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Abstract

Objective. Surgery is one of the riskiest and most important medical acts that is performed today. Understanding the
ways in which surgeries are similar or different from each other is of major interest to understand and analyze surgical
behaviors. This article addresses the issue of identifying discriminative patterns of surgical practice from recordings of
surgeries. These recordings are sequences of low-level surgical activities representing the actions performed by surgeons
during surgeries.
Material and Method. To discover patterns that are specific to a group of surgeries, we use the Vector Space Model
(VSM) which is originally an algebraic model for representing text documents. We split long sequences of surgical
activities into subsequences of consecutive activities. We then compute the relative frequencies of these subsequences
using the tf∗idf framework and we use the Cosine similarity to classify the sequences. This process makes it possible to
discover which patterns discriminate one set of surgeries recordings from another set.
Results. Experiments were performed on 40 neurosurgeries of anterior cervical discectomy (ACD). The results demon-
strate that our method accurately identifies patterns that can discriminate between (1) locations where the surgery took
place, (2) levels of expertise of surgeons (i.e., expert vs. intermediate) and even (3) individual surgeons who performed
the intervention. We also show how the tf∗idf weight vector can be used to both visualize the most interesting patterns
and to highlight the parts of a given surgery that are the most interesting.
Conclusions. Identifying patterns that discriminate groups of surgeon is a very important step in improving the un-
derstanding of surgical processes. The proposed method finds discriminative and interpretable patterns in sequences of
surgical activities. Our approach provides intuitive results, as it identifies automatically the set of patterns explaining
the differences between the groups.

Keywords: Temporal Analysis, Vector Space Model, Bag of Words, Surgical Process Modelling, Surgical Technical
Skills, Surgery
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1. Introduction

More than half a million surgeries are performed every
day worldwide [1], which makes surgery one of the most
important component of global health care. Competing
demands are motivating a better understanding of surgi-
cal processes, including: surgical procedures are getting
more complex [2], residents now have to be trained while
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performing less procedures [3], the surgical interventions
need increasingly thorough justification [4] and the costs
have to be reduced [5]. A better understanding of surgical
practices is key to addressing these issues. Surgical Pro-
cess Modelling (SPM) [6] is the general process that aims
at understanding surgeries, in order to improve the qual-
ity of care and the training of surgeons. SPM is part of
surgical data science [7], which targets the development of
data-driven methods to support surgery. SPM tradition-
ally considers surgeries as sequences of activities that are
performed by the surgeon over the course of the surgery.

Previous work on the analysis of surgeries considered
the comparison of entire sequences of surgical activities.
For example, Forestier et al. [8] used Dynamic Time Warp-
ing (DTW) as a dissimilarity measure between sequences
of surgical activities. This measure was used to create
groups of similar surgeries and made it possible to cluster
surgeons according to their expertise. This approach was
later used in [9] to perform a multi-site study comparing
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the surgical behaviors in France, Germany and Canada.
This study revealed differences in surgical practice depend-
ing on the expertise of the surgeon and the location where
the surgery took place. Forestier et al. [10] also proposed
Non-Linear Temporal Scaling (NTLS), a new approach for
realigning a set of surgeries on the same timeline. This
method calculates an average surgery that is used as a ref-
erence for the realignment. Using the realigned sequences,
NTLS offers a visualization that makes it possible to un-
derstand the differences and common parts in a set of
surgeries. Neumuth et al. [11] also investigated differ-
ent similarity metrics for surgical process models. Five
different similarity metrics were compared with the objec-
tive to deal with several dimensions of process compliance
in surgery, including granularity, content, time, order, and
frequency of surgical activities. These approaches have
limitations because of their global approach: any unusual
event in a given surgery has to be matched to the element
of another surgery, which make these methods sensitive to
noise. They are also difficult to understand because the
only explanation about the prediction that they provide is
the most similar surgery that was found in the database;
as surgeries are complex processes, this is often not infor-
mative enough to understand the why of the predictions.
Furthermore, existing approaches have been mostly used
to evaluate similarities between surgeries and not for find-
ing and describing important differences between them.

In this article, we address the issue of identifying dis-
criminative patterns from recordings of surgeries in order
to better understand surgical practice. These recordings
are sequences of low-level surgical activities representing
the actions performed by surgeons during surgeries. Our
objective is to analyze these recordings to find discrim-
inative patterns that characterize specific behavior of a
group of surgeries over a baseline. Identifying patterns
that separate groups of surgeries is a very important step
in improving the understanding of surgical processes. It
makes possible to easily explain the main differences in the
way multiple surgeries were performed: e.g. what makes
the behavior of senior surgeons unique compared to junior
surgeons, or what makes the behavior of French surgeons
different from the one of German surgeons. Comparing
the practice of surgeons according to their experience is of
major interest from a teaching perspective [12].

The rest of the paper is organized as follows: Section 2
presents our method to find discriminative patterns using
a sliding window technique in conjunction with the Vector
Space Model (VSM). Section 3 presents the assessment of
our method on a dataset composed of 40 neuro-surgeries of
anterior cervical discectomy (ACD) surgeries. Finally, we
discuss the results in Section 4 as well as the advantages
and drawbacks of our method. Section 5 concludes the
paper.

2. Method

2.1. Surgeries as sequences of activities

We consider surgeries as sequences of activities that are
performed by a surgeon during an intervention. Mehta et
al. [13] proposed to represent surgical activities as triplet
composed of an action, an anatomical structure and an
instrument. For example, the surgeon can cut the skin
using a scalpel with his/her right hand. In this paper, we
use this formalization which was introduced in [8].

Let S = {S1, · · · , SN} be the a set of surgeries. A
surgery S can be modeled as a sequence of surgical activi-
ties S =< a1, ..., an > where ai denotes the ith activity. An
activity ai belongs to A, the set of all possible activities,
and has a start time and a stop time within the time-line
of the surgery. In general, activities that are performed by
both hands are recorded, as well as the use of the micro-
scope. In this paper, we focus on the activities that were
performed by the right hand (i.e., the dominant hand in
our dataset), as previous studies [8] showed that they are
the activities that carry the most important information.
Figure 1 illustrates one sequence of activities, where each
activity is in a different color.

Given multiple sets of surgeries ({S1 · · · SN}) our goal
is to find subsequences of activities that are specific to each
set. These sets are defined according to the targeted ap-
plication, for example by regrouping surgeries performed
in the same location or performed by surgeons having the
same level of expertise (e.g., junior or senior). The subse-
quences are expected to be present in most of the sequences
of a given set and absent from the other sets. The underly-
ing idea is to discover what makes a set of surgeries unique
compared to other surgeries.

2.2. Proposed method

The proposed method starts by splitting sequences into
subsequences of consecutive activities. It then computes
the relative frequencies of these subsequences, i.e., the
number of times they appear in a given sequence and in
a set of sequences. We extract these subsequences from a
set of surgeries, and use their relative frequencies to find
discriminative patterns that characterize specific behavior
of a group of surgeries over another.

To discover the patterns that are specific to a group of
surgeries, we use the VSM [14] framework which is origi-
nally an algebraic model for representing text documents.
Using this paradigm, the subsequences extracted from a
set of surgeries are interpreted as a single bag of words,
where words here represent subsequences of surgical activ-
ities. Bags of words are extracted from the sequences of
surgical activities using a sliding window. We then use the
well-know tf∗idf weighting scheme [14], which ranks pat-
terns based on their relative frequencies. This weighting
scheme makes it possible to discard patterns that are fre-
quent across all classes/groups; the idea being that even if
a pattern is frequent, if it is so in all groups, then it will
not be discriminant. We can then analyze these patterns
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time

dissect skin scissors
cut skin scalpel hold muscle retractors

install muscle retractors

Figure 1: Illustration of one surgery recording as a sequence of surgical activities.

to better understand the specificities of a set of surgeries
over another; for example identify subsequences that are
only present in a given set of surgeries. We can then also
reproject these patterns over the sequences themselves to
outline portions that are more or less characteristic of one
class. Finally, we show that these patterns can also be
used to predict: we transform the “query surgery” into its
VSM representation and predict if its bag of words resem-
ble more to one group of surgeries or another (typically
using the cosine similarity). The classification process is
able to average out the subsequences that are common to
most surgeries, in order to focus on the most discriminant
ones.

2.3. Vector Space Model

We use the vector space model exactly as it is known in
Information Retrieval (IR) [14, 15]. The tf∗idf weight for
a term t is defined as a product of two factors: term fre-
quency (tf ) and inverse document frequency (idf ). For the
first factor, we use logarithmically scaled term frequency
[16]:

tft,d =

{
log(1 + ft,d), if ft,d > 0

0, otherwise
(1)

where t is the term, d is a bag of words (a document
in IR terms), and ft,d is a frequency of the term in a bag.
The inverse document frequency we compute as usual [16]:

idft,D = log
|D|

|d ∈ D : t ∈ d|
= log

N

dft
(2)

where N is the cardinality of a corpus D (the total
number of classes) and the denominator dft is a number of
bags where the term t appears. Then, tf∗idf weight value
for a term t in the bag d of a corpus D is defined as

tf∗idf(t, d,D) = tft,d × idft,D = log(1 + ft,d) · log
N

dft
(3)

for all cases where ft,d > 0 and dft > 0, or zero other-
wise.

Once all frequency values are computed, the term fre-
quency matrix becomes the term weight matrix, whose
columns used as class term weight vectors that facilitate
the classification using Cosine similarity. For two vectors
a and b Cosine similarity is based on their inner product
and defined as

similarity(a,b) = cos(θ) =
a · b
||a|| · ||b||

(4)

2.4. Vector Space Model for surgeries analysis

The first step to apply tf∗idf scheme to sequences of
surgical activities is to convert them into bags of words.
The sliding window size (w) is a parameter of this step.
It defines the length of the words that will be present in
the bags. In our case, this corresponds to considering sets
of w consecutive surgical activities. Figure 2 illustrates
the computation of the subsequences using an overlapping
sliding window of size 5 (w = 5). The influence of the size
of the sliding window will be discussed in Section 3.2. This
process is performed for all of the N sets that will be used
in the analysis (e.g., set of junior surgeries, set of senior
surgeries, etc.) leading to N bags (i.e., one per group).
This technique was previously used in activity recognition
from video [17, 18] where this process is referred as ex-
tracting n-grams frequency histograms, n being the width
of the sliding window.

Set of surgeries

...
...

Bag of words

...

Sliding window

Figure 2: Illustration of the generation of a bag of words
from a set of surgeries.

Once we have constructed the N bags of words, we
compute the frequency of each word in every bag (Eq. 1),
and apply the tf∗idf weighting (Eq. 3). This step makes
it possible to reduce the importance of frequent patterns
that are so in most groups, because patterns that appear
frequently in all groups cannot discriminate between them.
Figure 3 illustrates the computation of the bag of words
for two sets of surgeries and the computation of the tf∗idf
weight vectors.

Bag of words:Set of surgeries 1

...
...

...

Set of surgeries 2

...

Bag of words:

TF*IDF weight vectors

TF*IDF

...

Set 1 Set 2

0.023 0.000

0.140 0.000

0.000 0.010

... ...

Figure 3: Illustration of the generation of the tf∗idf vectors
from two sets of surgeries.

Once the tf∗idf weight vectors computed, it is possi-
ble to rank the patterns according to their relative weight.
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Figure 4: Illustration of the on-line recording of the data
in the operating room.

The weight of a pattern can be naturally interpreted as its
importance for discriminating of a specific group (i.e., a set
of surgeries). The term frequency (tf ) allows to highlight
the patterns that are often present in the set, while the
inverse document frequency (idf ) weighting allows to in-
crease the importance of the patterns that are only present
in this set and reduce the importance of patterns that are
present in multiple sets.

2.5. Performing classification using VSM

In order to classify an unlabeled sequence of surgical
activities, we first transform the input sequence into its
VSM representation using exactly the same sliding window
used to learn the model. We then compute the Cosine
similarity values between its term frequency vector and
the N tf∗idf weight vectors representing the N different
groups of surgeries. The unlabeled sequence is assigned to
the group whose vector yields maximum cosine similarity
value (Eq. 4).

2.6. Visualizing the importance of a pattern

Since the vector space model approach outputs tf∗idf
weight vectors for all subsequences extracted within a group
a surgery, it is possible to find the weight of any arbitrary
selected subsequence. This feature makes it possible to
visualise the results using a heat-map, which provides an
immediate insight into the layout of important discrimi-
native subsequences.

3. Experiments and results

3.1. Surgical dataset used in the experiments

Experiments were performed on one-level anterior cer-
vical discectomy (ACD) surgeries [9]. During this proce-
dure, a cervical disc can be removed through an anterior
approach. This means that surgery is done through the
front of the neck as opposed to the back of the neck. A one-
level ACD surgery can usually be decomposed into four
major phases: the approach, the discectomy, the arthrode-
sis, and the closure phases. An additional phase of hemosta-
sis may be mandatory in certain cases. Forty surgeries
were recorded on-line using the Surgical workflow Editor
[19] resulting in the creation of forty sequences of activi-
ties. Figure 4 illustrates the recording of the data in the

Surgeon ID Expertise Location # Surgeries

1 Intermediate Site A 3
2 Expert Site A 3
3 Expert Site A 3
4 Expert Site A 2
5 Expert Site B 6
6 Expert Site B 2
7 Expert Site B 3
8 Expert Site C 6
9 Expert Site C 6
10 Intermediate Site C 2
11 Intermediate Site C 4

Table 1: List of the surgeons involved in the study with
their location and expertise level.

operating room. Surgeries were performed at the Neuro-
surgery departments of: (1) the Rennes University Hospi-
tal, France, (2) the Leipzig University Hospital, Germany,
and (3) the Montreal Neurological Institute and Hospital,
McGill University, Canada. Among the 40 surgeries, 11
were performed at site A, 18 were performed at site C,
and 11 at site B (we used site A, B and C as anonymized
site names). As for the expertise level of the attending
surgeon, site C had two expert and two intermediate sur-
geons participating in the study, site A had one intermedi-
ate and three expert surgeons participating, while in site
B, all participating surgeons were considered to be expert
surgeons. Table 1 presents the information for each sur-
geon involved in the study: the location of the acquisition
(sites A, B and C), the index of the surgeon (1 to 11) and
his/her level of expertise (E: Expert, I: Intermediate). Ex-
pert surgeons were defined as those who already performed
more than 200 ACD surgeries, whereas intermediate sur-
geons were fully trained neurosurgeons but who performed
less than 100 ACD procedures. SPMs were acquired on-
line by the same operator (an expert neurosurgeon) in site
A and site C, whereas SPMs of site B were acquired by an
intermediate surgeon, both having the same training on
the software. Figure 5 presents boxplots of the duration of
the interventions according to the location and expertise
of the surgeon. Figure 5 reveals that it is not possible to
rely on the duration of the surgery to accurately classify
according to location or experience levels. For example,
while the overall duration is significantly different in site
C, they are very similar in sites A and B (confirmed by
a Welch t-test comparison of the two distributions with
p = 0.7087). The same conclusion applies to experience
levels where the duration between expert and intermediate
surgeons is not statistically different in site A (p = 0.5742)
or in site C (p ≈ 0.326).

3.2. Selection of the sliding window size parameter

To apply our method, we have to set the size of the
sliding window (w) used to create the bag of words. In
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Figure 5: Distribution of intervention duration according
to the location (left) and surgeon expertise (right).

all the experiments, this parameter was learnt by cross-
validation on the learning set, using a greedy search: we
started with w = 1 and increased its value as long as the
(cross-validated) accuracy of the classifiers increased. To
provide an intuition about the influence of w on the accu-
racy, we present in Figure 6 the evolution of the accuracy
on the learning set according to different window sizes for
the first three experiments. In these experiments, the best
values was always between 3 to 5 with no important varia-
tions (see the plateau on Figure 6). This means that cross-
validation works well to automatically set the value of w,
but also that if a value between 3 and 5 would work well if
the user decides to set it manually. A detailed description
of the experiments is given in the following section.

3.3. Description of the experiments

In this section we present the experiments performed
to evaluate the ability of the proposed method to identify
patterns that are specific to a group of surgeries and how
these patterns can be used to classify the surgery accu-
rately. Six different experiments were performed to predict
alternatively:

� the location where the surgery took place (experi-
ment #1).

� the expertise of the surgeon (experiments #2 to #5)

� which surgeon performed the surgery (experiment
#6)

In experiment #1, the goal was to identify patterns
that are specific of a surgery department of a hospital. In
this experiment, we used the data from sites A, B and C.
The identified patterns are useful to understand the dif-
ferences in practice between different countries or surgery
departments.

In experiments #2 to #5, we looked for patterns that
are specific to either expert or intermediate surgeons. As
sites A and C are the only sites that contain expert and
intermediate surgeons (B contains only experts), we first
carry out experiments for these sites independently. We
then combine the data from A and C and repeat the exper-
iments of trying to identify skill level. Finally, we pool the
data from sites A, B and C together and study the same
question; given that site B only adds expert-performed

surgeries, this allows us to observe the influence of class
imbalance on the results. This study was designed to eval-
uate if the differences between expert and intermediate
surgeons were related to the location site. The identi-
fied patterns are useful to understand the characteristics
of an expert surgeon and what are the main differences be-
tween expert and intermediate surgeons. These patterns
are also useful to support the automatic assessment of sur-
gical skills.

Finally, in experiment #6 the goal is to identify pat-
terns that are specific to one given surgeon. By comparing
the surgeries performed by one surgeon to the ones per-
formed by all the other surgeons, the method is able to
identify the behavioral characteristics that are unique to
this surgeon, which can be seen as a proxy for his or her
surgical signature. In this experiment, we use the data
from all sites.

As competitors, we used a 1-Nearest Neighbor (1-NN)
classifier using as similarity metric (1) the Euclidean dis-
tance and (2) DTW score. We selected the Euclidean dis-
tance and DTW in conjunction with 1-NN classifier as
this combination has proven to be extremely efficient for
time-series and sequence classification [20], and in partic-
ular for SPM [8, 9]. For the proposed method (referred
as VSM), we used the Cosine similarity as presented in
Eq. 4. We used a leave-one-out cross-validation approach
consisting in alternatively taking one surgery out of the set
and classifying it using the remaining ones. For the Eu-
clidean and DTW methods, each surgery that is left out
is compared to the set of remaining surgeries. The class
of the identified nearest surgery is then compared to the
actual class. For the VSM approach, each surgery that
is left out is compared to the tf∗idf weight vectors that
are learnt on the set of remaining surgeries. The predic-
tion is performed by taking the maximal cosine similarity
value. We used the accuracy to compare the results (i.e.,
number of correct predictions over the total number of pre-
dictions). We also computed confidence intervals with an
estimation of the true error at a confidence level of 95%

[21]: 1.96×
√

(error)(1−error)
n where error is the error-rate

(number of incorrect predictions over the number of pre-
dictions) and n the number of samples used in the exper-
iment.

3.4. Results

Table 2 presents the results of our six experiments with
their associated confidence intervals. We can first observe
that the Euclidean distance performs poorly and does not
once achieve better accuracy than either DTW or VSM.
Our method appears competitive and complementary to
DTW. Our VSM model uniformly outperformed DTW for
location and surgeon prediction, while DTW seems com-
petitive to predict the level of expertise of surgeons. Fur-
thermore, it is interesting to observe that, when the num-
ber of examples per class is limited (which is particularly
the case for prediction of the surgeon), VSM seems to cope
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Figure 6: Evolution of the accuracy according to the window length.

Exp Prediction Sites Euclidean DTW VSM

A B C

#1 Location ��� 92.5% ± 8.2 97.5% ± 4.8 100% ± 0 (w = 3)

#2 Expertise � 88% ± 19.2 94.5% ± 13.5 100% ± 0 (w = 3)

#3 Expertise � 81% ± 18.1 100% ± 0 100% ± 0 (w = 5)

#4 Expertise �� 75.9% ± 15.6 93% ± 9.3 89.6% ± 11.1 (w = 3)

#5 Expertise ��� 82.5% ± 11.8 95% ± 6.7 85% ± 11.1 (w = 5)

#6 Surgeon Id ��� 45% ± 15.4 65% ± 14.8 77.5% ± 12.9 (w = 3)

Table 2: Compared accuracies of the 1-Nearest Neighbor classifier using the Euclidean distance, Dynamic Time Warping
and our proposed VSM model. We use leave-one-out cross-validation. Values in boldface represent the best results
obtained for each experiment.

better with the lack of data. We attribute this behavior
to the ability of our VSM model to collect a relatively
robust description of the sequences; this is because even
after having scanned one sequence, we have already col-
lected several thousands of ‘words’ and their statistics.

An interesting features of the VSM approach is to pro-
vide the set of patterns that are the most distinctive for
a given group of surgeries. Analysis of these top patterns
allows us to understand what makes a group of surgeries
specific. To highlight the influence of using tf∗idf, we first
present in Table 3 the top 10 subsequences patterns with
regards to tf alone for the task of predicting the loca-
tion of the surgery (#1 in Table 2). This corresponds to
the 10 most frequent subsequences in the surgeries that
were performed in Site A, and the corresponding frequen-
cies of these patterns in site B and C. In this table, the
names of the surgical activities were shortened. For exam-
ple, di-fa-cl stands for dissect the fascia with a classic-
cottonoids-forceps. Table 9 provides the legend for the
abbreviations used in the sub-sequences.

Table 4 presents the top 10 sequences after the appli-
cation of the idf factor (see Eq. 3). We can observe that
some patterns from Table 3 were discarded. For example,
the pattern 2 disappeared as it also appeared in Site C.
The pattern 10 was also discarded as it appeared in Site B
and Site C. The only remaining patterns, are the patterns
that are frequent in Site A, and not frequent in Site B and
C, because of their specificity. Tables 5 and 6 present the
most frequent patterns respectively for Site B and site C.

Table 7 and 8 present the patterns for second experi-

# Pattern (w = 3) Site A Site B Site C
1 di-fa-cl in-mu-re di-fa-cl 23.00 0.00 2.00

2 re-li-ro di-li-ho re-li-ro 16.00 0.00 7.00

3 di-fa-cl di-fa-cl di-fa-cl 15.00 0.00 1.00

4 in-mu-re di-fa-cl di-fa-cl 13.00 0.00 0.00

5 in-mu-re di-fa-cl in-mu-re 13.00 0.00 2.00

6 re-di-ro di-di-ho re-di-cu 13.00 0.00 4.00

7 in-ve-fl in-ve-re in-ve-fl 12.00 0.00 0.00

8 re-di-ro ho-di-su re-di-ro 12.00 0.00 0.00

9 in-ve-fl in-ve-fl in-ve-fl 12.00 0.00 0.00

10 re-li-ro re-li-ro re-li-ro 12.00 6.00 10.00

Table 3: Top 10 patterns from site A in experiment #1
sorted by tf score. The highest values (very frequent) are
depicted in green while the lowest values (rare) are in red.

ment (#2 in Table 2) on classifying the surgeons of site A
according to their experience. The tables present the 10
most discriminative patterns according to tf∗idf factor for
the two groups (i.e., expert vs. intermediate).

Finally, it is also possible to use the tf∗idf weight vec-
tors of all subsequences extracted from a group of surgeries
to highlight the important subsequences in a given com-
plete surgery. This feature enables a heat map like visual-
ization technique that provides an immediate insight into
the layout of important class-characterizing subsequences.
Figure 7 illustrates a sequence of an expert sequence of
activities from experiment #2. It shows in red the subse-
quences that are specific to expert surgeons, while in green
the subsequences that are also common with intermediate
surgeons. In this example, the most specific activities (in
red) are identified in the dissection phase (e.g., dissect
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# Pattern (w = 3) Site A Site B Site C
1 in-mu-re di-fa-cl di-fa-cl 6.20 0.00 0.00

2 in-ve-fl in-ve-re in-ve-fl 5.72 0.00 0.00

3 re-di-ro ho-di-su re-di-ro 5.72 0.00 0.00

4 in-ve-fl in-ve-fl in-ve-fl 5.72 0.00 0.00

5 ho-di-su re-di-ro ho-di-su 5.24 0.00 0.00

6 in-ve-re in-ve-fl in-ve-re 4.77 0.00 0.00

7 cu-mu-sc co-sk-bi cu-mu-sc 3.81 0.00 0.00

8 co-sk-bi cu-mu-sc co-sk-bi 3.81 0.00 0.00

9 di-fa-di in-mu-re di-fa-di 3.81 0.00 0.00

10 di-fa-di di-fa-di in-mu-re 3.33 0.00 0.00

Table 4: Top 10 patterns from site A in experiment #1
sorted by tf∗idf score. The highest values (very frequent)
are depicted in green while the lowest values (rare) are in
red.

# Pattern (w = 3) Site A Site B Site C
1 di-mu-sc co-fa-bi di-mu-sc 0.00 60.11 0.00
2 di-fa-sc co-fa-bi di-fa-sc 0.00 60.11 0.00
3 co-fa-bi di-mu-sc co-fa-bi 0.00 53.43 0.00
4 co-fa-bi di-fa-sc co-fa-bi 0.00 50.57 0.00
5 se-sk-ne cu-sk-sc se-sk-ne 0.00 14.31 0.00
6 ho-di-cu dr-di-cu ho-di-cu 0.00 12.40 0.00
7 dr-di-cu ho-di-cu dr-di-cu 0.00 12.40 0.00
8 ho-de-su ho-de-su ho-de-su 0.00 11.45 0.00
9 cu-sk-sc se-sk-ne cu-sk-sc 0.00 10.97 0.00
10 se-fa-ne cu-sk-sc se-fa-ne 0.00 9.54 0.00

Table 5: Top 10 patterns from site B in experiment #1
sorted by tf∗idf score. The highest values (very frequent)
are depicted in green while the lowest values (rare) are in
red.

# Pattern (w = 3) Site A Site B Site C
1 in-mu-cl in-ve-fl re-mu-cl 0.00 0.00 5.24
2 co-sk-bi in-sk-cl in-sk-re 0.00 0.00 5.24
3 cu-sk-sc co-sk-bi in-sk-cl 0.00 0.00 4.77
4 in-mu-re in-mu-re co-li-fo 0.00 0.00 4.77
5 in-ve-fl re-mu-cl in-mu-re 0.00 0.00 3.81
6 in-mu-re co-li-fo ir-li-sa 0.00 0.00 3.33
7 di-fa-cl di-fa-sc di-fa-di 0.00 0.00 2.86
8 in-ve-ar in-ve-ar in-ve-ar 0.00 0.00 2.86
9 in-mu-re co-li-fo cu-li-sc 0.00 0.00 2.86
10 ir-di-sa in-di-ar in-di-ar 0.00 0.00 2.38

Table 6: Top 10 patterns from site C in experiment #1
sorted by tf∗idf score. The highest values (very frequent)
are depicted in green while the lowest values (rare) are in
red.

# Pattern (w = 3) Exp Inter
1 re-di-ro di-di-ho re-di-cu di-di-ho 2.10 0.00
2 di-fa-di di-fa-di in-mu-re di-fa-di 1.80 0.00
3 di-di-ho re-li-ro di-di-ho re-li-ro 1.50 0.00
4 re-di-ro re-di-ho re-di-ro re-di-ho 1.50 0.00
5 re-li-ro re-li-ro re-li-ro re-li-ro 1.50 0.00
6 re-di-ro di-di-ho re-di-cu re-di-ro 1.50 0.00
7 re-li-ro di-di-ho re-li-ro di-di-ho 1.50 0.00
8 di-fa-di in-mu-re di-fa-di di-fa-di 1.50 0.00
9 re-di-ro re-di-ho re-di-ho re-di-ro 1.20 0.00
10 re-di-ho re-di-ro re-di-ho re-di-ro 1.20 0.00

Table 7: Top 10 patterns from site A expert surgeons in
experiment #2 sorted by tf∗idf score. The highest val-
ues (very frequent) are depicted in green while the lowest
values (rare) are in red.

# Pattern (w = 3) Exp Inter
1 di-fa-cl in-mu-re di-fa-cl in-mu-re 0.00 2.40
2 ho-di-su re-di-ro ho-di-su re-di-ro 0.00 2.40
3 co-sk-bi cu-mu-sc co-sk-bi cu-mu-sc 0.00 2.10
4 re-di-ro ho-di-su re-di-ro ho-di-su 0.00 2.10
5 cu-mu-sc co-sk-bi cu-mu-sc co-sk-bi 0.00 2.10
6 in-mu-re di-fa-cl di-fa-cl di-fa-cl 0.00 1.50
7 di-fa-cl di-fa-cl di-fa-sc di-fa-cl 0.00 1.50
8 di-fa-cl di-fa-sc di-fa-cl di-fa-cl 0.00 1.20
9 co-mu-bi di-fa-sc co-mu-bi di-fa-sc 0.00 1.20
10 re-di-ro re-di-ro ho-di-su re-di-ro 0.00 0.90

Table 8: Top 10 patterns from site A intermediate surgeons
in experiment #2 sorted by tf∗idf score. The highest val-
ues (very frequent) are depicted in green while the lowest
values (rare) are in red.

Class speci city :
negative neutral high

Figure 7: Heat map representation of an expert sequence
of right hand activities highlighting the specificity of sub-
sequences using tf∗idf weights vector.

fascia using a dissectors).

4. Discussion

In experiments #1, #2 and #3 (Table 2), the proposed
method (VSM) provides the best results obtaining a per-
fect classification of 100%. This approach outperformed
the state-of-the-art method of 1-NN using DTW as dis-
tance measure (except for #3 where they both reached
100%). These results can be explained by the ability of
the method to identify patterns that are specific to the
location where the surgeries took place (experiment #1)
and specific to surgeon experience (experiment #2). The
method using 1-NN Euclidean distance is far behind as it
does not take into account the temporal distortion.

For experiment #1, the 10 more specific patterns for
the different location sites A, B and C are provided respec-
tively in Table 4, 5 and 6. In these tables, one can observe
that each location has its own specific patterns. Site B
seems to have very specific behaviors compared to Site A
and C as the values of tf∗idf weight vectors in Table 5 are
very high compared to Tables 4 and 5. It means that in
Site C, some patterns are very frequent, and absent from
Site A and B. Each surgery department has its own way
of performing the surgeries. Furthermore, national rec-
ommendations, the context of the operating rooms or the
medical equipment that is available, can also influence the
way a surgery is performed in a specific location.

In experiments #2 and #3, the goal was to identify
patterns that are specific to a group of surgeons of a spe-
cific location and having different experience levels (ex-
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pert vs. intermediate). The experiment #2 focused on
surgeons of site A. We presented the top 10 patterns (Ta-
ble 7 and 8) extracted from this experiment to an expert
surgeon for interpretation. Using his expertise, we iden-
tified that the discriminative patterns for the two groups
belonged to very distinctive phases of the surgery. For the
expert, most of the patterns were identified during the dis-
cectomy phase (multiple actions using dissect), which is
a very technical phase where the technical expertise really
makes a difference. For the intermediates, the patterns
concerned mostly the dissection of the surgical approach,
which is also a very technical phase. The patterns from in-
termediate surgeons also contain more repetitive activities
(e.g., abab) which is typical when a surgeon learns how to
perform a specific type of surgery.

In experiments #4 and #5, we put together the expert
and intermediate surgeries of sites A and C (containing
expert and intermediate surgeons) and B (containing only
expert surgeons). In this configuration, our method pro-
vides accuracies that are lower than 1-NN DTW but higher
than 1-NN Euclidean. The difficulty to identify specific
patterns in this scenario can be explained by the hetero-
geneity within the two groups of ”expert” and ”interme-
diate” surgeries as they come from two different locations.
It means that the method was not able to identify pat-
terns that are common to all experts and all intermediates
of sites A and C. This result is in favor of the hypothesis
that the way surgical skills are transmitted is dependent
of the location.

Finally in the last experiment (#6), we looked for pat-
terns that are specific to a given surgeon (11 surgeons in
total). We alternatively took all the surgeries performed
by one surgeon, and we compared them to all the other
surgeries. The goal was to find the patterns that are spe-
cific to one surgeon, a subsequences that is the ”signature”
of one surgeon. In this experiment, our method provided
the best result with an accuracy of 77.5 %. It was pos-
sible to find patterns that are specific of one surgeon for
31 surgeries out of 40. Four surgeries of the nine misclas-
sified surgeries were the surgeries from surgeons #4 and
#10, from which there were only two surgeries available for
each surgeon in the dataset. The method was not able to
find distinctive patterns of a surgeon from only two surg-
eries. For the five remaining misclassifications, they are
spread out on surgeons having more surgeries, meaning
that a specific pattern in their other performed surgeries
was still found. Note that compared to 1-NN DTW, the
VSM method does not introduce additional misclassifica-
tions and only corrected some DTW classification errors.

These results reveal that our method makes it possible
to identify precisely what are the subsequences of activities
that are highly frequent in the behavior of senior surgeons
and absent from the behavior of junior surgeons. These
specific patterns could be used to better understand what
“makes” a senior surgeon, and what are the specific pat-
tern a junior has to learn throughout his training. Our
method makes it possible to, for instance, identify which

parts of a surgery was performed like a senior surgeon or
like a junior surgeon. It can be used as a teaching tool to
provide specific feedback showing to junior surgeons the
parts of the surgery where they behaved like a senior sur-
geons and where they behaved like a junior surgeons.

Our work differs from previous efforts in that instead
of looking into a single group of surgeries, we focus on the
comparative analysis of multiple groups at the same time.
The approach proposed in this paper provides more intu-
itive results, as it identifies automatically the set of pat-
terns explaining the differences between the groups. Note
that the proposed approach is not designed to discriminate
good or bad surgical behaviors, as such high-level interpre-
tation requires years of surgical expertise and practice. We
only aim at supporting high-level analyses by identifying
what are the most specific patterns in a set of surgeries,
as compared to another set.

It is interesting to note some drawbacks of our study.
The first one is related to the inherent variability of surg-
eries. While we focused on a standardized procedure with
patients having similar background, there is always a surgery-
or patient-specific part to each surgery. Even if we didn’t
notice this to be impacting our results, it is important
to keep in mind that our method naturally discards the
subsequences that rarely occur. Second, as the size of
the dataset used in the experiments is currently limited,
the patterns extracted should not be considered uniformly
true. A medical study about actual surgical patterns, us-
ing a larger corpus, would be important – this paper intro-
duces the method to perform such a study which we hope
will be possible as more data is being collected. Finally,
it is important to observe that our VSM approach focuses
on the sequence of actions, and not how those actions were
performed. This should be taken into account when using
our approach in a training system.

We believe that our VSM model is a milestone in surgi-
cal process analysis and that there are numerous possible
applications. For example, it would be possible to corre-
late specific patterns with specific practical skills, which
would directly support the automatic evaluation of surgi-
cal skills. Furthermore, the correlation presence/absence
of some patterns with after-surgery complication, or read-
mission could be studied [22, 23]. In this case, a dictio-
nary of good and bad patterns could be built. Finally,
this method could also be used as an addition to surgical
activities prediction systems [24, 25, 26, 27] by providing
frequencies of most frequent subsequences. Our system
could also be used to identify the core set of subsequences
activities that are performed by all the surgeons regard-
less of their countries or skill levels. This would however
require a larger dataset to be collected.

To conclude this discussion, we list the main contribu-
tions of this paper:

1. We introduced the first integration and application
of VSM to the field of SPM.

2. We introduced a framework which makes possible to
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identify the most discriminative patterns of a given
set of surgeries.

3. We assessed our framework on real-world data with
the task of predicting the location where the surgery
took place, the experience of the surgeon, and which
surgeon performed the surgery.

4. We proposed a visualization of the tf∗idf weight vec-
tors as a tool that can support teaching programs to
highlight interesting parts of a given surgery.

5. Conclusion

In this paper we presented a method that builds upon
tf∗idf pattern ranking and VSM in order to identify dis-
criminative patterns in surgeries. We showed how this
framework can be applied to identify patterns that can
then be used to classify according to the location where
the surgery took place or the expertise of the surgeon. The
method was also able to identify patterns that are charac-
teristic of a single surgeon. We have also shown that the
visualization of the top patterns ranked using their tf∗idf
weights, along with the visualization of their weights on a
sequence, could be a useful tool while teaching surgeries.
There are multiple ways to extend this work to the iden-
tification of patterns correlating with the acquisition of a
specific technical skills, or explaining after-surgery compli-
cation, or readmission. In future work, we plan to investi-
gate in more depth the correlation between sub-sequences
of activities and skills assessment.
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