context [START_REF] Averill | Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture[END_REF][START_REF] Strickland | Climate history shapes contemporary leaf litter decomposition[END_REF] in turn influence the magnitude of microclimate effects on decomposition, as is similarly observed through climate selection of plant functional traits [START_REF] Meentemeyer | Macroclimate and lignin control of litter decomposition rates[END_REF][START_REF] Aerts | Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[END_REF] . Nevertheless, our data do support emerging numerical frameworks showing that explicit representation of microbes as controlling variables can dramatically change expected effects of climate on broad-scale decomposition dynamics [START_REF] Buchkowski | Applying population and community ecology theory to advance understanding of belowground biogeochemistry[END_REF][START_REF] Tang | Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[END_REF][START_REF] Allison | Soil-carbon response to warming dependent on microbial physiology[END_REF] .

We found positive but relatively weak effects of soil N availability on decomposition (Supplementary Fig. 1), despite the fact stoichiometry is considered a key control on microbial growth efficiencies and hence biogeochemical process rates [START_REF] Crowther | Environmental stress response limits microbial necromass contributions to soil organic carbon[END_REF][START_REF] Frey | The temperature response of soil microbial efficiency and its feedback to climate[END_REF][START_REF] Schimel | The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theorectical model[END_REF][START_REF] Buchkowski | Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling[END_REF] . The effects might have been stronger had the litter been of lower quality (e.g. <1% initial N), requiring microbes to source N from the environment for growth and enzyme production [START_REF] Schimel | The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theorectical model[END_REF] . Such possibilities emphasize the fact that the effect sizes we report are specific to the spatial and temporal scale of our study. For example, the relative effect size of controls changes with how progressed litter decay is [START_REF] Adair | Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates[END_REF][START_REF] Currie | Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale[END_REF][START_REF] Smith | Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time[END_REF] . Future work will need to test whether the hierarchical model can approximate controls on later decomposition stages, in other biomes and at even broader spatial scales [START_REF] Adair | Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates[END_REF][START_REF] Currie | Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale[END_REF] , when challenged with microsite data. Where the model cannot approximate controls (i.e. where broad-scale emergent patterns do not reflect microsite relationships), new microsite-level studies will be needed to re-estimate parameter values for important controls. Such studies should test whether measuring fine-scale temporal as well as spatial variation might also necessitate a re-evaluation of how decomposition rates are controlled. Notably, our study leaves unresolved how microsite variation in litter quality might influence the nature of this co-dominant control. Further, it suggests a need to re-design multi-site litter decomposition studies but does not address the challenge of making these studies practical given the very large number of observations apparently required to test when and to what extent emergent broad-scale patterns fail to capture microsite-level mechanisms [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF] .

We acknowledge that three aspects of our design may have influenced our findings: enclosing litter in mesh can alter the microclimate [START_REF] Bradford | Microbiota, fauna, and mesh size interactions in litter decomposition[END_REF] ; the litter species do not occur at every site; and the microsite scale we measured may also be mismatched with the litterbag scale of the response variable [START_REF] Bokhorst | Microclimate within litter bags of different mesh size: Implications for the 'arthropod effect' on litter decomposition[END_REF] . However, these caveats also apply to the multi-site litter decomposition experiments that have helped build and reinforce the hierarchical model [12][START_REF] Harmon | Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison[END_REF][START_REF] Moore | Litter decomposition rates in Canadian forests[END_REF][START_REF] Wall | Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent[END_REF] . The important caveat that we remove from these previous studies is the assumption that aggregate (i.e. sitemean) data accurately capture the relationships between decomposition and the variables regulating it that operate at local (microsite) scales. Notably, there is growing evidence that Cand N-cycling processes in soil are driven to a large extent by microsite variation in controlling variables across landscape to regional scales [START_REF] Bradford | Climate fails to predict wood decomposition at regional scales[END_REF][START_REF] Keiser | Disturbance decouples biogeochemical cycles across forests of the southeastern US[END_REF][START_REF] Waring | Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests[END_REF] . Those working in population and community ecology have wrestled with the insight that aggregate data may not represent local behaviour and hence lead to false conclusions and projections [START_REF] Schmitz | Resolving ecosystem complexity[END_REF] ; it seems the same insight may need to be grappled with in ecosystem ecology.

Conclusions

Scaling theory in ecology describes how emergent patterns can arise from distinct and causative relationships operating at finer-scales [START_REF] Levin | The problem of pattern and scale in ecology[END_REF] . However, the issue is nested within a broader inferential challenge traditionally debated in the social sciences and increasingly so in the natural sciences [START_REF] Bradford | Climate fails to predict wood decomposition at regional scales[END_REF][START_REF] Oakes | Commentary: individual, ecological and multilevel fallacies[END_REF][START_REF] Robinson | Ecological correlations and the behavior of individuals[END_REF][START_REF] Schuessler | Ecological inference[END_REF] . Although apparently named without reference to the field of ecology, the issue is termed "ecological inference" and refers to the process of using aggregate data to draw conclusions about individual-level behaviour [START_REF] Schuessler | Ecological inference[END_REF] . Causative relationships inferred from aggregate data often fail to represent the variables that control how individuals respond to and act on the environment [START_REF] Gelman | Rich state, poor state, red state, blue state: what's the matter with Connecticut?[END_REF] . By comparison, relationships inferred from site-mean data in regional-to global-scale litter decomposition experiments may operate locally, or instead emerge from a set of distinct local-scale relationships and controlling variables. We have referred to these two possibilities as the assumption of scale invariance versus scale dependence (Fig. 2). Although we find temperature control scale invariant, our findings for moisture and microbial biomass control suggest that the hierarchical model may be the product of a logical inference fallacy. That is, it arises because aggregate data are falsely assumed to represent finer-scale causative relationships [START_REF] Bradford | Climate fails to predict wood decomposition at regional scales[END_REF][START_REF] Schuessler | Ecological inference[END_REF][START_REF] Gelman | Rich state, poor state, red state, blue state: what's the matter with Connecticut?[END_REF] . Encouragingly, the rich body of work on scaling theory and the ecological inference fallacy [START_REF] Gelman | Data analysis using regression and multilevel/hierarchical models[END_REF] provides a platform for ecosystem ecology to test and potentially reformulate its conceptual and numerical models used to explain and predict how biogeochemical processes respond to a changing environment. Our findings help reinforce calls to test and reconsider which environmental variables predominantly regulate biogeochemical process rates at regionalto global-scales, and when doing so emphasize the need to work at the microsite scales at which organisms perceive the environment.

Methods

Experimental design. Site layout. Our research was conducted in grasslands spanning ~20° latitude in Western Europe (Fig. 1). At each of six study sites, we established four 30-m linear transects between 50 m and up to 2 km apart. Transects were chosen to capture within-site heterogeneity in microclimate and land-use intensity (e.g. with or without grazing). Along each transect we established 20×20 cm quadrats at 5-m intervals, resulting in 7 quadrats per transect.

In the context of this study, 'quadrat' serves as the 'microsite scale'. Between 28 April and 16

May 2015, we placed two nylon mesh bags (5×10 cm; mesh size 0.9×1 mm) at each quadrat, ~10 cm apart. The mesh size presumably minimized the effect of larger soil fauna (e.g. earthworms) on decomposition rates, and so our decomposition rates were likely primarily the product of microbes and micro-and mesofauna [START_REF] García-Palacios | Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[END_REF][START_REF] Bradford | Microbiota, fauna, and mesh size interactions in litter decomposition[END_REF] . Each mesh bag contained 1 g air-dried grass foliar litter of either Holcus lanatus L. or Festuca rubra L., which differ in their litter chemical properties (see below). This resulted in a total of 6 locations × 4 transects × 7 quadrats × 2 litter types = 336 litterbags. Litterbags were placed flush with the soil surface, within the existing litter layer and were retrieved after ~3 months. Of the 336 bags placed, 32 were lost in the field to such events as consumption by cows and accidental site mowing. The litter used to fill the litterbags was collected as freshly senesced material in grasslands local to the Dutch site.

Leaf litter. Mean litter properties for H. lanatus versus F. rubra were pH of 6.12 vs. 5.61, %N of 1.78 vs. 1.03, C:N of 24.7 vs. 43.7, and lignin, calcium, magnesium and potassium contents of 157 vs. 175, 3.72 vs. 2.75, 1.31 vs. 0.79, and 6.55 vs. 1.50 mg g -1 , respectively. That is, regardless of the chemical property measured, H. lanatus was always less recalcitrant. By including the two contrasting litter types at every site, we generated equal within and among site variation in this variable. Doing so provided a statistical control whereby the strong within-site litter type effect should be approximated by the among site effect, and so generate a scale invariant pattern (Fig. 2a). Second, standardizing known controlling variables can improve estimated effects of the controls under study (e.g. microclimate). Third, litter traits are expected to interact with other variables, such as temperature [START_REF] Meentemeyer | Macroclimate and lignin control of litter decomposition rates[END_REF] , and so including this variable allowed us to test this possibility.

Measurements.

Field. At each quadrat we determined microclimate at the start, after ~6 weeks and at the end of the field incubation period. We collected three measures per quadrat and time point of soil temperature at 5-cm depth using a hand-held thermometer. Such repeated spot measurements are effective at characterizing relative variation in microclimate [START_REF] Bradford | Climate fails to predict wood decomposition at regional scales[END_REF] , and so our measures are not indicative of absolute values experienced by the decomposing litters but instead capture generally warmer vs. cooler microsites, or drier vs. wetter, across the course of the study.

At the mid and end time point, soil moisture content was determined gravimetrically in three soil cores (5 cm depth, 2 cm diam.) from each quadrat; cores were pooled and dried at 105°C until constant mass. We had intended to use these measures (plus initial soil moisture) to estimate microsite moisture conditions, but marked differences in soil texture from clay (Umeå) to loamy sand (Wageningen) meant that soil gravimetric moisture was a poor surrogate for litter layer moisture conditions. Instead, we used litter moisture values (see Testing Prediction 1 below).

Additionally, at the start point of the field incubations, 8-10 soil cores of the same size were taken and pooled per quadrat and were used to determine soil gravimetric moisture, microbial biomass and N availability. Initial soil samples and retrieved litterbags were shipped to the Netherlands Institute of Ecology to ensure common processing. Collectively these measures were intended to give estimates of four variables identified as important controls of decomposition either at broad-scales (i.e. temperature and moisture), or at local-scales (i.e. microbial biomass and N availability) [START_REF] Allison | Soil-carbon response to warming dependent on microbial physiology[END_REF][START_REF] Schimel | The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theorectical model[END_REF][START_REF] Rousk | Biomass or growth? How to measure soil food webs to understand structure and function[END_REF][START_REF] Allison | Microbial abundance and composition influence litter decomposition response to environmental change[END_REF] . For soil microbial biomass, it is probably fairer to consider this an estimate of the spatial variation in soil community activity, which includes invertebrate decomposers, many of which will have been able to access the litter [START_REF] García-Palacios | Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[END_REF][START_REF] Bradford | Microbiota, fauna, and mesh size interactions in litter decomposition[END_REF] , and potentially also microbes not involved in litter decomposition.

Laboratory. Retrieved litter was cleaned of roots, fauna and soil, before mass was determined fresh and after drying at 65°C. It was next milled to a fine powder and analysed for total C content through elemental analysis (Flash 2000, Thermo Fisher Scientific, Bremen, Germany).

The initial 168 soils (6 locations × 4 transects × 7 quadrats) were passed through a 4-mm sieve and sub-sampled for gravimetric moisture, microbial biomass and N availability. We used the substrate-induced respiration (SIR) method to estimate active microbial biomass [START_REF] Anderson | A physiological method for the quantitative measurement of microbial biomass in soils[END_REF] , modified per Fierer et al. [START_REF] Fierer | Influence of drying-rewetting frequency on soil bacterial community structure[END_REF] . We estimated soil N availability by determining potential net N mineralization rates as the difference between salt-extractable N-NO 3 -and N-NH 4 + at time zero and after 14 d of incubation at 20°C and 65% water holding capacity [START_REF] Robertson | Standard soil methods for long-term ecological research[END_REF] . Soils were extracted with 1M KCl and extracts measured using an auto-analyser (QuAAtro Segmented Flow Analyser; SEAL Analytical; Norderstedt, Germany).

Initial litter properties were estimated using seven randomly collected samples per species, matching the sub-sampling for the litterbags. Total C and N content were measured as described above, lignin after a chloroform/methanol extraction and hydrolysis with HCl, following Poorter & Villar [START_REF] Poorter | Plant resource allocation[END_REF] . Mineral nutrient concentrations and pH were measured following methods described in Hendry and Grime [START_REF] Hendry | Methods in comparative plant ecology[END_REF] and Cornelissen et al. [START_REF] Cornelissen | Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?[END_REF] , respectively.

Data and inferential analysis. Overview of approach. We built a set of regression models, structured to represent and test between assumptions of scale invariance versus dependence in controls on litter decomposition (Fig. 2), to compare estimated effect sizes on decomposition of the four controlling variables under study. Specifically, we estimated the relative effect size for temperature, moisture, soil N availability and microbial biomass, across the range of observed values within and among our six sites. The relative effect size depends on the slope coefficient for the specific variable, the slope coefficient for any interaction it is involved in, and the range of observed values of the variable. We generated the coefficients by fitting linear mixed-effect models (LMMs). The effect size of a variable on mass C loss was estimated using these regression parameters, while holding all other variables constant (i.e. the mean of all observations for each variable), and systematically varying the variable of interest across its measured range of values. That is, we plotted the regression equation for a model using the coefficients from the respective LMM, the mean value across all 168 quadrats for the controls not under test, and then for the control under test we estimated decomposition rates by systematically increasing the value of the control from the lowest to highest observed values across the 168 quadrats.

The choice of variables to measure and then include in our statistical models (described next) was based on the approach of Hobbs et al. 59 the mean of the 28 quadrat-measures within a site (i.e. they were based on the exact same set of measurements). To account for potential spatial auto-correlation among the quadrats within a site, we fit a random error structure accounting for the spatial hierarchy in the design (quadrat nested within transect, with transect nested within site), assuming a common slope but spatiallydependent intercept [START_REF] Gelman | Data analysis using regression and multilevel/hierarchical models[END_REF][START_REF] Bolker | Generalized linear mixed models: a practical guide for ecology and evolution[END_REF] .

Similarly, litter type was included as the litterbag-level %N value, or as the mean %N per litter type, respectively (note that climate effect sizes were independent of how litter type was included). To determine a litterbag-level initial %N value, we randomly assigned to each litterbag a %N value (to the nearest 0.1%) drawn from the measured range of initial %N values from seven additional litterbag samples (Fig. 3b). We did this to acknowledge that there was variation among litterbags in initial %N and so using the mean initial %N would give a false account of the among-bag variation. For quadrat-level temperature, we calculated the mean soil temperature across the three field measurement periods. For quadrat-level moisture, given that soil gravimetric moisture was not useful given soil texture differences among sites, we calculated quadrat-level moisture as the mean of the Holcus and Festuca litterbag moisture values on collection. We acknowledge that litters were probably drier at collection than at earlier points of the field incubations, given increasing temperatures and declining precipitation across the incubations, and so these values provide an estimate of relative spatial differences in moisture only. We used the mean across the two litter types, given that species-specific moisture values are often a product of leaf litter traits and are thus correlated with litter quality [START_REF] Makkonen | Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[END_REF] .

Testing Prediction 2. Prediction 2 was that any variable expected to be an important control at the microsite-level, should have a strong effect when regional-scale patterns are analysed using microsite data. Specifically, we evaluated whether effect sizes of the soil microbial biomass and N availability variables had effect sizes comparable to recognized broad-scale controls (specifically temperature and moisture). We developed three model structures. The "Microsite interactions" model included all variables (i.e. temperature, moisture, microbial biomass, N availability) and their 2-way interactions. We included two-way interactions among the main effects given expectations that the relative effects of our variables should depend on one another.

For example, the decomposition rate of more recalcitrant litters is expected to be more temperature sensitive [START_REF] Fierer | Litter quality and the temperature sensitivity of decomposition[END_REF][START_REF] Conant | Temperature and soil organic matter decomposition rates -synthesis of current knowledge and a way forward[END_REF] . The "Microsite main effects" model removed the 2-way interactions to determine whether the effect sizes of the variables were primarily additive. The "Microclimate" model was used again but to evaluate whether dropping the soil microbial biomass and N availability terms altered inferences about temperature and moisture controls on mass C loss.

Litter type (as initial %N) was again included in all models.

Statistical model specifics. The LMMs were fit with a Gaussian error distribution in the "lme4" package for the "R" statistical program (version 3.1.3), using the "lmer" function.

Decomposition was calculated as the proportional mass C loss from the litterbags. Site, transect and quadrat were fit as random variables to the LMMs, with the finer scale variables nested within the broader scale variables, given the potential for autocorrelation caused by spatially clustering the litterbags [START_REF] Bolker | Generalized linear mixed models: a practical guide for ecology and evolution[END_REF] . Before we tested the model structures described above, we tested the data distributions. A single and highly influential observation (based on Cook's D) was dropped from the dataset; it had a mass C loss value of 69.9%, far higher than any other observation (Fig. 3a), and markedly affected residual fits. The remaining data conformed to assumptions of normality, and a second-order temperature term was included given the observed unimodal relationship between temperature and mass loss. Also, initial extractable N was a better choice (i.e. higher standardized coefficient) than potential N mineralization for soil N availability, and litter moisture (mean per quadrat) performed better than gravimetric soil moisture. Litter initial %N was used to represent litter quality given that it is a strong predictor of early-stage decomposition in grasses such as H. lanatus [START_REF] Smith | Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time[END_REF][START_REF] Smith | Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters?[END_REF] .

The square-root variance inflation factors (vif) were <2 for the main effects, indicating low collinearity. As would be expected, there was a strong correlation between temperature and its second-order term, and where the effect of one variable strongly interacted with another. We reduced these 'vif' values by standardizing the observed value of each variable by subtracting the mean and dividing by two standard deviations [START_REF] Gelman | Scaling regression inputs by dividing by two standard deviations[END_REF] . The resulting standardized coefficients also permit coefficients to be directly compared for variables measured on different unit scales.

Confirming the validity of our inferences in spite of introduced collinearity when second-order terms and interactions were permitted, variables with large effect sizes calculated on the basis of the unstandardized coefficients also had large standardized coefficients. In addition, in the 'Microsite main effects' model all 2-way interactions were dropped, removing collinearity and concerns about over-fitting, and the relative magnitude of the coefficients were largely unchanged (Table 1).

All reported P-values are quasi-Bayesian but retain the same interpretation as frequentist P-values [START_REF] Baayen | Mixed-effects modeling with crossed random effects for subjects and items[END_REF] . We considered coefficients with P<0.05 to be significant and coefficients with P<0.10 marginally significant. We calculated the r 2 values for each model following Nakagawa and Schielzeth 66 . Calculation of r 2 values is common practice when modelling decomposition and a high value associated with a specific explanatory variable is often associated with that variable having a strong effect size. This reasoning makes no sense within the context of our study because litter type was experimentally controlled and accurately measured within and among sites, whereas the other variables relied on observed variation and measurements that represented -but likely did not fully characterize -the conditions that acted on decomposer activity. The latter conditions make data more "noisy", lowering r 2 values, but in the absence of systematic bias will not change the coefficient estimates and hence effect sizes [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF] . We therefore only report the r 2 value for each model, to verify they had the potential to explain a substantive degree of the variance in decomposition rate.

moisture data measured across the study period. Latitude and longitude data are for one transect in each site. Effect sizes are estimated for temperature (a) and moisture (b) using the coefficients from the models presented in Table 1. Specifically, these coefficients were used in a regression equation, along with the mean value across all 168 quadrats for the controls not under test, and then for the control under test by systematically increasing the control from the lowest to highest observed values across the 168 quadrats. Comparisons of effect sizes between the Microclimate versus Site-mean climate models test whether patterns between site-mean climate and decomposition rates (effect sizes from the Site-mean climate model) approximate those operating at the microsite scales at which decomposer organisms perceive the environment (effect sizes from the Microclimate model). The temperature-decomposition relationship appears scale invariant whereas the moisture-decomposition relationship is scale dependent (Fig. 2). The two Microsite models ask whether inclusion of microbial biomass and N availability as additional variables alters the estimated effects of temperature and moisture. Their inclusion does not appear to strongly affect the climate-decomposition relationships. 

Table 1 Coefficients, significance and r 2 values for the linear mixed models used to evaluate controls on litter decomposition rates [START_REF] Bradford | Understanding the dominant controls on litter decomposition[END_REF] . Shown in the second column are standardized coefficients for the full model, where "Microsite" refers to the level at which the variables were observed, and "interactions" to the inclusion of all 2-way interactions among the predictors.

Unstandardized coefficients were used when plotting Figs. 1 Mean coefficients, their SD and significance are estimated using an MCMC sampling approach, and model r 2 values using a method that retains the random effects structure (see Methods).

Model r 2 values were identical for the fixed and full (i.e. fixed + random) effects. 
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 2 Figure 2 ⏐Competing assumptions for how decomposer communities affect relationships
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 3 Figure 3 ⏐ Measured variation in decomposition rates and controlling variables within and
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 4 Figure 4 ⏐ Estimated effects of temperature and moisture controls on decomposition rates.
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 5 Figure 5 ⏐ Estimated effects of controls on decomposition rates. Effect sizes are estimated
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Note:

  In the standardized Microsite interactions model, all sqrt VIFs were <2 except Temperature 2 which was 2.98 and Temperature × Moisture which was 2.30. In the unstandardized Microsite interactions model, all sqrt VIFs were <10 except Temperature which was 16.0 and Temperature 2 which was 14.8. In the unstandardized Microsite main effects model, all sqrt VIFs were <2 except Temperature and Temperature 2 ; and the same was observed with the Microclimate model, and the Site-mean climate model. na = not applicable

  

  We established a single model structure to test Prediction 1. It included only recognized broad-scale controls as variables (i.e. temperature, moisture and litter type), but involved different data aggregation. The "Microclimate" model was tested with observations of mass C loss for each litterbag and quadrat-level microclimate. The "Site-mean climate" model was also run with all litterbag observations -to minimize changes in predictive power associated with changing values of n -but the values of the climate variables were the mean per site of the microclimate (i.e. quadrat) observations. Hence in the Microclimate model the dataset had 168 unique temperature and moisture observations, whereas in the Site-mean climate model there were only six possible values (one per site) of temperature and moisture. Specifically, microsite control values were determined from the quadrat-level measures, and site mean values determined from

	Testing Prediction 1. Prediction 1 was that relationships between climate and decomposition
	rates should differ when site-mean versus microsite-level climate data are analysed. This
	prediction was evaluated by comparing whether temperature and moisture effects on mass C loss

, which rejects model selection on philosophical and operational grounds. Philosophically, we investigated only variables where biological mechanism as to their influence on decomposition is firmly established. Operationally, there is subjectivity and lack of agreement in statistical model selection approaches, with different decisions leading to markedly different conclusions as to effect sizes. Instead, coefficients and hence effect sizes are generally most robust when all terms are retained, assuming that each is included with well-established biological foundation. differed when the slope coefficients were estimated from microsite versus site-mean data.

Table 1

 1 ⏐Coefficients, significance and r 2 values for the linear mixed models used to evaluate 670 controls on litter decomposition rates.

		Operational definitions of scale and variance
	1.Umeå	Site	
		Microsite (i.e. quadrat)	
		Broad scale: regional gradient, among sites (left)
		Fine scale: local gradients, among quadrats in a
			site (below)
	2.Uppsala		
		30-m transect (4 per site)
		5 m	
	3.Copenhagen		
	4.Wageningen	Holcus & Festuca litterbag	
	5.Rennes	quadrat (28 per site)	20 cm
	6.Montpellier		

  Obs. variation in microbial biomass (ug CO 2 g soil -1 h -1 )

		30	(a)										39		35	(b)				
	Estimated decompostion (% mass carbon loss) Estimated decomposition (% mass C loss)	10 12 14 16 18 20 22 24 26 28		Microsite interactions Microsite main effects Microsite LQ+climate Site mean LQ+climate Models Microsite interactions Microsite main effects Microclimate Site-mean climate				Estimated decompostion (% mass carbon loss)	23 25 27 29 31 33 35 37	Estimated decompostion (% mass carbon loss) 0.6	24 25 26 27 28 29 30 31 32 33 34 Microsite interactions Microsite interactions Microsite main effects Microsite LQ+climate Site mean LQ+climate 1.0 1.4 1.8 2.2 2.6 Microsite main effects	3.0	3.4
		8													23					
			8	10	12	14	16	18	20	22	24	26	28		5	15	25	35	45	55	65	75	85
					Observed variation in soil temperature ( o C) Soil temperature ( o C)						Observed variation in litter moisture (% mass) Litter moisture (% mass)

  4, 5 and Supplementary Fig.1. The consequence of aggregating microsite variation to generate "Site means" for the predictor variables was examined, but microsite variation in the response variable was retained to maintain the number of observations (n=303). Significant (P<0.05) and marginally-significant (P<0.1) coefficients are shown in bold and italic fonts, respectively.

				Model		
	Variables	Microsite interactions	Microsite interactions	Unstandardized coefficients Microsite main Microclimate effects	Site-mean climate
	Intercept	27.0±0.689	-70.0±14.629	-17.1±6.264	-15.6±6.365	-24.1±6.960
	Litter N	16.1±0.856	45.3±5.998	19.3±1.173	19.2±1.198	22.6±1.283
	Temperature	-4.49±1.600	5.03±1.344	1.05±0.702	1.73±0.681	2.81±0.759
	Temp 2	-6.84±3.285	-0.069±0.033	-0.047±0.018	-0.063±0.018	-0.100±0.021
	Moisture	7.23±1.256	0.240±0.156	0.141±0.023	0.120±0.022	0.017±0.028
	Soil N	0.732±1.075	0.151±0.158	0.014±0.028	na	na
	Microbe	4.59±1.165	4.70±7.575	4.93±1.477	na	na
	Lit ×Temp	-13.9±1.888	-1.72±0.233	na	na	na
	Lit × Moist	-0.275±2.057	-0.007±0.049	na	na	na
	Lit × soilN	1.58±1.666	0.053±0.056	na	na	na
	Lit × Mic	0.347±1.997	0.535±3.077	na	na	na
	Temp × Moist	-7.03±4.157	-0.014±0.008	na	na	na
	Temp × soilN	-3.09±2.035	-0.009±0.006	na	na	na
	Temp × Mic	-1.46±2.172	-0.185±0.276	na	na	na
	Moist × soilN	-3.02±2.536	-0.002±0.001	na	na	na
	Moist × Mic	4.55±2.923	0.111±0.071	na	na	na
	soil N × Mic	-0.409±1.226	-0.014±0.042	na	na	na
	model r 2	66.3	66.3	57.1	55.2	57.6
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