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Abstract— Efficient gradient search directions for the optimi-
sation of the kurtosis-based deflationary RobustICA algorithm
in the case of real-valued data are proposed in this paper.
The proposed scheme employs, in the gradient-like algorithm
typically used to optimise the considered kurtosis-based ob-
jective function, search directions computed from a more
reliable approximation of the negentropy than the kurtosis.
The proposed scheme inherits the exact line search of the
conventional RobustICA for which a good convergence property
through a given direction is guaranteed. The efficiency of the
proposed scheme is evaluated in terms of estimation quality,
the execution time and the iterations count as a function of the
number of used sensors and for different signal to noise ratios in
the contexts of non-invasive epileptic ElectroEncephaloGraphic
(EEG) and Magnetic Resonance Spectroscopic (MRS) analysis.
The obtained results show that the proposed approach offer
the best estimation performance/iterations count and execution
time trade-off, especially in the case of high number of sensors.

I. INTRODUCTION

Independent Component Analysis (ICA) is extensively
used for Blind Source Separation (BSS) [3] where the aim is
to infer P statistically independent sources contributing to a
potentially noisy mixture of them received on an array of N
sensors. In some biomedical applications, this mixture can
be linearly modelled as follows:

x[m] = As[m] + ν[m] (1)

where m is a natural number and x[m] is a realization of
an N -dimensional random vector process {x[m]} of the
observations, A (N × P ) denotes a tall mixing matrix,
s[m] stands for a realization of a P -dimensional random
process of sources {s[m]}, with components assumed to
be statistically independent, and ν[m] denotes a realization
of an N -dimensional process of Gaussian noise assumed
to be independent from the source. Note that all processes
considered in this paper are real-valued. As shown in [2],
extracting statistically independent sources using ICA, in the
case of model 1, is always possible when at most one source
is of Gaussian distribution. Thus, the estimation of these
sources can be done by maximizing some measure of non-
Gaussianity such as the negentropy obtained from differential
entropy and defined as:

F(x) = H(g)−H(x) (2)

where g is a gaussian random vector of the same covariance
matrix as x and H stands for the entropy. However, the
negentropy is computationally very difficult since estimating
it requires an estimate of the probability density function.
To cope with this drawback, simpler approximations of

the negentropy are used such as higher order-cumulants,
especially the fourth order one, well-known as the Kurtosis.
Thanks to the attractive properties enjoyed by the Kurtosis,
a multitude of ICA algorithms are based on this latter as a
measure of the non-gaussianity [1], [2], [5], [6], [9], [10] to
cite a few. In addition, some ICA approaches [1], [9], called
symmetric methods, recover independent sources in one
single-step. Others, referred to as deflationary approaches
extract one source at a time [2], [5], [6], [10]. The key
advantage of the deflationary scheme is that contrasts for
single-source extraction can easily be proven to be free from
spurious local solutions, so that all their local optima are
associated with valid solutions [3], [5], [6], [10]. Besides,
deflationary scheme can be stopped early once the sources
of interest has already been extracted.This characteristic is
very interesting in some biomedical applications, such as
dense ElectoEncephaloGram (EEG) denoising (i.e. 257 sen-
sors) and Magnetic Resonance Spectroscopic (MRS) signals
analysis, where the number of all sources is higher than the
number of sources of interest. Among the deflationary ICA
algorithms, the RobustICA [10] stands for the very efficient
one in terms of numerical complexity and estimation quality.
Note that this method is originally proposed for both real and
complex-valued data but only real-valued case is considered
throughout this paper. The RobustICA method maximizes the
kurtosis-based objective function in an efficient way using a
gradient-ascent algorithm with exact line search scheme [10].
However, the strategy proposed in the RobustICA method
could be considerably improved especially by improving the
gradient search direction in the used gradient-like method.
This problem is tackled in this paper and a new scheme to
efficiently maximize the kurtosis-based cost function consid-
ered in the deflationary RobustICA method is proposed. Con-
trary to the conventional RobustICA method, the proposed
approach employs a gradient direction that is computed
from a nonlinear approximation of the negentropy which is
more reliable than the one computed using the kurtosis. A
comparative study, between the proposed solutions and the
conventional deflationary RobustICA method, is proposed
in the contexts of non-invasive epileptic dense-EEG signals
denoising and MRS analysis. The obtained results show the
good behaviour of our proposed method.

II. THE ROADMAP

A. The RobustICA method

Basically, the RobustICA algorithm solves the real-valued
ICA problem (1) by maximizing the following kurtosis-based



objective function as an approximation of the negentropy
[10]:

F̃1(w
(p)) =

|C4(yp)|
E[y2p]

2
= |

E[y4p]

E[y2p]
2
− 3|, ∀1 ≤ p ≤ P (3)

where F̃ is a kurtosis-based approximation of the negentropy
F (2), C4(yp) denotes the fourth-order cumulant (kurtosis) of
the p-th estimated source, yp, such that yp = w(p)Tx where
w(p) is the associated p-the separation vector, E[.] stands for
the mathematical expectation and |.| denotes the absolute
value of its argument. It is noteworthy that when the sign
of the kurtosis is known, it is used instead of the absolute
value of the kurtosis in equation (1). Although the data pre-
whitening is not mandatory for RobustICA, employing it
would improve its convergence property, especially when
high-dimensional data is considered [7]. Therefore, if the
observations are supposed to be pre-whitened, the contrast
function in equation (3) can be written as:

F̃1(w
(p)) = |E[y4p]− 3|, ∀1 ≤ p ≤ P (4)

where E[(w(p)Tx)2] = ‖w(p)‖2. RobustICA maximizes the
objective function F̃1(w

(p)),∀1 ≤ p ≤ P using a gradient-
ascent method with an exact line search plane using the
following update rule [10]:
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where h(p)
k = hKURT(w

(p)
k ) is a given search direction at the

k-th iteration associated to the p-th source. and where hKURT
is computed as the gradient of F̃1. Besides, the optimal
step size, µ(k)

opt, associated to the considered direction h(p)
k is

computed algebraically as following:

µ
(k)
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µk

F̃1(w
(p)
k + µkh

(p)
k ) (6)

Note that the optimal computation of the stepsize µ showed
a robustness to the presence of spurious local extrema and
saddle points in addition to a remarkable improvement in
the convergence speed [3], [10]. Once the p-th source is
estimated, its contribution to the mixture is removed for an
estimation of a new source (deflationary scheme).

B. The proposed scheme
As mentioned above, the RobustICA algorithm is, natu-

rally, based on a search direction defined, at the k-th iteration,
as h(p)

k = ∇w(p)
k

F̃1(w
(p)
k ),∀1 ≤ p ≤ P in the gradient-

ascent algorithm (5), with the exact line search according to
equation (6). Indeed, the kurtosis-based objective function
allows easily for the exact computation of the stepsize µ
(6) since it is polynomial in this latter. However, despite
the attractive properties of the kurtosis, it is well-known
to be sensitive to outliers because it may depend on only
few observations in the tail of the distribution. Therefore,
a search direction based on the kurtosis to approximate the
negentropy, seems to be suboptimal. The key question at
hand is how to provide a better search direction for the
gradient-ascent algorithm (5) while maintaining the optimal
computation of the stepsize similarly as in (6)?. To answer
such a question the proposed solutions consist in employing,

at the k-th iteration of the gradient-ascent algorithm (i.e.
equation (5)), a new gradient search direction, h(p)

k ,∀1 ≤
p ≤ P computed from more reliable negentropy approx-
imations than the kurtosis. Better approximations of the
negentropy can be obtained by generalizing the higher-order
cumulant approximation using expectations of an appropriate
non-quadratic function, g, as follows [6], [7]:

F̃2(w
(p)) = |E[g(y(p))]− E[g(`)]| ∀1 ≤ p ≤ P (7)

where ` is a Gaussian variable. Both ` and y(p),∀1 ≤ p ≤ P ,
are standardized. Note that for g = y4, the cost function (7)
leads to F̃1(w

(p)) (4). Choosing a non-quadratic function
g that does not grow too fast would lead to a more robust
estimator of the negentropy than the kurtosis [7]. A good
choice of such a function is given by [7]:

gLCH(y) = log cosh(y) (8)

gGAUS(y) = −e−
y2

2 (9)

The gradient of F̃2 (7) with respect to w(p) is then given as:

∇w(p)F̃2 = sign(E[g(y)]− E[g(`)])× E[x∇w(p)g(y)]
(10)

where sign is the sign function. According to the above
equation and to the definition of the non-quadratic functions
gGAUS (9) and gLCH (8), two new more reliable gradient
directions can be employed:

hLCH(w) = ∇w(p)F̃2 = E[x tanh(wTx)] (11)

hGAUS(w) = ∇w(p)F̃2 = E[x(wTx)e−
(wTx)2

2 ] (12)

In addition, it is noteworthy that the use of either hLCH(w)
or hGAUS(w) in equation (5), while maximizing the kurtosis-
based objective function F̃1 (4), maintains the possibility for
an optimal stepsize computation. This is since the kurtosis-
based function F̃1 is still polynomial in the stepsize even if
hKURT is replaced with hLCH(w) or hGAUS(w).

III. EXPERIMENTAL ANALYSIS

This section is devoted to evaluate the performance of
the two proposed variants of the RobustICA method [10],
denoted by RobustICALCH when the non-quadratic func-
tion gLCH is considered to compute the gradient direction,
and RobustICAGAUS when gLCH is used instead. The first
experiment concerns the extraction of interictal epileptic
spikes from physiologically plausible simulated surface EEG
observations (non-invasive context). In the second experi-
ment, we aim to extract two metabolites (Creatine and Myo-
inositol) from their noisy mixture using realistic synthetic
invivo MRS data. The two proposed RobustICA variants
were compared with the conventional RobustICA method in
terms of execution time, iteration count and the Normalized
Mean Square Error (NMSE) as a function of the number of
used sensors and for several Signal-to-Noise Ratios (SNRs).
Note that the NMSE criterion is defined by: NMSEre =∑I

i=1

∑M
m=1(re[m]−r̂(i)e [m])2

L
∑M

m=1(re[m])2
where {re[m]} is the original

EEG/MRS signal of the e-th sensor/source, {r̂(i)e [m]} is the
reconstructed signal after denoising obtained from the i-th
Monte Carol (MC) run, I and M stand for the number of MC



and the sample size, respectively. Note that all the reported
results in this section were averaged over 40 MC realisations.

A. Electorencephalographic signals

1) Data Generation: A realistic head model (brain, skull
and scalp) was used to generate the considered realistic
EEG data. This head model was obtained after a segmen-
tation of a 3D-T1 MRI. In order to evaluate the behaviour
of RobustICALCH and RobustICAGAUS methods, four EEG
channel configurations were set up, 32, 65, 110 and 257
electrodes. The EEG data were simulated from a single
distributed source or patch, of 5 cm2 located in the right
inferior temporal gyrus. A boundary Element Method (BEM)
was used to compute the propagation medium connecting
the source space to the observation one. Interictal spike-like
activity generated by a neural mass model [4] was assigned
to the patch. 40 trials with different spike-like signals were
generated (10 seconds at 512 Hz i.e. 5120 samples). These
signals corresponded to "clean" data. Regarding the noisy
data, 40 epochs of real EEG muscle activity extracted from
real 32, 65, 110 and 257 data and normalized with respect to
channel with maximal power, were added to the simulated
interictal spike activity with different levels of amplitude to
get several SNR values: −20,−15,−10,−5, 0 and 5 dB.

2) Numerical results: The denoising quality of the
two proposed methods, namely RobustICAGAUS and
RobustICALCH, compared to the conventional RobustICA in
terms of the NMSE, is depicted in figure 1. For relatively
small number of electrodes (i.e. 32 and 65), the two proposed
schemes outperform the conventional RobustICA especially
for very low SNR values (i.e. −20 and −15 dB) whereas
similar behaviour was noted for higher SNR values. Re-
garding the case of high number of electrodes (i.e. 110 and
257), a higher performance was noted for RobustICAGAUS
and RobustICALCH compared to the conventional RobustICA
whatever the SNR value is, as depicted in figure 1. The
performance of the proposed techniques is assessed in fig-
ure 2 where a higher denoising quality was obtained for
RobustICALCH over the conventional RobustICA. Note that,
for the lake of place and since the two proposed meth-
ods, RobustICALCH and RobustICAGAUS, showed similar
behaviour, only the results of RobustICALCH were given
in figure 2 for two among the considered 110 channels.
It is noteworthy that the same behaviour of the proposed
RobustICALCH and RobustICAGAUS was obtained in the case
of dense EEG settings (i.e. 257 electrodes) whereas the
conventional RobustICA failed to correctly denoise interictal
epileptic spikes as it could be seen from figure 1. As far as the
execution time is considered, the conventional RobustICA
method showed, as expected, less values compared to the
proposed variants regardless the considered number of elec-
trodes (i.e. 32, 65, 110 and 257), according to figure 3.
However, thanks to the improved gradient search direction
provided by a more accurate approximation of the negentropy
as the way described in this paper, RobustICALCH and
RobustICAGAUS required generally less number of iterations
to get a solution than the RobustICA. This is true whatever
the number of used electrodes is excepted for 257 electrodes
where a slight superiority of the latter over the formers is
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Fig. 1. NMSE vs. SNR for the proposed schemes, RobustICALCH and
RobustICAGAUS compared to the conventional RobustICA for 5 configura-
tions of non-invasive EEG recordings.
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Fig. 3. No. of iterations required for the convergence and execution time vs.
number of electrodes for the proposed, RobustICALCH and RobustICAGAUS
schemes compared to the conventional RobustICA in the context of iterictal
spike denoising.

noticed as depicted in figure 3, but at the expense of the
denoising quality (see figure 1).

B. Magnetic resonance spectroscopic data

1) Data generation: Synthetic in vivo MRS data were
acquired using an array of N ∈ {16, 32, 64, 128} sensors.
Particularly, a realistic MRS of two metabolites (Creatine and
Myo-inositol) was generated using Lorentzian and Gaussian
functions [8]. Then a linear noisy mixture of the latter is build
according to equation (1) for which noise is adjusted accord-
ing to the considered SNR values, i.e. −20,−10, 0, 10, 20
and 30 dB.
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Fig. 5. NMSE vs. SNR for the proposed schemes, RobustICALCH and
RobustICAGAUS compared to the conventional RobustICA in the context of
MRS source extraction.

2) Numerical results: Figure 4 shows a mixture of the
two above metabolites for SNR equal to 10 dB (figure 4
(top)) and the estimated sources using both the proposed
schemes, namely the RobusICAGAUS (figure 4 (middle-right))
and the RobusICALCH (figure 4 (bottom-left)) compared to
the conventional RobustICA (figure 4 (bottom-right)). We
note form the latter figure the higher estimation quality
of the proposed schemes over the conventional RobustICA.
Besides, according to figure 5, the proposed schemes showed
similar extraction results compared to the conventional
RobustICA method for all the SNR values in the case of 16
sensors. However both the proposed RobustICALCH and the
RobustICAGAUS methods showed higher extraction quality in
terms of NMSE than the one of the conventional RobustICA
when both the SNR and the number of sensors increases.
Regarding the case of N = 64 and N = 128 sensors,
a decrease in the estimation quality of all the considered
methods compared to the case of N = 16 and N = 64
sensors is to be noted. Despite this behaviour, the pro-
posed schemes still outperform the conventional RobusICA
method as depicted in figure 5 (bottom). Besides, figure
6 shows generally that the conventional RobustICA is still
less demanding in terms of the execution time compared
to RobustICALCH and RobustICAGAUS. However, the latter
schemes required generally fewer iterations to converge than
the former except for the case of 128 sensors where the
conventional RobustICA seemed to be less demanding.

IV. CONCLUSION

In this paper, an approach to improve the behaviour of
the RobustICA as a deflationary kurtosis-based algorithm
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Fig. 6. No. of iterations and execution time vs. number of sensors for the
proposed schemes, RobustICALCH and RobustICAGAUS compared to the
conventional RobustICA in the context of MRS source extraction.

was presented. The proposed scheme employs a new search
direction in the gradient-ascent algorithm while maximising
the considered kurtosis-based objective function to identify
the stepsize. Instead of a search direction typically computed
as the gradient of the kurtosis-based objective function,
the proposed scheme provides a gradient search direction
computed using a nonlinear approximation of the negen-
tropy which is more reliable than the kurtosis. Experimental
results in the context of epileptic EEG denoising and MRS
sources extraction were conducted showing the higher perfor-
mance of the proposed scheme compared to the conventional
RobustICA one.
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