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Fast Antenna Far Field Characterization
via Sparse Spherical Harmonic Expansion

Benjamin Fuchs, Senior Member, IEEE, Laurent Le Coq, Sébastien Rondineau, Member, IEEE, and Marco
Donald Migliore, Senior Member, IEEE

Abstract—A procedure is proposed to significantly reduce
the amount of time to characterize three dimensional antenna
far field patterns. The measured far field is expanded into
spherical harmonics and a sparse recovery algorithm is used
to recover the spherical wave coefficients giving access to the
field radiated by the antenna everywhere. A small number of
measurement points are required since the relevant information
of most antenna patterns is concentrated in only a few spherical
wave coefficients. Sampling strategies enabling fast spherical
scans are discussed which makes the approach both efficient and
easy to implement in existing far field measurement facilities.
Simulations are first provided to show the potentialities of this
compressive sensing based approach. The proposed strategy is
then applied to characterize three dimensional far field patterns
radiated by several antennas operating in different frequency
bands measured in far field in direct line of sight configuration
and in a compact antenna test range. Experimental results show
that a saving in the number of measurement points up to 70%
can be achieved compared to standard approaches. These results
pave the way to a more efficient use of far field measurement
facilities.

Keywords: Antenna measurements, compact antenna test
range, compressive sensing, antenna pattern, spherical harmon-
ics.

I. INTRODUCTION

The development of antenna design and manufacturing ca-
pabilities enables to produce complex radiating structures that
have to fulfill always more challenging technical and cost con-
straints. In this context, efficient procedures must be proposed
to characterize the radiation of antennas exhibiting multi-
beams and multi-frequencies features and three dimensional
(3D) radiation characterization is becoming a standard. Near
field characterization techniques are a solution to most of these
requirements. However, their practical implementation can
be difficult and costly to achieve the demanding positioning
tolerances especially as the frequency goes up.
Besides, one of the main drawbacks of far field measurement
methods is the large number of data required, and consequently
the important measurement time required to collect these
data. However, the number of information usually collected
in spherical scanning is redundant in many practical cases.
Symmetries and smoothness in current distributions reduce the
set of the fields that can be radiated by the antenna and hence
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the number of the measurements required to identify this field.
In practice, exploiting detailed information on the antenna
can reduce the number of measurements. Unfortunately, such
strategy requires a field representation using bases that match
the antenna, as well as some a-priori information on the
antenna, making their practical use cumbersome.
In this paper, a procedure to speed up the antenna 3D charac-
terization in the far field is proposed. It uses a general-purpose
basis (spherical harmonics) without explicit a-priori informa-
tion on the antenna (apart from its maximum dimension and
position). The approach is directly applicable to existing far
field facilities including compact antenna test ranges without
any hardware modifications or limitation on the antenna under
test. Inspired by the recent advances in compressive sensing,
the main idea is to take advantage of the sparsity of the
electromagnetic field representation in the spherical harmonics
domain. Indeed, a number of information (for example in-
formation on potential symmetries) are implicitly included in
the spherical harmonics representation in terms of low value
of coefficients. The method takes advantage of this a priori
sparseness in the spherical harmonic representation to decrease
the number of required measurement points.
Over the last decade, the developments in the field of com-
pressive sensing have significantly changed many aspects in
data sampling and processing [1]–[3]. The idea to exploit
the sparsity to achieve undersampling rates has found a
great relevance in many applications in signal processing,
information theory and electrical engineering to name just a
few. Despite its great potential, the application of compressive
sensing in electromagnetics is relatively new, as reviewed in
[4]. Several contributions have recently been made in antenna
measurements and diagnostics [5]–[7] but most approaches
proposed so far rely on a strong a priori knowledge about
the antenna under test, such as the failure-free pattern or a
numerical model of the radiating structure.
The applicability of compressive sensing depends on the deter-
mination of a proper basis in which the signal, in our case of
interest the electromagnetic field, has a sparse representation.
The electromagnetic field can be expanded into spherical
harmonics [8], [9] and it turns out that the spherical wave
spectrum of antennas exhibits sparse properties as noticed
by [10] and [11]. Thus, an interesting compressive sensing
approach has been applied to spherical near field to far field
transformation in [10] and very promising simulation results
are shown. A similar approach is used in [11] to speed up
spherical near field measurements. The optimization of the
coordinate system to further enforce the sparsity of the spher-
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ical wave coefficients is also addressed and a methodology to
estimate the phase center position is derived.
In parallel and complementarily to the foregoing research,
our approach is dedicated to antenna 3D far field pattern
characterization. The measured electrical far field is expanded
into a spherical harmonic basis leading to a sparse represen-
tation of the field. Efficient and readily available algorithms
are then used to reconstruct the 3D field from a reduced
number of measurements compared to standard approaches
as described in Section II. A special focus is given in the
sampling strategy enabling a fast and easy to implement
spherical scan. Numerical simulations are provided in Section
III to show that compressive sensing approaches work also
well with spherical harmonics matrices. Experimental results,
obtained in far field measurement facilities (both line of sight
and compact antenna test range configuration), of several
radiating structures operating in various frequency bands are
shown in Section IV to confirm the interest of the proposed
procedure.

II. PROBLEM FORMULATION

A. Spherical Harmonic Expansion
The electric far field (co- and cross- polarization) can be

expanded into scalar spherical harmonics as follows:

E(θ, ϕ) =

∞∑
l=0

l∑
m=−l

clmY
m
l (θ, ϕ) (1)

where clm are the spherical wave coefficients of degree l and
order m [8], [12]. The scalar spherical harmonics are:

Y ml (θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimϕ (2)

where Pml (cos θ) are the associated Legendre polynomials of
degree l and order m.
The knowledge of the spherical wave coefficients clm enables
to compute the antenna far field and also the field radiated
everywhere except in the smallest sphere enclosing the radi-
ating structure. The total power radiated by the antenna and
therefore its directivity D can easily be derived:

D(θ, ϕ) =
E(θ, ϕ)∑

m,l |clm|
2
/(4π)

. (3)

When numerically implemented, the series in (1) require a
truncation order L and the angles (θ, ϕ) are discretized into
M directions. As detailed in [12], the far field is well approx-
imated when the truncation order L is equal to

[
2π
λ a
]

+ n1
where [x] stands for the integer part of x, λ is the free space
wavelength, a the radius of the smallest sphere enclosing the
antenna and the positive integer n1 is commonly set to 10.
The electric far field, i.e. the equation (1), can be written in a
matrix form:

y = Ax (4)

where ym = E(θm, ϕm) are the measurement points and the
vector x ∈ CN gathers the spherical wave coefficients clm
to be determined. The columns of the (sensing) matrix A ∈
CM×N are the N scalar spherical harmonics Y ml (2) with
N = (L+ 1)2.

B. Computation of the Spherical Wave Coefficients

The determination of the spherical wave coefficients clm
from the measured radiated far field E(θ, ϕ) can be done
analytically from the tangential components of the electric
field thanks to the orthogonality properties of the spherical har-
monics [9]. A popular numerical approach, based on discrete
Fourier Transforms, has been proposed by Hansen [12]. It is
both computationally efficient and easy to implement because
∆θ = ∆ϕ but it requires a high number of measurements
points since M = 2(2L+1)(L+1). Other numerical methods
have been applied to solve the linear inverse problem (4),
i.e. to find x from y. Because of the bad conditioning of A,
regularization procedures such as Tikhonov regularizer or the
truncated singular value decomposition [13] are necessary to
stabilize the inversion. These strategies work fairly well as
long as the number of measurements M is greater than the
number of unknowns N . When M is (slightly) lower than
N , the success of these approaches depends highly on the
sampling of the field, as discussed in the next Section.
The idea to use a sparse prior to recover spherical wave
coefficients has been first, to our best knowledge, recently
proposed by [10], [11] and applied successfully on antenna
spherical near field patterns. Many antenna patterns can indeed
be accurately described by using a few spherical coefficients
K, where K � N , which means that the spherical wave
magnitude spectrum is often sparse. This assumption is all
the more true when the antenna is well positioned in its phase
center (as discussed in [11]) and / or exhibits some geometrical
symmetry.
One convenient way to foster sparse spherical wave coeffi-
cients is to use the `1-norm (‖x‖1 =

∑
i |xi|) as a regularizer

[1], [2]. The inverse problem to solve reads:

min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ ε (5)

where the positive parameter ε enables to handle the inevitable
misfit errors due to measurement noise and uncertainties. The
convex optimization problem (5) can be solved efficiently by
many generic optimization routines, such as [14]–[16]. We
have used SPGL1 [14], a MatLab solver for large-scale one-
norm regularized least squares in this paper.

C. Discussion on the Field Sampling

The sensing matrix A plays a crucial role in the determina-
tion of the sparse spherical wave coefficients x. In short, the
mutual coherence, null space property or restricted isometry
property of A are metrics (sometimes very hard to evaluate)
that enable to assess the recoverability of x solving (5).
We refer interested readers to [17] for a complete overview
on the properties of A and the associated sparse recovery
performances.
Loosely speaking, sparse recovery uses random projections to
estimate the sparse unknown from a set of data. This requires
to randomly select a (hopefully low) number of measurement
positions on the observation surface. However, a completely
random selection is generally not the best option [18].
For antenna far field pattern measurements, the only degree
of freedom to design A is the choice of the sampling points
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(θm, ϕm). Ideally, each measurement point ym should bring
an additional (non redundant) information. Thus, sampling
the field with an constant angular step ∆θ and ∆ϕ brings
an oversampling and consequently an important redundancy
near the poles. It is therefore not the best choice to build
A. Low redundant sampling grids have been the object of
research using both theoretical and heuristic approaches. A
simple sampling strategy consists in sampling the sphere while
keeping a constant solid angle for all θ angle, which yields:

∆ϕ =
∆θ

sin θ
(6)

where ∆θ is constant. This sampling strategy is from now on
called ‘igloo’ sampling. It is easy to implement in practice
and enables fast spherical scans, since for each latitude θi the
azimuthal step ∆ϕi is constant.
Starting from a rigorous theoretical approach, Bucci et al.
proposed a ‘minimum redundant’ sampling strategy [19]. This
method is based on the evaluation of the spatial bandwidth of
the ‘reduced field’, that is a smoother version of the field on
the observation surface obtained substracting a proper phase
function and introducing a proper parameterization on the
coordinate curves. The knowledge of the bandwidth allows to
sample the field at the Nyquist rate, obtaining the following
positions of the sampling points in spherical coordinates (θ, ϕ)
[19]:

∆θ =
2π

2[χβa] + 1
(7)

∆ϕ =
2π

2[χθβa sin(θ)] + 1

χθ = 1 + (χ− 1)sin(θ)
−2/3

where β = 2π/λ is the free space wavenumber, a is the
radius of the smallest sphere enclosing the antenna and χ is
an oversampling factor that controls the truncation error in the
sampling series. In practical cases, χ is slightly larger than 1.
It is interesting to note that the ‘igloo’ and Bucci’s sampling
lead, for similar values of ∆θ, to very close sampling posi-
tions. The main difference comes from the slight oversampling
near the poles of the spherical reference system brought by
Bucci’s theory.

III. NUMERICAL RESULTS ON SPARSE RECOVERY
PERFORMANCES

Theoretical results on sparse recovery performances have
been first established for Gaussian matrices A [1]. More
recently, investigations have been carried out for spherical
harmonic matrices [20]. The idea is to understand how sparse
spherical wave coefficients can be recovered from a small
number of randomly chosen samples on the sphere using `1
minimization, i.e. solving (5).
We perform here numerical simulations in the framework
of antenna far field pattern characterization. Let us consider
random spherical wave coefficients x of size N with a given
sparsity level K/N . These coefficients are normalized such
that the total power radiated by the antenna remains constant
for all cases. A number M of sampling points are chosen
randomly from a dense ‘igloo’ sampling on the sphere and

the basis pursuit problem, i.e. the `1 minimization problem
(5) with ε = 0 is solved. The solution is denoted x̃. The
sparse reconstruction is assumed to be successful when the
Mean Square Error (MSE):

MSE = 20 log10

(
x− x̃√
N

)

is lower than -40 dB.
We plot for various sampling ratio M/N and two sparsity
levels K/N of 0.25 and 0.5, the probability of having a
successful reconstruction over 100 trials in Fig. 1. The total
number of spherical wave coefficients N is set to 400. An
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Fig. 1: Probability of success of the sparse reconstruction
in the case N = 400 for various sampling ratio M/N and
sparsity levels K/N .

undersampling of about 20% can be applied to perfectly
reconstruct a spherical wave coefficients spectrum having a
sparsity level of 0.25 (1 coefficient out of 4 is non zero). When
half of the coefficients are non zero, the required number of
measurement can be reduced of about 10% using compressive
sensing techniques.
The phase transition diagram, introduced by Donoho and
Tanner in compressive sensing [21], shows the probability
of perfect reconstruction as a function of the sampling ratio
δ = M/N (also called level of undetermindness) and the
sparsity level here ρ = K/M . A perfect reconstruction from
undersampled measurements δ is achieved until the sparsity
level ρ remains below a threshold value. Although the sparsity
level of the spherical wave coefficients of an antenna is not a
priori known, the phase transition diagram enables to estimate
the range of measurement undersampling that can be expected.
The phase transition diagram is plotted in Fig. 2 and we notice
a sharp transition between a perfect recovery (in red) and a bad
one (in blue), this behavior is typical in compressive sensing.
When M/N = 1, it means that the number of unknown is
equal to the number of measurement points, the use of the
‘igloo’ sampling strategy ensures then a good reconstruction
for all sparsity levels.

Note that this study has already been carried out in [10]
with different settings which explains that slightly different
results are obtained.
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Fig. 2: Phase transition diagram for N = 400. The scale
indicates the percentage of successful recovery of (sparse)
spherical wave coefficients. A perfect recovery / failure is
achieved in the red / blue region.

IV. EXPERIMENTAL RESULTS

Several antennas operating in different frequency bands
have been characterized in the far field anechoic chambers
(in both line of sight configuration and compact antenna test
range) of the Institute of Electronics and Telecommunications
of Rennes in France. Their 3D radiated patterns (in the full or
half sphere) are used to show the interest of the proposed fast
antenna far field characterization approach.
For each antenna, the problem (5) (denoted `1) is solved
to determine the N spherical wave coefficients from M
measurement points taken on a (coarse) ‘igloo’ grid. The
derived 3D far field (vector denoted y`1 ) is compared to the
one obtained applying the Truncated Singular Value Decom-
position (yTSVD). The far field measured in a dense sampling
points is taken as a reference (yMeas.).
In order to assess the quality of the proposed method, we
compare the patterns y`1 and yTSVD to the reference one
yMeas.. One way to compare two patterns is to perform a
weighted logarithmic difference as proposed in [22]. The idea
is to de-emphasize the difference at low pattern levels. Indeed,
pattern differences at nulls, for instance, are not meaningful.
This weight is computed considering the source of errors that
are corrupting the measurements. In an anechoic chamber, the
main figure of merit is the reflectivity level R (ratio between
reflected and direct signal). Consequently, one way to build
the weight function w(y) is to compute the ratio between
the desired signal and the desired signal with a constructive
interference (worst case):

w(y) =
|y|
|y|+ R

.

The weight as a function of the measurement level y for
a dynamic of 80 dB and a reflectivity level of the chamber
equal to -50 dB is plotted in Fig. 3. The weighted logarithmic
difference ∆(y/yMeas.) is then:

∆(y/yMeas.) = w(yMeas.)
∣∣20 log10(|yMeas.|)− 20 log10(|y|)

∣∣.
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Fig. 3: Weight function to de-emphasize the difference be-
tween patterns at low field level values. The reflectivity level
R of the chamber is set to -50 dB.

A. Reflectarray

A reflectarray composed of 193 cells, designed by Thalès
Alenia Space in the framework of the project R3MEMS, has
been characterized in X band. A total number of 32761 copolar
and cross-polar data have been measured on a far-field half-
sphere (step of 0.5˚ in θ and 2˚ in ϕ), these data are our
reference denoted yMeas., see Fig. 4(b).
We extract, from this dense sampling, the points that as close
as possible to the ‘igloo’ sampling represented in Fig. 4(a). The
total number of measurement points is then M = 871. From
these M measurement points, we reconstruct the N complex
spherical wave coefficients x where N = (55 + 1)2 = 3136
using the proposed `1 minimization approach (5) and the
TSVD approach. We derived from these two solutions x the
far field patterns y`1 and yTSVD.
The patterns and differences with respect to yMeas. are plotted
in 3D in Fig. 5 and in 2D in Fig. 6. The proposed `1 algorithm
leads to a better far field interpolation since y`1 is closer to
yMeas. than yTSVD, this is clearly visible in the main lobes of
Fig. 6(a) and (c).
A significant reduction of the required number of measurement
points for a proper interpolation of the 3D far field. In this
example, a saving of more than 70% measurement points is
achieved compared to standard approaches that require roughly
M ≈ N .

B. Standard Gain Horn

A standard gain horn operating in Ka-band has been char-
acterized at 26 GHz in the IETR compact antenna test range.
A total number of 5659 copolar and cross-polar data points
have been measured on a far-field half-sphere, these data are
our reference yMeas., see Fig. 7(b).
From this dense sampling, the points that are as close as
possible to the ‘igloo’ sampling represented in Fig. 7(a) are
considered. The total number of measurement points is then
M = 339. From these M points, we reconstruct the N
complex spherical wave coefficients x where N = (30 +
1)2 = 961 using the proposed `1 minimization approach (5)
and the TSVD approach. We derived the corresponding far
field patterns y`1 and yTSVD. The patterns and differences
with respect to the measurement are plotted in 3D in Fig.
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Fig. 5: 3D far field mappings in dB radiated by the reflectarray and interpolated from the ‘igloo’ sampling with M = 871
points and for a truncation order of L = 55 (N = 3136 spherical wave coefficients). Far field patterns and weighted differences
between exact and reconstructed field obtained (a,b) by the TSVD approach and (c,d) by the proposed the `1 minimization
procedure (5).
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Fig. 6: Far field patterns in the main cutting planes radiated by the reflectarray and interpolated from the ‘igloo’ sampling.
(a,c) Normalized patterns and (b,d) corresponding weighted differences.
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8 and in 2D in Fig. 9. The proposed `1 algorithm better
interpolates the far field than the TSVD, as shown in the
2D cutting plane difference Fig. 6(b). We can also notice the
good reconstruction of the pattern phase in Fig. 6(c). In this
example, compared to standard approaches for which M ≈ N ,
less than 1/3 of the points are needed for a good reconstruction
of the 3D pattern.
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Fig. 7: Far field patterns radiated by the standard gain horn at
26 GHz: (a) sampling using the ‘igloo’ technique with ∆θ =
8˚ (M = 339 sampling points) and (b) measured 3D field
mapping yMeas..

C. Flat Luneburg Lens

A flat metallic Luneburg lens antenna has been designed in
the frame of MERLIN, a joint laboratory of Thalès Alenia
Space and IETR. Details about this radiating structure are
available in [23]. A total number of 65341 copolar data have
been measured at 12 GHz on a far-field full-sphere which
makes possible the computation of the directivity (3). These
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sampling: (a) Normalized amplitude pattern, (b) weighted difference and (c) phase patterns.

data are our reference yMeas. and plotted in Fig. 10(b) where we
clearly see the lens focusing effect along one plane ϕ = 90◦,
it is a flat (2D) lens.
The points, that as close as possible to the ‘igloo’ sampling
represented in Fig. 10(a), are considered. We reconstruct from
these M = 2057 points, the N complex spherical wave
coefficients x where N = (55+1)2 = 3136 using the proposed
`1 minimization approach (5) and the TSVD approach. The
patterns y`1 and yTSVD and the differences ∆(y`1/yMeas.) and
∆(yTSVD/yMeas.) are plotted in 3D in Fig. 11 and in 2D in
Fig. 12.
The proposed approach leads to a better far field interpolation
as it can be easily seen from the 2D cutting plane of Fig.
12(d). This is confirmed when computing the directivity from
the spherical waves coefficients: 23.2 dB are obtained with
the TSVD while 21.8 dB with the proposed approach that is
closer to the reference directivity of 21.6 dB. In this example,
compared to standard approaches with M ≈ N , about 2/3
of the points are needed for a good reconstruction of the 3D
pattern.

D. Summary

Let us summarize the previous experimental results in the
Table I. We denote RA, SGH and LL the ReflectArray,
Standard Gain Horn and Luneburg Lens antenna respectively.
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Fig. 10: (a) Positions of the ‘igloo’ sampling points, on average
∆θ = 4.5◦ and ∆ϕ = 11.2◦. (b) Far field pattern radiated by
the flat Luneburg lens at 12 GHz.

The value a is the radius of the smallest sphere enclosing
the antenna and all parts contributing to the radiation, such
as the antenna metallic support for instance. Theoretically, the
truncation order L of the spherical harmonic series should be
chosen greater than

[
2π
λ a
]
. In practice, the truncation order L

is chosen slightly lower than this value and satisfying results
are obtained.
The determination of the N = (L + 1)2 spherical wave
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Fig. 11: 3D far field mappings in dB radiated by the plate Luneburg lens and interpolated from the ‘igloo’ sampling represented
Fig. 10(a) M = 2057 points and for a truncation order of L = 55, i.e. N = 3136 spherical modes. Far field pattern and
weighted difference between exact and reconstructed field obtained (a,b) by the TSVD approach and (c,d) by the proposed the
`1 minimization procedure (5).
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Fig. 12: Far field patterns in the main cutting planes radiated by the plate Luneburg lens and interpolated from the ‘igloo’
sampling. (a,c) Normalized patterns and (c,d) corresponding weighted differences.

coefficients can be carried out efficiently from a uniform
angular sampling ∆θ = ∆ϕ using discrete Fourier Trans-
forms and the number of required measurement points is then
MH = 2(2L + 1)(L + 1) so approximately 4N (for the full
sphere case), the subscript H stands for Hansen [12].
The far field can be exactly reconstructed from the optimal
(in the sense of minimum redundancy) sampling strategy
combined with a proper interpolation scheme proposed by
Bucci et al. [19], see (7). We denote MB this number of
measurement points.
Finally, the proposed approach reconstructs the N spherical
wave coefficients from M measurement points following an
‘igloo’ sampling via the sparse recovery algorithm (5). Ex-
ploiting the sparsity prior on the spherical wave expansion
enables us to reduce the number of points, from M ≈ N
as done with conventional matrix inversion approaches, up to
M = N/3. It is important to point out that both Hansen’s and
Bucci’s approaches are exact procedures enabling a perfect
reconstruction of the field while our approach provides only
an approximation of the field, this is the reason why we have
M < MB � MH. Of course, the proposed approximation
approach can be improved by increasing the number M of
sampling points.

TABLE I: Number of Spherical Modes and Sampling Points

Ant. fq. a truncation order nb. of measurements
[GHz] [m]

[
2π
λ
.a
]

L MH MB M
RA 12 0.20 61 55 6216 2669 871

SGH 26 0.04 32 30 1891 566 339
LL 12 0.26 66 55 12432 8746 2057

Ant.: antenna, fq.: frequency and nb.: number
Note that the RA and SGH have been characterized over half a sphere.

V. CONCLUSION

A compressive sensing based approach has been applied
to speed up the 3D far field characterization of antennas.
By exploiting the sparsity of the spherical wave spectrum
of antennas, a small number of measurements points are
required to interpolate the radiated far field with a reasonable
accuracy. Important reduction in terms of measurement point
number (up to 70% compared to standard approaches) are
shown for several experimental examples. Finally, sampling
strategies enabling fast spherical scans are proposed to render
the procedure easy to apply in existing far field measurement
facilities.
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