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Chemical tailoring of Single Molecule Magnet behavior in films of Dy(III) dimers
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 Chemical tuning of the structure of a Dy-dimer enhances its Single Molecule Magnet behaviour  The new complex can be sublimated intact as thin film  The magnetic behaviour of the complex is fully preserved after the sublimation

Introduction

Single Molecule Magnets (SMMs) are fascinating coordination mono and polynuclear complexes exhibiting magnetic bistability that has purely molecular origin [START_REF] Sessoli | Magnetic bistability in a metal-ion cluster[END_REF]2]. Their peculiar combination of quantum and classical properties makes them ideal candidates to be integrated in devices for spintronics and quantum computing [START_REF] Urdampilleta | 1; Supramolecular spin valves[END_REF][START_REF] Heersche | Electron Transport through Single Mn12 Molecular Magnets[END_REF][START_REF] Leuenberger | 1; Quantum computing in molecular magnets[END_REF]. The integration of these objects in hybrid architectures is achieved by their deposition on specific surfaces carefully controlling that these fragile systems maintain unaltered their magnetic properties [START_REF] Cornia | 1; Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces[END_REF][START_REF] Cornia | 1; Preparation of Novel Materials Using SMMs, Single-Molecule Magnets[END_REF].

There are a limited number of SMMs retaining their magnetic behavior at the nanoscale.

Among them, the tetrairon(III) system (Fe4) [START_REF] Barra | 1; Single-Molecule Magnet Behavior of a Tetranuclear Iron(III) Complex. The Origin of Slow Magnetic Relaxation in Iron(III) Clusters[END_REF] is a very interesting molecule that can be properly functionalized [START_REF] Accorsi | 1; Tuning anisotropy barriers in a family of tetrairon (III) single-molecule magnets with an S= 5 ground state[END_REF][START_REF] Barra | 1; New Single-Molecule Magnets by Site-Specific Substitution: Incorporation of "Alligator Clips" into Fe4 Complexes[END_REF] and deposited on the substrate using wet chemistry strategies [START_REF] Mannini | 1; Magnetic memory of a single-molecule quantum magnet wired to a gold surface[END_REF][START_REF] Mannini | Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets[END_REF] as well as by organic molecular beam deposition (OMBD) methods [START_REF] Malavolti | Magnetic Bistability in a Submonolayer of Sublimated Fe 4 Single Molecule Magnets[END_REF][START_REF] Lanzilotto | The Challenge of Thermal Deposition of Coordination Compounds: Insight into the Case of an Fe 4 Single Molecule Magnet[END_REF]. Another class of SMMs extensively studied is the one of Terbium(III) bisphthalocyaninato complexes [START_REF] Ishikawa | Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions[END_REF] that resulted even more stable and, more importantly, characterized by a magnetic bistability that is retained at higher temperature. However, different studies highlight the erratic magnetic behavior of such molecules, that can be positively influenced by certain substrates [START_REF] Wäckerlin | Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator[END_REF], but in other cases experience a significant acceleration of the magnetization dynamics [START_REF] Malavolti | Erratic magnetic hysteresis of TbPc2 molecular nanomagnets[END_REF][START_REF] Margheriti | 1; Xray detected magnetic hysteresis of thermally evaporated terbium double-decker oriented films[END_REF]. This justifies the effort in selecting new SMM candidates maintaining their behavior at the nanoscale and possibly with improved magnetic performances. Among the many synthesized SMMs, lanthanide-based dimers have been widely studied because they offer a nice platform to investigate magnetic couplings between two lanthanide ions [START_REF] Chow | Assessing the exchange coupling in binuclear lanthanide(iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative[END_REF][START_REF] Pineda | 1; Direct measurement of dysprosium(III)dysprosium(III) interactions in a single-molecule magnet[END_REF]. We recently demonstrated that such dimer of formula Dy(hfac)3(PyNO)]2 [START_REF] Yi | 1; A luminescent and sublimable Dy(III)-based single-molecule magnet[END_REF] (where hfac -= hexafluoroacetylacetone and PyNO= pyridine N-oxide, DyPyNO hereafter) is a particularly good candidate for the observation of SMM properties on surface. Indeed, by using muon spin relaxation measurements (μ-SR) we evidenced that the magnetic properties of this SMM are not altered neither by the metallic substrate nor by the vacuum vicinity [START_REF] Kiefl | Robust magnetic properties of a sublimable single molecule magnet[END_REF].

As the magnetic behavior of most lanthanide-based dimers is extremely sensitive to slight modification in the dimer architecture [START_REF] Habib | 1; Lessons learned from dinuclear lanthanide nano-magnets[END_REF][START_REF] Zhu | Lanthanide dinuclear complexes constructed from mixed oxygen-donor ligands: the effect of substituent positions of the neutral ligand on the magnetic dynamics in Dy analogues[END_REF][START_REF] Zhang | 1; A series of dinuclear Dy(iii) complexes bridged by 2-methyl-8-hydroxylquinoline: replacement on the periphery coordinated [small beta]-diketonate terminal leads to different single-molecule magnetic properties[END_REF][START_REF] Wang | 1; Fine-Tuning Ligand to Modulate the Magnetic Anisotropy in a Carboxylate-Bridged Dy2 Single-Molecule Magnet System[END_REF][START_REF] Wang | Structures and magnetic properties of several phenoxo-O bridged dinuclear lanthanide complexes: Dy derivatives displaying substituent dependent magnetic relaxation behavior[END_REF][START_REF] Sun | Dinuclear Dysprosium SMMs Bridged by Neutral Bipyrimidine Ligand: Two Crystal Systems Depend on Different Lattice Solvents Lead to Distinct Slow Relaxation Behaviour[END_REF][START_REF] Wang | 1; Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(III) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand[END_REF][START_REF] Peng | Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers[END_REF][START_REF] Lin | Modulating Relaxation Dynamics of Dy2 Compounds through Carboxylate Coordination Modes[END_REF][START_REF] Ren | Solvent Responsive Magnetic Dynamics of a Dinuclear Dysprosium Single-Molecule Magnet[END_REF][START_REF] Zhang | Transitions of two magnetic interaction states in dinuclear Dy(iii) complexes via subtle structural variations[END_REF] we have engaged a chemical work on the DyPyNO molecule in order to optimize its SMM behavior by introducing a NO2 electron-withdrawing group on the dimer's aromatic linker as already performed on similar molecules [START_REF] Habib | Significant Enhancement of Energy Barriers in Dinuclear Dysprosium Single-Molecule Magnets Through Electron-Withdrawing Effects[END_REF]. However the introduction of this electron-deficient group is expected to quench the fluorescence with respect to the behavior of the pristine DyPyNO molecule [START_REF] Nagarkar | Highly selective detection of nitro explosives by a luminescent metal-organic framework[END_REF][START_REF] Asha | Discriminative detection of nitro aromatic explosives by a luminescent metal-organic framework[END_REF]. Indeed, no sizeable luminescence emission has been observed. 

Results and Discussion

Crystal structure of DyPyNO-NO2

Single-crystal X-ray diffraction studies reveal that DyPyNO-NO2 crystallizes in a monoclinic system with the P21/n space group (main structural parameters are gathered in table S1). The asymmetric unit contains one Dy(hfac)3 moiety and one PyNO-NO2 ligand. Each Dy III ion is surrounded by six oxygen atoms from three hfac -ligands (O1, O2, O4, O5, O6 and O7) and two oxygen atoms from the NO group of two PyNO-NO2 ligands (O3). The latter connects two equivalent Dy(hfac)3 moieties in μ2 mode to form a dinuclear compound of formula [Dy(hfac)3(PyNO-NO2)]2 as shown in figure 1. Dy-O distances are in the 2.31-2.42 Å range (table S2) as observed on similar compounds [START_REF] Yi | Reversible Luminescence Modulation upon an Electric Field on a Full Solid-State Device Based on Lanthanide Dimers[END_REF][START_REF] Yi | 1; Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks[END_REF][START_REF] Yi | Influence of ferromagnetic connection of Ising-type DyIII-based single ion magnets on their magnetic slow relaxation[END_REF]. Overall, each Dy III ion is in an almost perfect (CSM = 0.551 [START_REF] Alvarez | Shape maps and polyhedral interconversion paths in transition metal chemistry[END_REF][START_REF] Casanova | Minimal Distortion Pathways in Polyhedral Rearrangements[END_REF], table S3) square antiprism coordination environment with idealized D4d site geometry. The intramolecular Dy-Dy distance is quite short (4.071(4) Å) and each dimer is fairly well isolated with the shortest intermolecular Dy-Dy distance of 10.041(2) Å.

Deposition and chemical characterization of the DyPyNO-NO2 film

The thermogravimetric analysis of DyPyNO-NO2 (see figure S1 and Materials and Methods) shows a brutal 80% weight loss at 270°C, suggesting that its deposition by sublimation is feasible. In order to confirm the possibility to sublimate the complex DyPyNO-NO2 we have grown several films on different substrates checking both the chemical integrity and the magnetic behavior of the complex after the sublimation. The deposition of the molecule on the substrates has been performed by sublimation in High Vacuum (HV, see Materials and Methods). The AFM analysis performed on the film grown on Au/Mica (see figure S2-S3) shows a roughness of less than 5 nm, comparable to what observed on mica suggesting a layer-by-layer growth of the DyPyNO-NO2 on gold. A grazing incidence XRD characterization (see figure S4) of the same sample evidences the amorphous nature of the film, in analogy to what observed for the non-functionalized molecule [START_REF] Kiefl | Robust magnetic properties of a sublimable single molecule magnet[END_REF]. The broad peak around 13° is assigned to the molecular film, while sharper diffraction peaks can be attributable to the Au/Mica substrate.

A c c e p t e d m a n u s c r i p t

ToF-SIMS characterization allows a first direct comparison of the bulk material and the sublimated film. In figure 2 the spectrum of the film is compared with the pristine powder.

The fragmentation pattern of these two samples is almost superimposable, giving a first demonstration of the intactness of the molecular deposit obtained by OMBD. The molecular peak is not present neither in the scratch nor in the sublimated film according to earlier reports based on similar molecules [START_REF] Kiefl | Robust magnetic properties of a sublimable single molecule magnet[END_REF]. It is interesting to study the regions corresponding to the peaks [M-2hfac-PyNO-NO2] + (1294 m/z) and [M-4hfac-DyPyNO-NO2] + (716 m/z), namely corresponding to the molecular fragments obtained from the loss of 2(4) hfac -ligands and one PyNO-NO2 ligand: the isotopic distribution of these two representative peaks (figure 2) for the film and the bulk shows a good agreement with the theoretical pattern. Additionally, also the signal of the molecular peak with the loss of a hfac -ligand [M-hfac] + at 1640m/z is weak but clearly visible. Further strong signals of the spectrum are due to the loss of hfac -, PyNO-NO2 ligands, -NO2 and fluorine such as [Dy(hfac)3(PyNO)-F] + (857m/z). A complete assignment of the peaks in the spectra with their intensity is given in table S4, evidencing that the same peaks have been detected in the bulk sample as well as in the sublimated sample.

Further confirmation that molecules in the sublimated film are intact is provided by an XPS analysis, being this technique capable of verifying both the stoichiometry of the molecular deposits and the valence of the elements present in the deposited molecular layers. A survey analysis reveals the presence of the expected elements constituting the DyPyNO-NO2 molecule. A more careful analysis of the regions of interest evidences that the spectral features of the system are completely maintained after the deposition (see figure 3, figure S5 and table S5).

In particular, the Dy 4d region presents, as expected, a complex spectrum due to 4d-4f interactions. The fine structure and the main peak centered at 157 eV are perfectly in line with a Dy III system [START_REF] Barreca | Nanostructured Dy2O3 films: An XPS Investigation[END_REF][START_REF] Milanov | 1; Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films[END_REF]. The analysis of the O 1s region reveals the presence of three distinct contributions attributable to the pyridine N oxide (535.9 eV), the nitro group (533.4 eV) and the ketonic (531.4 eV) oxygen, respectively [START_REF] Roodenko | Timeresolved synchrotron XPS monitoring of irradiation-induced nitrobenzene reduction for chemical lithography[END_REF]. The trend of the quantitative analysis of the different contributions in the region is in good correspondence with the calculated ones (see table S5). The C 1s region shows a fine structure that can be clearly assigned to the different carbon atoms according to previous reports on similar complexes [START_REF] Kiefl | Robust magnetic properties of a sublimable single molecule magnet[END_REF][START_REF] Popovici | 1; Laser-induced metal-organic chemical vapor deposition (MOCVD) of Cu(hfac)(TMVS) on amorphous Teflon AF1600: an XPS study of the interface[END_REF]: at high Binding Energy (BE), well separated with respect to the others, a peak attributable to the fluorinated carbon (-CF3) atoms centered at 291.8 eV can be identified. The peak at 286.4 eV is due to the contributions of the ketonic carbon atoms (C=O) and the carbon bound to with nitrogen. The component at lower BE is the sum of the aliphatic and aromatic carbon atoms. The feature at A c c e p t e d m a n u s c r i p t 295.6 eV is due to shake-up signal of the C 1s. Table S5 evidences the good agreement between the experimental and theoretical values for each component of the C 1s peak. The N 1s peak is fitted using three components: one for -NO (402.7 eV), another one for -NO2 (405.7 eV) and a third component at lower BE (400.1 eV) in agreement with earlier literature reports [START_REF] Roodenko | Timeresolved synchrotron XPS monitoring of irradiation-induced nitrobenzene reduction for chemical lithography[END_REF][START_REF] Bag | 1; Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn 3 O 4 Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen[END_REF]. The peak at lower binding energy can be attributed to a radiation damage that is more evident in the bulk sample. The F 1s peak presents a major component at 687.4 eV, due to the fluorine in the -CF3 groups, and a minor component at lower binding energy due to small radiation damage. A semi-quantitative analysis of the composition of the film according to the integrated peak signals gave the values reported in table 1 that well compares with the theoretical ones, except for dysprosium. The excess of dysprosium can be justified by the error that can be done in the fitting because of the complex peak fine structure.

The combination of the ToF-SIMS and the qualitative and semi-quantitative XPS analyses allows us to safely confirm that the DyPyNO-NO2 film obtained by sublimation in vacuum condition is intact from a chemical point of view. This is in line with previous characterization of similar compounds [START_REF] Yi | Reversible Luminescence Modulation upon an Electric Field on a Full Solid-State Device Based on Lanthanide Dimers[END_REF][START_REF] Gao | 1; Evaporable lanthanide single-ion magnet[END_REF] and confirms that the introduction of the NO2 group does not affect the sublimation capability of this system.

Magnetic Measurements

Static and dynamic magnetic susceptibility measurements have been performed on polycrystalline samples of DyPyNO-NO2 embedded in grease to avoid preferential orientation of the microcrystallites in the magnetic field. The room temperature value of the χMT product is 26.52 emu K mol -1 at 300 K (figure S6), slightly lower than the expected 28.34 emu K mol -1 for two isolated Dy III ions. The χMT value decreases as the temperature is lowered because of the progressive depopulation of the sublevels of the J = 15/2 multiplet of the Dy III and also because of weak antiferromagnetic interactions between two Dy III centers.

Such behavior was also observed on DyPyNO [START_REF] Yi | 1; A luminescent and sublimable Dy(III)-based single-molecule magnet[END_REF]. Ab-initio calculations evidences a very anisotropic and almost pure mJ = ±15/2 ground doublet (effective gx = 0.00, gy = 0.01, gz = 19.56) that is well separated from the first excited one (187 K, 130 cm -1 ) (table S6). The orientation of the magnetic axis in the molecule has been also computed by using post Hartree-Fock methods and the axis has been found to lie on an edge of the square antiprism coordination polyhedron of the Dy III ions, almost perpendicular (87°) to the Dy-Dy direction (figure 1), as seen in a similar compound [START_REF] Yi | Influence of ferromagnetic connection of Ising-type DyIII-based single ion magnets on their magnetic slow relaxation[END_REF].

From the dynamic point of view, frequency dependence of the in-phase (χM') and out-ofphase (χM") component of the magnetic susceptibility have been measured in zero dc field S7) using an extended Debye model and the relaxation times (τ) are plotted in figure 5 left [2]. Two regimes are clearly evidenced. At high temperature, the relaxation is governed by a thermally activated mechanism (Orbach relaxation process) involving excited mJ levels. At low temperature, the Arrhenius plot flattens suggesting the onset of a different regime with a weaker temperature dependence. The nature of this latter mechanism remains unclear and recent studies points towards a key role played by low energy phonon modes [START_REF] Lunghi | The role of anharmonic phonons in underbarrier spin relaxation of Single Molecule Magnet[END_REF]. We take into account the two regimes by considering the relaxation rate as the sum of two contributions with the following equation:

𝜏 -1 = 𝜏 0 -1 exp (- ∆ 𝑘 𝐵 𝑇 ) + 𝐴𝑇 𝑛 equ.1
where the first term represents the Orbach process and the second term mimics a Raman process. The fitting of the data in figure 5 left with equation 1 gives the following parameters: τ0 = (3.1 ± 1.5)  10 -10 s, Δ = 204 ± 8 K, A = 0.037 ± 0.003 and n = 3.93 ± 0.05. The value obtained for the barrier of the Orbach process is slightly higher with respect to other dysprosium dimers [START_REF] Habib | Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium ( III ) Complex[END_REF][START_REF] Layfield | Influence of the N-Bridging Ligand on Magnetic Relaxation in an Organometallic Dysprosium Single-Molecule Magnet[END_REF], and in particular higher that of the parent compound DyPyNO (τ0 = (6.6 ± 2.2)10 -11 s, Δ = 166 ± 4 K, A = 0.104 ± 0.006 and n = 4.25 ± 0.039), as visible in table 2 and figure 5 left [START_REF] Kiefl | Robust magnetic properties of a sublimable single molecule magnet[END_REF]. Moreover at 1.8 K, the relaxation time is τ1.8K = 2.1s significantly higher than what observed on DyPyNO (τ1.8K = 0.42s). These findings confirm that the introduction of the NO2 electron-withdrawing group on the bridging ligand of the dimer is able to modify the electrostatic environment of the Dy III ion and to lead to an optimization of dimer's SMM behavior.

The distribution of the relaxation times within the sample can be estimated by a Cole-Cole plot (i.e. χM" vs χM', see figure S7) where the extracted α parameters indicates an infinitely narrow (α = 0) or infinitely broad (α = 1) distribution of the relaxation times [2]. Here, almost all the dimers relax at the same rate in the thermally activated region (α = 0.07 at 15 K) but a significant distribution of the relaxation rates characterizes the temperature-independent region (α = 0.42 at 2 K) (table S8). Additionally, a remarkable point is that almost all the sample is relaxing at low temperature as the non-relaxing fraction (that can be evaluated as χS/χT, where χT and χS are the isothermal and adiabatic susceptibility respectively) is estimated to be around 4% at 1.8K (see figure S7 and table S8). Overall, the DyPyNO-NO2 dimers possess an optimized SMM behavior when compared with DyPyNO (see table 2).

A similar magnetic characterization has been performed on a DyPyNO-NO2 film of 650 nm A c c e p t e d m a n u s c r i p t thickness deposited on a Teflon substrate (see section 3.2.). The behavior of the film, with a strong frequency dependence of both χM' and χM" signals (figure 4) between 4 and 12 K, is very similar to the one of the bulk material. In the high temperature and high frequencies region some spurious effects are visible as a consequence of the very low signal coming from the small amount of sample (mfilm = 0.3 mg). These high frequency peaks can be neglected as the hysteretic magnetic behavior targeted is at extremely low frequencies or even in a static mode. Characteristic dynamic parameters have been extracted using similar procedures as for the bulk and relaxation times (τ) and their distribution (α) are highly similar with those of the bulk material (figure S7, table 2, S9 and S10). Very interestingly, the non-relaxing fraction is also similar. This indicates that almost all the deposited molecules are magnetically efficient.

Overall, this investigation suggests that DyPyNO-NO2 has a magnetic behavior as robust as DyPyNO toward surface deposition and that the optimization of the magnetic relaxation observed on DyPyNO-NO2 is also visible once the molecules are nanostructured as films (table 2).

To definitely probe the magnetic efficiency of films of DyPyNO-NO2 further magnetic investigation have been performed to characterize the behavior on a longer timescale.

Magnetic hysteresis has been measured at 0.5 K with a 15.5 Oe/s sweep rate on DyPyNO-NO2 derivatives in both bulk and films phases. Both hysteresis loops have the same doublebutterfly-like shape, as shown in figure 5 right. The loops adopt an S-shape close to zero-field because of the strong antiferromagnetic interaction between the Dy III ions within each dimer [START_REF] Yi | 1; Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks[END_REF]. The opening of the hysteresis loop on the DyPyNO-NO2 film demonstrates that the magnetic bistability is successfully preserved after the sublimation. After the low-field step the loop is narrowing as a consequence of the level crossing between the first excited state and the ground state of the dimers [START_REF] Habib | Significant Enhancement of Energy Barriers in Dinuclear Dysprosium Single-Molecule Magnets Through Electron-Withdrawing Effects[END_REF][START_REF] Long | 1; Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium ( III ) Complex[END_REF][START_REF] Chow | Assessing the exchange coupling in binuclear lanthanide(iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative[END_REF][START_REF] Yi | 1; A luminescent and sublimable Dy(III)-based single-molecule magnet[END_REF]. In the Ising approximation, and treating each Dy III center as an effective spin ½, this crossing allows to estimate the AF interaction using Hcrossing = -j/2gµB [START_REF] Yi | 1; A luminescent and sublimable Dy(III)-based single-molecule magnet[END_REF], where j is the exchange constant and g = 19.56 is the calculated gyromagnetic factor of the effective spin ½. Given the accuracy in quantifying Hcrossing, a rough estimation of j is -2.9 cm -1 for DyPyNO-NO2 either as bulk or film. Hence, the AF coupling within the dimer is not altered by their nanostructuration in film. Overall, film and bulk hysteresis loops of DyPyNO-NO2 are almost superimposable in the low field region. This is a significant proof of the persistence of the SMM behavior of DyPyNO-NO2 once nanostructured in a film. 

Material and Methods

Thermal Analysis

Thermo-gravimetric and thermo-differential analyses have been performed in platinum crucibles under a nitrogen atmosphere between room temperature and 1000°C with a heating rate of 5°C•min -1 using a Perkin Elmer Pyris-Diamond thermal analyzer. At the end of the experiments, the compounds were maintained for one hour at 1000°C under air atmosphere in order to complete the combustion.

X-ray Powder Diffraction

Diagrams of DyPyNO-NO2 bulk and "cold finger" have been collected using a Panalytical X'Pert Pro diffractometer with an X'Celerator detector. The typical recording conditions were 45kV, 40mA for Cu Kα (λ=1.542Å), the diagrams were recorded in θ-θ mode between 5° and 75°. The DyPyNO-NO2/Au/Mica film has been investigated by grazing angle X-ray diffraction (XRD) using a Cu Kα source with a Bruker D8 Advance diffractometer equipped with a focusing mirror accessory. The reported data have been obtained by placing the X-ray source between 1° and 5° relative to the sample plane and scanning with the detector an angle between 5° and 40°. The pristine Muscovite mica substrate has been measured with the same instrument, using a Bragg-Brentano configuration.

OMBD preparation and characterization

The deposition of the molecule on the substrates is performed by sublimation in HV. We use a homemade Knudsen cell: the molecular powders are hosted in a quartz crucible heated by Joule effect by a tantalum wire. A K-type thermo-couple, buried into the powder, allows for temperature control. The sublimation rate is controlled by a quartz microbalance (QCM).

During the sublimation the powders are heated up to 415 K reaching a deposition rate of 1.5Å/min. In order to confirm the rate obtained by QCM, a scratch of the film grown on Au A c c e p t e d m a n u s c r i p t on mica Muscovite has been measured with AFM (see figure S3), following the procedure used for similar samples [START_REF] Yi | 1; A luminescent and sublimable Dy(III)-based single-molecule magnet[END_REF]. We measured the film prepared for XPS presenting a nominal thickness of DyPyNO-NO2 of 50 nm on 80 nm of gold. Since the scratch a thickness is 125 nm (DyPyNO-NO2 + gold), the value of the QCM appears reliable.

ToF-SIMS

The bulk reference has been obtained by scratching the DyPyNO-NO2 powder on a copper foil, while the film of ≈ 33 nm has been deposited on a gold on mica substrate.

A TRIFT III spectrometer (Physical Electronics, Chanhassen, MN) equipped with a gold liquid-metal primary ion source was employed for the ToF-SIMS analyses. Spectra were 

XPS

The bulk reference has been obtained by scratching the molecular powder on a carbon tape, while a film of ≈ 50 nm has been deposited on a gold on mica substrate. The film shows a marked charging effect due to the low conductivity of the molecular film that has been corrected using as reference the CCF 1s peak at 291.8 eV. The inelastic background of the spectra was subtracted by means of the Shirley method [START_REF] Shirley | High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold[END_REF]. Data analysis was based on a standard method for deconvolution using mixed Gaussian (G) and Lorentzian (L) line shapes (G = 30%, L = 70%, Gaussian-Lorentzian product) for each component in the spectrum.

XPS measurements are carried out in an UHV chamber with a base pressure in the low 10 -10 mbar range. The chamber is equipped with a SPECS Phoibos 150 electron analyzer and a monochromatic Al X-ray source operating at a power of 100 W (13 kV and 7.7 mA). The Xray source is assembled at 54.44° with respect to the analyzer. This setup has been used to characterization the sublimated film. The characterization of the scratch, used as a reference, has been performed with a standard Al source with a power of 100 W (10 kV and 10 mA).

The pass energy was set to 40 eV for all the experiments.

Ab-initio computational details

Wavefunction-based calculations were carried out on a model structure of [Dy(hfac)3(PyNO-NO2)]2 (vide infra) by using the SA-CASSCF/RASSI-SO approach, as implemented in the MOLCAS quantum chemistry package (versions 8.0) [START_REF] Aquilante | MOLCAS 7: The Next Generation[END_REF]. In this approach, the relativistic effects are treated in two steps on the basis of the Douglas-Kroll Hamiltonian. First, the scalar terms were included in the basis-set generation and were used to determine the spin-free A c c e p t e d m a n u s c r i p t wavefunctions and energies in the complete active space self-consistent field (CASSCF) method [START_REF] Roos | 1; A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach[END_REF]. Next, spin-orbit coupling was added within the restricted-active-space-stateinteraction (RASSI-SO) method, which uses the spin-free wavefunctions as basis states [START_REF] Malmqvist | 1; The restricted active space (RAS) state interaction approach with spin-orbit coupling[END_REF][START_REF] Malmqvist | The CASSCF state interaction method[END_REF]. The resulting wavefunctions and energies are used to compute the magnetic properties and g-tensors of the lowest states from the energy spectrum by using the pseudospin S = 1/2 formalism in the SINGLE-ANISO routine [START_REF] Chibotaru | Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation[END_REF][START_REF] Chibotaru | The Origin of Nonmagnetic Kramers Doublets in the Ground State of Dysprosium Triangles: Evidence for a Toroidal Magnetic Moment[END_REF]. Cholesky decomposition of the bielectronic integrals was employed to save disk space and speed-up the calculations [START_REF] Aquilante | 1; Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of Co III (diiminato)(NPh)[END_REF].

The active space of the self consistent field (CASSCF) method consisted of the nine 4f 

Conclusion

As a conclusion, we have demonstrated that the sublimable DyPyNO dimer can be modified into DyPyNO-NO2 which shows slightly improved SMM behavior. Strong anisotropy and a relatively high energy barrier (204 K), in line with ab-initio calculations, is identified together with an extremely large fraction of relaxing molecules (96% of the sample at 1.8 K). As its parent compounds, DyPyNO-NO2 is extremely robust toward sublimation processes as demonstrated by XPS and ToF-SIMS. Magnetic dynamic properties of the film are very similar to those of the bulk material and hysteresis loops definitely prove the robustness of the magnetic properties of the dimers once nanostructured as film. Consequently, the chemical modification of the bridging ligand of this class of evaporable SMM complexes can enhance its magnetic properties without compromising chemical stability face to sublimation and robustness of magnetic properties when nanostructured in a film. Figure 2 ToF-SIMS spectrum of the film (in red) and the bulk reference (in blue). In the bottom part there are two zoomed regions. Figure 5 (Left) Arrhenius plot of DyPyNO-NO2 as bulk (black squares) and film (red squares) and comparison with DyPyNO as bulk (triangles). The data of DyPyNO have been already reported in [START_REF] Kiefl | Robust magnetic properties of a sublimable single molecule magnet[END_REF], but here the data are fitted using equation 1. (Right) Hysteresis loops recorded at 0.5 K for DyPyNO-NO2 as bulk (black) and as film (red).

A c c e p t e d m a n u s c r i p t 

A

  c c e p t e d m a n u s c r i p t In this work, we describe the synthesis and the magnetic studies of molecular film of [Dy(hfac)3(PyNO-NO2)]2 (with PyNO-NO2= 4-nitropyridine N-oxide DyPyNO-NO2 hereafter) obtained via OMBD technique.

A

  c c e p t e d m a n u s c r i p t (figure 4). Strong frequency dependence of both signals is observed and in line with what found on DyPyNO [45]. Dynamical parameters have been extracted from these measurements by fitting the χM" vs frequency curves (table

A c c e p t e d m a n u s c r i p t 3 . 1 . Synthesis 4 -

 314 Nitropyridine N-oxide has been purchased from TCI Chemicals and used without further purification. Dy(hfac)3•(H2O)2 has been obtained by reported methods[START_REF] Bernot | 1; A Family of Rare-Earth-Based Single Chain Magnets:Playing with Anisotropy[END_REF]. Dy(hfac)3•(H2O)2 (0.1 mmol) is dissolved in 10 ml CHCl3. Then a 10 ml CHCl3 solution of 4-Nitropyridine Noxyde (0.1 mmol) is added drop by drop. The resulting solution is stirred for 5 mins and recovered by a layer of n-heptane solvent at 2°C. After several days, crystals suitable for single-crystal X-ray diffraction are obtained. Structural data files are available as CCDC 1528789.

  calibrated to C2H2 + (m/z = 26.0156), CF + (m/z = 30.9984), CF3 + (m/z = 68.9952) and [M-4hfac-DyPyNONO2] + (m/z = 717.9274). Theoretical isotopic patterns for the most relevant signals were calculated with Molecular Weight Calculator Program.

A c c e p t e d m a n u s c r i p t A c c e p t e d m a n u s c r i p t A c c e p t e d m a n u s c r i p tCaptionsFigure 1 a

 1 Figure 1 a) Representation of the [Dy(hfac)3(PyNO-NO2)]2 molecule (hydrogen atoms are omitted for clarity) b) Coordination environment of the Dy III ion with calculated easy magnetic axis as orange arrows.

Figure 3

 3 Figure 3 XPS region of Dy 4d and O 1s for DyPyNO-NO2 film and bulk.

Figure 4

 4 Figure 4 Frequency dependence of the in-phase (χM', top) and out-of phase (χM'', bottom) component of the magnetization of [Dy(hfac)3(PyNO-NO2)]2 as bulk (left) and as film (right) measured in zero static magnetic field. Color mapping from 1.8 (blue) to 20 K (red).

  

  

  

  

  

  electrons of the Dy III ion spanning the seven 4f orbitals, i.e. CAS(9,7)SCF. State-averaged CASSCF calculations were performed for all of the sextets (21 roots), all of the quadruplets (224 roots), and 300 out of the 490 doublets (due to software limitations) of the Dy III ion.

	Twenty-one sextets, 128 quadruplets, and 107 doublets were mixed through spin-orbit
	coupling in RASSI-SO. All atoms were described by ANO-RCC basis sets [69-71]. The
	following contractions were used: [8s7p4d3f2g1h] for Dy, [7s6p4d2f] for Y, [4s3p2d] for the

O atoms of the first coordination sphere of the metal ions, [3s2p1d] for the other O atoms, the N atoms of the PyNO groups and the C atoms, [3s2p] for the other N atoms and [2s] for the H atoms. The atomic positions were extracted from the X-ray crystal structures and the CF3 groups were replaced by H atoms.

Table 1 .

 1 Semi-quantitative analysis of DyPyNO-NO2 as film and bulk.

	Tables				
	F 1s Dy 4d	C 1s	O 1s	N 1s	F1s/N1s
	theoretical 36.0% 2.0%	40.0%	18.0%	4.0%	9
	evaporated 35.7% 2.8%	46.3%	15.2%	3.7%	9.6

Table 2 .

 2 Main dynamical parameters extracted for DyPyNO-NO2 as bulk and film. Comparison with DyPyNO as bulk is provided[START_REF] Yi | 1; A luminescent and sublimable Dy(III)-based single-molecule magnet[END_REF].

		DyPyNO	DyPyNO-	DyPyNO-
		bulk	NO2 bulk	NO2 film
	Energy barrier Δ	166 K	204 K	-
	Characteristic relaxation time τ0	6.64 10 -11	3.1 10 -10 s	-
	Relaxation time at 1.8K τ1.8K	0.42s	2.1 s	-
	Distribution of τ α (max-min)	0.05-0.007	0.42-0.07	0.26-0.03
	Non-relaxing fraction at lowest T XS/XT	8.8%	3.7%	5.1 %
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