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Images of di®erent origin contain textures, and textural features in such regions are frequently
employed in pattern recognition, image classi¯cation, information extraction, etc. Noise often

present in analyzed images might prevent a proper solution of basic tasks in the aforementioned

applications and is worth suppressing. This is not an easy task since even the most advanced
denoising methods destroy texture in a more or less degree while removing noise. Thus, it is

desirable to predict the ¯ltering behavior before any denoising is applied. This paper studies the

e±ciency of texture image denoising for di®erent noise intensities and several ¯lter types under

di®erent visual quality criteria (quality metrics). It is demonstrated that the most e±cient
existing ¯lters provide very similar results. From the obtained results, it is possible to generalize

and employ the prediction strategy earlier proposed for denoising techniques based on the

discrete cosine transform. Accuracy of such a prediction is studied and the ways to improve it
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are considered. Some practical recommendations concerning a decision to undertake whether it

is worth applying a ¯lter are given.

Keywords : Texture denoising; noise suppression; image processing; visual quality.

1. Introduction

Texture regions found in almost all natural scene images can occupy a di®erent

percentage of image area.18 Textures play an important role in geomorphometry21,45

content-based image retrieval,9 remote sensing,19,40,46 pattern recognition and clas-

si¯cation,25,47 etc. Meanwhile, texture features are often masked or distorted due to

noise present in the acquired images. This noise can be of a di®erent type (additive,

multiplicative, signal-dependent13,46,48) and origin being inherent for di®erent types

of images (optical, radar, medical, hyperspectral). Therefore, a task is to remove this

noise preserving the texture features in a maximally careful manner.17,32,35,36,46,54

One might expect that this task of e±cient texture denoising which was already

relevant a decade or two ago,17,32,46 and now with all recent advancements (nonlocal

¯ltering methods) in image denoising11,12,14,26,46 has been successfully solved. How-

ever, this is not true. As it was shown by Milanfar and Chatterjee,7 the potential of

nonlocal ¯ltering approach is limited for textural images. This has been empirically

con¯rmed in Ref. 16 for highly textural images from TID2013 database.27 It has been

shown in Refs. 35 and 36 that the problems in noise removal arise for ¯lters based on

discrete cosine transform (DCT)16,22,26 and one of the most advanced nonlocal ¯l-

tering methods, BM3D (block matching three dimensional) ¯lter.11 Then, one might

think that denoising techniques based on other principles are able to cope with a

noise in texture images in a better way. Analysis carried out in the recent papers (see

Refs. 34 and 36) shows that this is not true also for many advanced and e±cient

modern ¯lters such as translation invariant wavelet shrinkage (TI-WS),10 Bayesian

least squares of Gaussian scale mixtures (BLS-GSM),31 nonlocal mean (NLM),4 a

¯lter based on principal components analysis with local pixel grouping (LPG-PCA)

in the spatial domain,6 spatially adaptive iterative ¯ltering (SAIF).50 Recently, the

powerful clustering-based denoising schemes have been proposed: KSVD43 and

KLLD3 that use learned dictionaries in di®erent ways, and a ¯lter based on gradient

histogram preservation (GHP).54 Their analysis has shown that most of the afore-

mentioned denoising techniques perform similarly (approximately at the same level

as standard DCT-based ¯lter22,26 and BM3D ¯lter11) whilst NLM and LPG-PCA

¯lters4,6 perform su±ciently worse.

Moreover, it is worth performing a more careful analysis. There are several rea-

sons behind this. The paper in Ref. 36 does not present data for the ¯lters GHP,

LPG-PCA, SAIF, KSVD, and KLLD.3,6,43,50,54 The paper in Ref. 34 gives data for

these ¯lters in the form of scatter-plots used to predict ¯ltering e±ciency which are

di±cult to analyze and compare. Besides, data is given as scatter-plots only for one

denoising e±ciency metric, improvement of peak signal-to-noise ratio (IPSNR),

O. Rubel et al.
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whilst for visual quality metrics such as Peak-Signal-to-Noise Ratio with accounting

Human Visual System and masking (PSNR-HVS-M),30 Multiscale Structural Simi-

larity Index Measure (MSSIM),52 and Feature Similarity Index Measure (FSIM)53

only e±ciency approximation curves are presented.34

Here we would like to mention two important aspects in texture ¯ltering that

explain our attention to the listed metrics. Firstly, visual quality of denoised images

is important for many applications.23,36,49 Thus, it is expedient to employ adequate

visual quality metrics23,28,41 in the analysis of ¯ltering e±ciency. Secondly, a positive

e®ect from denoising (noise suppression) is often comparable to a negative e®ect of

texture smearing or distorting.36 Then, the following question arises — is it worth

applying denoising at all? Accompanying questions are: can we predict expedience of

¯ltering for each particular case, and is it possible to reliably undertake a decision to

carry out or to skip denoising?

What can be said about visual quality and metrics that can be employed for its

characterization: there are no commonly accepted and fully reliable metrics. Studies

in this direction continue.23,28 If one wants to have a reliable assessment, it is rea-

sonable to employ several adequate visual quality metrics, and to check the consis-

tency of conclusions based on the analysis of these metrics. Below, we followed this

approach and considered the aforementioned metrics PSNR-HVS-M, MSSIM, and

FSIM, which are among the best for the case of grayscale image denoising.28

Concerning the prediction of denoising e±ciency: the e±ciency as we mean is(are)

the value(s) of some parameter(s) (indicator(s)) that can quantitatively characterize

changes in image quality due to ¯ltering. These can be the improvement of PSNR

(IPSNR), reduction of the output Mean Square Error (MSE) compared to a noise

variance in the original image, or other improvements of visual quality metrics. An

idea that such indicators of denoising e±ciency can be predicted (estimated before

image denoising is applied) has been put forward in papers.1,8 The way proposed in

Ref. 8 requires considerable computations and, thus, the time needed to derive a

prediction indicator is comparable to a ¯ltering procedure itself that restricts the

practical application of this approach.

In fact, one needs a simple, fast and accurate enough way to predict the e±ciency

quantitatively. The approach in Ref. 1 is just fast and simple. It implies calculation of

one input parameter over a limited (small) number of 8� 8 pixel blocks for which 2D

DCT is performed. This input parameter is then used for calculating the output

parameter. Input and output parameters are linked by a function that can be also

called approximation (prediction) curve. This curve could be obtained by regression

in o²ine mode (in advance, before applying it for prediction). Due to a small number

of blocks and simple calculations in them to determine the input parameter, the

prediction can be carried out much faster than ¯ltering. An important question is

then: how accurately is the e±ciency indicator estimated?

More or less extensive analysis of this accuracy is performed in papers Refs. 1, 35,

36, 34 showing that the accuracy depends upon many factors including what are the

Is Texture Denoising E±ciency Predictable?
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input and output parameters, how regression is calculated, what ¯lter is analyzed,

etc. Good prediction characteristics are already obtained for many modern ¯lters if

IPSNR is predicted. However, the prediction is considerably less accurate for

visual quality metrics. There exist methods to improve this accuracy33,38,51 that, in

particular, deal with a joint use of two or more input parameters. But, these options

have not been tested for texture image denoising yet.

Therefore, the main contributions of this paper are the following. Firstly, a

thorough analysis of the denoising e±ciency for texture images corrupted by noise of

di®erent intensity using several metrics is performed. It allows carrying out com-

parisons of the ¯ltering e±ciency for the aforementioned set of ¯lters and give well-

motivated practical recommendations on their use. In particular, it is shown that

NLM and LPG-PCA ¯lters29,30 do not perform well for texture images. Secondly, the

prediction accuracy is analyzed and ways to improve it are proposed. Also, it is

shown that the use of input PSNR as the second input parameter allows improving

prediction accuracy.

The paper is structured as follows. Section 2 brie°y describes the image/noise

model, considered test images, analyzed e±ciency criteria (metrics) and ¯ltering

techniques. Section 3 deals with the analysis of denoising e±ciency. Approaches to

the prediction of denoising e±ciency indicators are considered in Sec. 4. New solu-

tions to the prediction are presented in Sec. 5. Finally, the conclusions follow.

2. Image-Noise Model, Test Images, Metrics and Filters

2.1. Image-noise model and used test images

In our study, we use a typical simple observation model for noisy grayscale (or

components of multichannel) images

I n
ij ¼ I tr

ij þ nij: ð1Þ

Here i; j denote pixel indices, I tr
ij and nij are the true image value and noise, re-

spectively, i ¼ 1; . . . ; IIm and j ¼ 1; . . . ; JIm; IIm and JIm de¯ne the image size. It is

well understood that (1) is the idealized noise model.

Recall that texture is a prime interest. So, the images to be tested have to be

either fully textural or to contain large areas that belong to textures. Besides, we

analyze the case of grayscale images here and are interested in the result generality.

Taking these aspects into consideration, 12 textural images presented in Fig. 1 were

used in experiments same as in our previous paper.36 Nine images that have indices

1–8, and 11, have been taken from USC-SIPI Image Database44 and they can be

treated as fully textural images where the texture is the same for the entire image.

Two other test images #9 and #10 (Baboon and Grass) have been widely used in

optical image analysis. The last test image (#12) is a good example of aerial remote

sensing images of terrain having a complex (textural) structure; such textures are

often used in geomorphometric analysis.45

O. Rubel et al.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Fig. 1. Test texture images and their indices.
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Noise nij in the observation model (1) is supposed to be zero mean, additive, white

and Gaussian (AWGN), which is the most widely used model in image processing

literature36,48 and it is quite adequate for many practical situations. Moreover, if a

noise is signal-dependent or multiplicative, processing is often carried out using a

homomorphic or a variance stabilizing transform24,38,40 that makes noise to be

additive and close to Gaussian in the transformed images subject to ¯ltering. Note,

that the case of spatially correlated noise is more complicated, and some additional

pre-whitening may be required. A more complex model has been brie°y considered in

Ref. 36. Consideration of spatially correlated noise models falls out of the scope of

this paper; this could be a subject for future work.

A parameter that characterizes AWGN intensity is its variance �2
0 or a standard

deviation (STD), �0. In general, noise variance values used in the ¯lter performance

analysis vary in a very wide range where one might often meet noise standard

deviation (STD) values up to 100 in some recent studies. In our opinion, it is enough

to use three practical values where STD ¼ 5 relates to the case of hardly noticeable

noise16 for 8-bit represented images; the noise with such STD will be further treated

as a low intensity noise. The STD ¼ 10 corresponds to a middle intensity noise and

the case of STD ¼ 15 relates to an intensive noise that can be regarded as annoying.

2.2. Used metrics

Denoising e±ciency can be analyzed and quantitatively characterized in many dif-

ferent ways. Probably, the most common is to present and analyze the output MSE

(for a given noise variance)

MSEout ¼
XIIm

i¼1

XJIm

j¼1

ðI f
ij � I tr

ij Þ2=ðIIm � JImÞ ð2Þ

where I f
ij is a denoised image value for an ijth pixel. It is also possible to employ

the ratioMSEout=�
2
0 Ref. 1. One more standard parameter is the output PSNR or the

e±ciency indicator, called improvement of PSNR, determined as IPSNR ¼
10 log10ð�2

0=MSEoutÞ and expressed in dB.

Peculiarities of the Human Vision System (HVS) are in one way or another taken

into account in the visual quality metrics (also called HVS-metrics). For example,

the metric PSNR-HVS-M30 is determined as

PSNR-HVS-M ¼ 10 log
10
ð2552=MSEHVS-MÞ; ð3Þ

where MSEHVS-M is the mean square error calculated in the DCT domain for 8� 8

pixel blocks with weighting that takes into account two peculiarities of HVS: less

sensitivity to distortions for higher spatial frequencies and masking e®ects, typical

for texture. PSNR-HVS-M is also expressed in dB and, similarly to IPSNR, it is

reasonable to calculate and analyse an improvement of PSNR-HVS-M (IPSNR-

HVS-M) subtracting the input PSNR-HVS-M value from the output value.36

O. Rubel et al.
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Besides, we consider two other metrics called MSSIM52 and FSIM.53 These

metrics are among the best in literature, especially for conventional types of dis-

tortions such as di®erent types of noise, blur, distortions caused by lossy compression

or ¯ltering of noisy images.27 In contrast to PSNR-HVS-M, MSSIM and FSIM

metrics values vary from 0 to 1, where unity corresponds to the perfect visual quality.

Similar to IPSNR-HVS-M, one can analyze an improvement of MSSIM (IMSSIM)

and an improvement of FSIM (IFSIM) that are determined as di®erences in their

values before and after denoising. A question is: how informative are IMSSIM and

IFSIM without knowing MSSIM or FSIM for the original image. Note, that MSSIM

or FSIM for original (noisy) images cannot be accurately determined in practice since

the true image is absent.

2.3. Considered ¯lters

We have already mentioned above which ¯lters will be used. Our particular goal is to

consider state-of-the-art ¯ltering methods that belong to di®erent classes. Let us

brie°y describe them. The DCT-based ¯lter performs data processing in 8� 8 pixel

fully overlapping blocks using a hard thresholding of the DCT coe±cients with the

threshold set to 2:7�0. The BM3D ¯lter11 employs a search for similar blocks and two

stages of 3D DCT-based processing to ¯nd similar patches with thresholding and

weighted aggregation. Principles of operation for the wavelet-based ¯lter TI-WS10

and the nonlocal mean (NLM) ¯lter4 are well known. The BLS-GSM ¯lter31 exploits

a complex model of wavelet coe±cient statistics for their thresholding. Another

considered ¯lter, LPG-PCA, uses principal components analysis with a local pixel

grouping to suppress noise in the spatial domain.50 This ¯lter employs vector vari-

ables to represent neighbor pixels as training patches for block matching. LPG-PCA

can be performed iteratively to improve the denoising e±ciency starting with

adjusting the noise level from the second iteration.

The denoising performed iteratively to improve ¯ltering e±ciency has also been

applied for spatial domain ¯lters. Spatially adaptive iterative ¯lter43 (SAIF, avail-

able at https://users.soe.ucsc.edu/�htalebi/SAIF.php) processes iteratively the

image local content using some base ¯lter (we have used a NLM ¯lter for this

purpose) and automatically optimizes the iteration number with respect to the

mean-squared error estimated by the SURE risk estimator.42 We have also studied

nonlocal denoising techniques in the transform domain. Two e±cient clustering-

based denoising schemes have been proposed recently: KSVD3 and KLLD.6 These

¯lters learn dictionaries in di®erent ways. KSVD (available at http://www.cs.tech-

nion.ac.il/�elad/software/) represents the signal in a sparse and redundant form

and learns °exible and sparse dictionaries that are compact and provide e±cient

representation of sample data. This scheme has demonstrated its advantages per-

forming 3D denoising. Alternatively, KLLD (available at https://users.soe.ucsc.edu/

�priyam/K-LLD/) employs as features the local weight functions based on a

steering kernel regression and uses the SURE risk estimator for denoising e±ciency

Is Texture Denoising E±ciency Predictable?
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improvement. A special texture-oriented denoising method based on gradient his-

togram preservation54 (GHP, available at http://www4.comp.polyu.edu.hk/

�cslzhang/code) enforces the gradient histogram to be close to the reference gradient

histogram of the original image. The method estimates the reference histogram from

noisy observations of unknown images. For NLM, LPG-PCA, KSVD, and KLLD

¯lters, we have used parameter values recommended by authors in their scripts at the

above mentioned sites.

3. Analysis of Texture Denoising E±ciency

Recall that our simulations have been carried out for 12 test images depicted in

Fig. 1. Ten realizations of AWGN with aforementioned values of STDs (5, 10, and

15) have been added to each test image. For each test image and a given noise

variance, denoising has been performed by each of the ¯lters described above,

namely, DCTF, BM3D, BLS-GSM, NLM, LPG-PCA, SAIF, KSVD, KLLD, and

GHP. For each denoised image, the following parameters have been calculated:

. MSEout, then PSNRout and IPSNR;

. MSEHVS-M, then PSNR-HVS-Mout and IPSNR-HVS-M;

. output value MSSIMout and, then, IMSSIM;

. output value FSIMout and, then, IFSIM.

It is supposed that the input values of controlled metrics (obtained for input, i.e.

noisy images) are known or pre-estimated. The considered output metric values

obtained for a given test image and a given noise variance have been later averaged

for the analyzed noise realizations. Note that the values of the metrics IPSNR and

IPSNR-HVS-M change from one realization to another by no more than 0.2 dB,

whereas the values of other metrics did not change much.

The results for the noise STD equal to 5 are presented in Fig. 2. The ¯rst and the

most obvious observation is that the data for the seven best ¯lters (BM3D, BLS-

GSM, DCT, SAIF, KSVD, KLLD, GHP) are very similar — plots for them practi-

cally coincide (to show di®erence in performance of these ¯lters more clearly,

Figures 2(c) and 2(d) present the plots for IPSNR and IPSNR-HVS-M using another

scale). Meanwhile, the data for two ¯lters, namely LPG-PCA and NLM, are su±-

ciently worse than for other ¯lters according to all quality metrics.

The second observation is that, according to all visual quality metrics (in terms of

their improvements), even the best ¯lters do not, in fact, noticeably improve the

quality of the processed texture images. Meanwhile, the use of LPG-PCA or NLM

¯lters can lead to considerable degradations of the denoised image compared to the

original. According to the metrics IPSNR and IPSNR-HVS-M, the test image #10

seems to be the most \unfavorable" for NLM. This ¯lter smears the texture (see an

example inFig. 3(c)) thus degrading avisual quality.According to themetrics IMSSIM

and IFSIM, the test images #5 and #12 are the most unfavorable for LPG-PCA.

O. Rubel et al.
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The third observation is that, according to IPSNR, the image quality can be

slightly improved for some test images such as the test images #3 and #8. However,

the improvement is so small (0.5–1 dB in the former case and 1.5–2.0 in the latter

case) that it seems not worth applying ¯ltering for these test images as well if noise is

not intensive (for STD about 5 and less). Comparing image fragments in Figs. 3(a)

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Determined metrics for the considered ¯lters, AWGN with STD ¼ 5.

Is Texture Denoising E±ciency Predictable?
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and 3(b), one may conclude that they appear practically identical (noise is almost

invisible and/or texture masks it).

Let us now consider the case of the moderate noise (AWGN with STD ¼ 10).

The obtained results are presented in Fig. 4. The results for seven ¯lters (BM3D,

BLS-GSM, DCT, SAIF, KSVD, KLLD, GHP) are again similar to each other

according to all four metrics analyzed (to show a di®erence in performance of these

¯lters more clearly, Figures 4(e) and 4(f) represent the plots for �MSSIM and �FSIM

in a di®erent scale) whilst performance of the NLM and LPG-PCA ¯lters is still

considerably worse for most test images.

Here, the di®erence in the ¯ltering e±ciency for the considered test images

becomes essential. For example, IPSNR reaches 4 dB for the test image #8 whilst

IPSNR for the test image #10 is less than 1 dB for the best ¯lters. Visual quality does

not improve su±ciently for all, even the best, ¯lters. The IPSNR-HVS-M exceeds

1 dB only in a few cases; the metrics IMSSIM and IFSIM are also close to zero.

Despite IPSNR is about 4 dB for the test image #8, the visual quality metrics do not

indicate any improvement by ¯ltering. One fragment of the noise-free, noisy and

¯ltered test image #10 is presented in Fig. 5. Although noise is quite intensive, it is

seen only in quasi-homogeneous regions (as leaves or grass) that occupy a small

percentage of the total image area. Meanwhile, noise is masked by texture in other

regions. Denoising removes noise well in the aforementioned quasi-homogeneous

regions. In the textural fragments, noise is partly removed whilst texture is partly

smeared. In aggregate, there is an impression that the visual quality has been slightly

improved by ¯ltering, and it is possible to \agree" with the visual quality metrics

which indicate a small improvement.

Analysis of data in Fig. 4 shows that there is a certain agreement between results

for the metrics IPSNR and IPSNR-HVS-M. At least, the largest improvements are

observed for the test images #3, #8, #9, and #12. The metrics IMSSIM and IFSIM

are, in general, in agreement between each other indicating the largest improvements

for the test images #9 and #12. On average, we can state that the best performance

(a) (b) (c)

Fig. 3. The same fragment of noise-free (a), noisy (b), and denoised by NLM (c) test image # 2.

O. Rubel et al.
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is provided by GHP and BM3D ¯lters although ¯ve others perform only a little

worse.

Finally, let us consider the data obtained for intensive noise. The results are

presented in Fig. 6. Compared to the earlier considered cases of less intensive noise,

the improvements due to denoising are larger. The values of IPSNR vary from 1 to

5 dB for most ¯lters. Moreover, even for the ¯lters LPG-PCA and NLM the IPSNR

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Determined metrics for the considered ¯lters, AWGN with STD ¼ 10.

Is Texture Denoising E±ciency Predictable?
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values are positive for all test images except one (#10). Concerning the visual quality

metrics, LPG-PCA and NLM do not improve image visual quality. Other ¯lters, in

most cases, provide some improvement of the visual quality although this im-

provement is not large. According to the presented results, the ¯lter GHP performs

(a) (b)

(c) (d)

Fig. 6. Determined metrics for the considered ¯lters, AWGN with STD ¼ 15.

(a) (b) (c)

Fig. 5. The same fragment of noise-free (a), noisy (b), and denoised by GHP (c) test image #10.

O. Rubel et al.
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slightly better than its counterparts including BM3D. But, GHP ¯lter performs

slower and requires more memory than BM3D. Note that most ¯lters improve the

quality of the test image #8 in the largest degree.

The presented examples demonstrate that even if IPSNR-HVS-M exceeds 1 dB or

IMSSIM exceeds 0.01, the improvement of visual quality after denoising is not ob-

vious. There are even more problems with IPSNR, at least, in the case of texture

image denoising. The presented example (Fig. 7) demonstrates that even the values

(a) (b)                                         (c)

(d)                                       (e)                                        (f)

(g)          (h)                                        (i) 

Fig. 7. The same fragment of noise free image #1 (a), noisy image with STD ¼ 15 (b) and output images

for LPG-PCA (c), DCTF (d), SAIF (e), KSVD (f), KLLD (g), BM3D (h), and GHP (i).

Is Texture Denoising E±ciency Predictable?
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of IPSNR about 3. . .4 dB do not guarantee that visual quality of the texture images

has been improved by ¯ltering. An empirical rule can be the following: if a ¯lter

provides IPSNR over 3 dB and IPSNR-HVS-M over 1 dB, then one can expect that

the ¯ltering is expedient. Certainly, other empirical rules to perform denoising or to

skip it can be applied.

The di®erence between the input images and the denoised images for DCTF,

NLM, BM3D, and K-SVD ¯lters are presented in Ref. 34. It is shown there that the

di®erences in texture regions are larger than the ones in homogeneous regions. The

largest distortions are introduced by the NLM ¯lter.

4. Filtering E±ciency Prediction

By denoising e±ciency prediction, we mean that some indicator (metric) able to

quantitatively and adequately characterize ¯lter performance can be estimated

without (before) denoising itself. Then, this indicator is somehow used (analyzed) in

order to undertake a decision: whether it is worth denoising this image, what ¯lter to

use, what parameter of a chosen ¯lter to employ, etc.

The used prediction procedure proposed in Ref. 42 and further advanced in

Refs. 33, 37, 38 and 51 is based on the following assumptions:

. There are input statistical parameters that can jointly or separately describe image

complexity and noise intensity for an image to be denoised (we assume here that a

noise type and parameters are either known or pre-estimated with an appropriate

accuracy in advance. Currently, there are methods that provide an accurate es-

timation in a blind manner, see Ref. 11).

. There are indicators that are able to adequately characterize ¯ltering performance.

. There is a strict correlation (available in advance, before ¯ltering) that allows

estimating this indicator (indicators) with certain accuracy.

Then, the prediction itself for a given noisy image presumes the following steps:

calculation of input parameters and their use as arguments for estimating output

parameters (denoising e±ciency indicators).

Keeping this in mind, it becomes clear that there are certain requirements to such

a prediction. The main points of these requirements are the following: (1) input

parameters have to be calculated considerably faster than denoising; (2) output

parameters have to be estimated (predicted) accurately enough for further proces-

sing (decision undertaking, ¯lter parameter settings, etc.). Next, a set of subtasks

needs to be solved: (1) What input parameters to apply? (2) What output para-

meters to use? (3) How to establish dependence between input and output para-

meters? (4) What accuracy of output parameter estimation (prediction) is

appropriate for solving further tasks and how to provide such an accuracy? It is

di±cult to thoroughly study all these subtasks within the scope of a paper. Thus, let

us discuss what is already known and point out what subtasks will be considered

below.

O. Rubel et al.
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Earlier studies33,38,51 have shown the following.

Firstly, there exist quite simple statistics of DCT coe±cients which can serve as

good input parameters. They are, e.g. mean probabilities P�� that absolute values of

AC DCT coe±cients in a limited number of 8� 8 pixel blocks do not exceed ��0,

where � is a non-negative value of the order 0.5–2.0 and STD of AWGN �0 is

assumed a priori known or accurately pre-estimated. By saying a limited number of

blocks, we meant that the local estimates P̂��q; q ¼ 1; . . . ;Q are obtained in Q (at

least, 300–500) randomly selected blocks or more that allow estimating the afore-

mentioned probabilities quite accurately.33 In general, the estimated P�� depends

upon image properties and on the block positions, but the error in determination of

P�� is not the dominant factor in prediction accuracy.

Secondly, it has been already demonstrated that IPSNR for many ¯lters can be

predicted quite accurately for DCT-based ¯lters1,33,38,51 and some other denoising

techniques.34 Accuracy can be characterized di®erently where the root mean square

error (RMSE) of estimates is one of the most adequate and widely used quantitative

criteria.5 The results presented in Ref. 34 show that RMSE for IPSNR is smaller than

1 dB for most considered ¯lters if P0:5� is used as only one input parameter and simple

dependences of exponential or polynomial types are employed in the scatter-plot

data regression.

Now, we come to the methodology of obtaining the approximating (prediction,

regression) curves that can be calculated in advance. Figure 8 presents examples of

two scatter-plots obtained for metrics IPSNR (a) and IPSNR-HVS-M (b) on the

input parameter P2�. Horizontal coordinate of a scatter-plot point corresponds to the

metric value and the argument relates to the input parameter value for a given test

image corrupted by AWGN with a certain variance, and then denoised by a con-

sidered ¯lter. The data in Fig. 8 is presented for a DCT based ¯lter where 40 test

images have been used and STD values equal to 3, 5, 10, 15, 20, 25, and 30 cover a

wide range of possible values for input and output parameters.

(a) (b)

Fig. 8. Scatter-plots of IPSNR versus P2� (a) and IPSNR-HVS-M versus P2� (b).

Is Texture Denoising E±ciency Predictable?
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Examples in Fig. 8 additionally show regression curves where the following

simple ¯tted exponential functions are used: IPSNR ¼ 0:012 � expð6:7 � P2�Þ and

IPSNR-HVS-M ¼ 0:002 � expð8:3 � P2�Þ. Visual analysis of the data in Fig. 8 shows

the following. General tendencies in dependences of IPSNR and IPSNR-HVS-M on

P2� are clear: if P2� is larger, the metric is larger too. Meanwhile, a comparison of the

scatter-plots also reveals that it is much harder to predict IPSNR-HVS-M than

IPSNR since the former scatter-plot exhibits a larger dispersion of points. This is

con¯rmed by data in Ref. 34 where the RMSE values for IPSNR-HVS-M are mostly

larger than 1 dB.

One more criterion that directly characterizes ¯tting (regression) and su±ciently

in°uences the prediction accuracy is a goodness of ¯t parameter R2 (see Ref. 5) that

should approach unity if the output parameter dependence on the input parameter is

essential and ¯tting is performed well. As is demonstrated,34 R2 for most ¯lters

exceeds 0.9 for IPSNR and is smaller than 0.9 for IPSNR-HVS-M. Thus, an accurate

prediction of IPSNR-HVS-M is more problematic. A similar situation holds for

IMSSIM and IFSIM where R2 for them is about 0.85 for most of ¯lters.34 This means

that an improvement of prediction is more important and problematic just for the

visual quality metrics.

5. New Solutions for Prediction of Denoising E±ciency Indicators

As has been already demonstrated above and in Refs. 34, 33 and 51 it is more

problematic to predict visual quality metrics than IPSNR. Several ways to improve

the prediction (to increase R2 and to reduce ¯tting RMSE) have been already pro-

posed. They presume ¯nding a better input parameter,33 search and employment of a

better approximation function,51 and usage of two or more input parameters38 ag-

gregated in one or another way. In the latter case, di®erent statistics of local (cal-

culated in analyzed blocks) probabilities have been employed: mean, median,

variance, skewness, kurtosis. Below, we propose and study another approach where

two input parameters are used in which the ¯rst is statistical and the second char-

acterizes the quality of the original image subject to denoising.

Let us explain why we expect this approach to be reasonable. Firstly, looking at

the scatter-plots in Figs. 8(b) and 9, these scatter-plots can be divided into three

regions:

. P2� < 0:5 or P0:5� < 0:25 that mainly correspond to highly textural images cor-

rupted by non-intensive noise for which denoising is practically useless since im-

provement of quality according to all considered metrics is negligible;

. 0:5 � P2� < 0:9 or 0:25 � P0:5� < 0:35 (that relate to either middle complexity

images or to textural images corrupted by quite intensive noise) for which there is

an essential diversity of metric values and denoising seems to be expedient for

many, but not for all images;

O. Rubel et al.
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. P2� � 0:9 or P0:5� � 0:35 for which it is worth employing denoising with a high

probability of a positive result.

So, the main task is to improve prediction just for the second region

(0:5 � P2� < 0:9 or 0:25 � P0:5� < 0:35). Note, that IMSSIM less than 0.005 or

IPSNR-HVS-M smaller than 0.5 dB practically cannot be considered as a visual

quality improvement.37

Secondly, it has been shown in Refs. 26 and 51 that IPSNR about 3 dB is not

recognized as e±cient denoising if noise in original images is intensive. Therefore, we

can expect that the values of a metric that characterizes quality of the original

(noisy) image can be helpful for better prediction of the metric that describes the

image quality improvement due to denoising.

Let us now check our assumption for IPSNR and input PSNR used together.

Recall that input PSNR can be easily determined for a known noise type and

parameters and is able to characterize noise intensity irrespectively of image

complexity.

There are numerous methods to aggregate two or more input parameters. To have

an easy option of 2D curve ¯tting into scatter-plot of two arguments (see example in

Fig. 10), let us use the ¯tting (regression) de¯ned as Mout ¼ a expðbP0:5� þ cMinpÞ,
where Mout and Minp are used as output and input metrics, respectively; a; b, and c

are the determined parameters of the ¯tted function.

Analysis of the data in Fig. 10 shows the following. The tendency of IPSNR to

increase if P0:5� increases remains. There is also a tendency for IPSNR increasing if

Fig. 9. Scatter-plot of IMSSIM versus P0:5� and the ¯tted curve for DCTF.

Is Texture Denoising E±ciency Predictable?
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the input PSNR becomes smaller (the scatter-plot in Fig. 10 was obtained for the

conventional DCT-based ¯lter varying input PSNR from about 20 dB using noise

STD ¼ 30 to about 40 dB for noise STD ¼ 3).

As a result of 2D ¯tting for the case in Fig. 10, we have a ¼ 0:12; b ¼ 11:46, and

c ¼ 0:01. The parameters that characterize ¯tting accuracy are the following: R2 ¼
0:956 and RMSE ¼ 0:671. These parameters both con¯rm that ¯tting is quite good

and RMSE of IPSNR prediction is less than 1 dB. Meanwhile, the in°uence analysis

of both input parameters shows that the role of P0:5� is dominating: whilst the factor

expðbP0:5�Þ varies by about 100 times in the limits of P0:5� variation, the factor

expðcPSNRinpÞ varies only by about from 10 to 30%. In the case of ¯tting for the data

obtained for only one input parameter for predicting IPSNR as IPSNR ¼
a expðbP0:5�Þ, the parameters are the following: a ¼ 0:18; b ¼ 10:79; R2 ¼ 0:953 and

RMSE ¼ 0:695, i.e. ¯tting results are only slightly worse than in the case of two input

parameters.

The case considered above is good from di®erent viewpoints. Firstly, ¯tting is ¯ne

for both cases of one and two input parameters. Secondly, in practice, it is possible to

use one input parameter since this procedure is easier, but almost is of the same

accuracy when two input parameters are used. Thirdly, the second input parameter

can be calculated as well as PSNR ¼ 10 log10ð2552=�2
0Þ.

Unfortunately, such favorable conditions do not always take place in practice. For

example, consider the case of IMSSIM and input MSSIM which is hypothetical

(cannot be estimated) when the scatter-plot can be obtained by simulations. The

Fig. 10. Scatter-plot of two arguments for IPSNR and the ¯tted 2D function for DCTF.
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scatter-plot and the ¯tted curve IMSSIM ¼ a expðbP0:5� þ cMSSIMinpÞ is repre-

sented in Fig. 11 for the conventional DCTF. First of all, the input MSSIM variation

range is rather narrow (from about 0.7 to almost unity) although the same wide

range of noise standard deviation variation has been used. This means that though

the range from 0 to 1 is declared for the metric MSSIM, only a part of it is of value.

Moreover, input values are concentrated in the neighborhood quite close to unity. It

makes the use of the metric MSSIM quite complicated (the same relates to FSIM).

Secondly, IMSSIM value depends on both input parameters su±ciently. In the case of

two input parameters, a ¼ 0:02; b ¼ 13:68; c ¼ �3:96;R2 ¼ 0:935, andRMSE ¼ 0:02.

Negative values of the parameter c mean that the IMSSIM value increases if the

MSSIM value becomes smaller (this can be seen in Fig. 11). Depending upon the input

MSSIM value, the IMSSIM value varies by several times in the limits of the input

MSSIM variation. Therefore, it is desirable to take the input MSSIM value into ac-

count for the prediction (for the case in Fig. 9, ¯tting is characterized by R2 ¼ 0:856

andRMSE ¼ 0:029, i.e. it is su±ciently less accurate). Since the input MSSIM value is

not available (to our best knowledge, there are no methods to estimate it), the con-

sidered option to improve prediction cannot be realized in practice.

Let us give two more examples, both for the BM3D ¯lter. Figure 12 represents the

scatter-plot for IPSNR-HVS-M versus two input parameters. Fitting leads to R2 ¼
0:852 and RMSE ¼ 0:954. If IPSNR-HVS-M is predicted using only P0:5�, then

R2 ¼ 0:78 and RMSE ¼ 1:16. Obviously, a prediction is possible, but its accuracy is

worse than in the case of two input parameters. Consider that PSNR-HVS-M for a

noisy image again cannot be estimated.

Fig. 11. Scatter-plot of two arguments for IMSSIM and the ¯tted 2D function (surface) for DCTF.
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Figure 13 presents the scatter-plot for IFSIM versus two input parameters.

Similar to MSSIM, FSIM values vary in the limited range (0.7–1.0) and IFSIM

considerably depends on both input parameters. Fitting is rather good: R2 ¼ 0:906

and RMSE ¼ 0:017, but it is impossible to determine the input FSIM value in

practice. In the case of using only one input parameter (P0:5�), ¯tting is su±ciently

worse: R2 ¼ 0:836 and RMSE ¼ 0:022.

Summarizing the obtained results, it is possible to conclude the following. Firstly,

a prediction is, in general, possible not only for IPSNR and IPSNR-HVS-M (shown in

our previous publications33,38) but for some other HVS-metrics as well, e.g. IMSSIM

and IFSIM. Secondly, one potential way to improve the prediction accuracy is to use

more than one input parameter.

Some input parameters such as input PSNR-HVS-M, MSSIM or FSIM cannot be

determined. Therefore, we propose to use the input PSNR value as the second input

parameter keeping in mind that it can be determined for a noisy image. The results

obtained in this case for DCTF and BM3D ¯lter are given in Table 1 in columns

de¯ned as P0:5� þ PSNR under the assumption that the input PSNR value is esti-

mated without error.

As one can see, there is a su±cient accuracy improvement for predicting IPSNR-

HVS-M compared to the case of using one input parameter (see the data in Table 1,

columns marked as P0:5�Þ. There is practically no improvement in the accuracy of

predicting IMSSIM and IFSIM, and the results are worse than for a hypothetic case

Fig. 12. Scatter-plot of two arguments for IPSNR-HVS-M and the ¯tted 2D function (surface) for BM3D

¯lter.

O. Rubel et al.

1860005-20

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

18
.3

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
R

E
N

N
E

S 
1 

on
 0

6/
22

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



(see the data in Fig. 13 and in Table 1 columns marked as P0:5� þ RealPar). We have

also tried the noise standard deviation as the second input parameter employed

alongside P0:5�. The obtained data (not presented in Table 1) is very similar to the

earlier case using input PSNR. Hence, we prefer applying input PSNR as a more

general characteristic of noise. The best results for a practically realizable combi-

nation of two input parameters are marked in Table 1 in bold.

Table 2 presents results for accuracy of ¯tting characterized by RMSE. The same

notations are used. These results coincide well with the data in Table 1. If R2 in

Table 1 for a given ¯lter and metric is larger, RMSE in Table 2 is smaller. The

smallest RMSE for each ¯lter and practically realizable combination of two input

parameters is marked in bold. Although the RMSE values for IPSNR and IPSNR-

HVS-M are considerably larger than those for IMSSIM and IFSIM, the former two

metrics are expressed in dB and vary in in¯nite limits. Also, note that the accuracy of

predicting IPSNR-HVS-M is always worse than the accuracy of predicting IPSNR.

Similarly, the accuracy of predicting IFSIM is better than the accuracy of predicting

IMSSIM.

We have also analyzed another approach to improve the accuracy that was

proposed in Ref. 38. The input parameters are some statistics of the local estimates

P̂��q; q ¼ 1; . . . ;Q of the probabilities in blocks. The best results have been obtained

in Ref. 44 for the mean and variance (VarP) of the local estimates. Hence, let us

consider this combination in our experiments. The obtained results are presented in

columns marked as P0:5� þ VarP.

Fig. 13. Scatter-plot of two arguments for IFSIM and the ¯tted 2D function (surface) for BM3D ¯lter.

Is Texture Denoising E±ciency Predictable?

1860005-21

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

18
.3

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
R

E
N

N
E

S 
1 

on
 0

6/
22

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



T
ab

le
1.

R
2
fo
r
¯
tt
ed

ex
p
on

en
ti
al

cu
rv
es
.

D
C
T
F

B
M
3D

P
re
d
.
P
ar
am

.
P
0:
5�

P
0
:5
�
þ
R
ea
lP
ar

P
0:
5�

þ
P
S
N
R

P
0:
5�

þ
V
ar
P

P
0:
5�

P
0:
5�

þ
R
ea
lP
ar

P
0:
5�

þ
P
S
N
R

P
0:
5�

þ
V
ar
P

IP
S
N
R

0.
95

3
0
.9
5
6

0
.9
5
6

0.
95

3
0
.9
4
9

0
.9
5
3

0.
95

3
0.
94

9

IP
S
N
R
-H

V
S
-M

0.
77

2
0.
84

8
0
.8
5
4

0.
81

2
0.
78

0
0.
85

2
0
.8
5
6

0.
81

8

IM
S
S
IM

0.
85

6
0.
93

5
0.
86

5
0
.9
1
5

0.
85

6
0.
93

3
0.
86

4
0
.9
1
4

IF
S
IM

0.
84

3
0.
91

7
0.
84

7
0
.8
9
2

0.
83

7
0.
90

8
0.
84

0
0
.8
8
2

T
ab

le
2.

R
M
S
E
fo
r
¯
tt
ed

ex
p
on

en
ti
al

cu
rv
es
.

D
C
T
F

B
M
3D

P
re
d
ic
te
d
P
ar
am

et
er

P
0:
5�

P
0:
5�

þ
R
ea
lP
ar

P
0:
5�

þ
P
S
N
R

P
0:
5�

þ
V
ar
P

P
0:
5�

P
0:
5�

þ
R
ea
lP
ar

P
0
:5
�
þ
P
S
N
R

P
0:
5�

þ
V
a
rP

IP
S
N
R

0.
69

5
0
.6
7
1

0
.6
7
1

0.
69

3
0.
75

6
0
.7
2
7

0
.7
2
7

0.
75

7

IP
S
N
R
-H

V
S
-M

1.
10

3
0.
90

2
0
.8
8
5

1.
00

6
1.
16

4
0.
95

4
0
.9
4
3

1.
06

1

IM
S
S
IM

0.
02

9
0.
02

0
0.
02

8
0
.0
2
2

0.
03

0
0.
02

0
0.
02

9
0
.0
2
3

IF
S
IM

0.
02

1
0.
01

6
0.
02

1
0
.0
1
8

0.
02

2
0.
01

7
0.
02

2
0
.0
1
9

O. Rubel et al.

1860005-22

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

18
.3

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
R

E
N

N
E

S 
1 

on
 0

6/
22

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Analysis shows that there is a considerable improvement of the prediction accu-

racy for all visual quality metrics compared to the case of using only P0:5�. Obviously,

there is a di®erence between the considered metrics. For IPSNR-HVS-M, it is better

to use the input PSNR value as the second parameter. On the contrary, it is better to

apply the combination P0:5� þ VarP for IMSSIM and IFSIM.

The ¯tting curve parameters for the best combinations of two input parameters

(those marked in bold in Tables 1 and 2) are presented in Table 3. As is seen, IPSNR

can be predicted well even if only one input parameter is used (see data in Tables 1

and 2). The potential accuracy of the IPSNR-HVS-M prediction is worth improving

although the use of the second input parameter (input PSNR) helps to provide a

su±ciently better accuracy. For IMSSIM and IFSIM, it is worth using VarP as the

second input parameter and the R2 values are already about 0.9. This shows that a

rather good prediction is possible but improving its e±ciency is still worth trying. We

should stress besides that the ¯tting function parameters for a given metric (e.g.

IPSNR) are very close for the DCT and BM3D ¯lters.

One might think that the obtained prediction results relate only to DCT-based

¯lters since one input parameter is P0:5�. This is not so. The prediction approaches

are considerably more general. To demonstrate this, we have collected data for six

Table 3. Approximation functions for prediction of e±ciency indicators.

Filter Metric Formula

Formula

Parameters RMSE R2

DCTF IPSNR a � expðb � P0:5� þ c � PSNRÞ a ¼ 0:11608;

b ¼ 11:4586;

c ¼ 0:0088937

0.671 0.956

DCTF IPSNR-HVS-M a � expðb � P0:5� þ c � PSNRÞ a ¼ 0:001865;

b ¼ 18:4505;

c ¼ 0:057281

0.885 0.854

DCTF IMSSIM a � expðb � P0:5� þ c � VarPÞ a ¼ 8:7575e-06;

b ¼ 30:0195;

c ¼ �260:1751

0.022 0.915

DCTF IFSIM a � expðb � P0:5� þ c � VarPÞ a ¼ 8:3438e-07;

b ¼ 35:2152;

c ¼ �256:571

0.018 0.892

BM3D IPSNR a � expðb � P0:5� þ c � PSNRÞ a ¼ 0:11074;

b ¼ 11:6527;
c ¼ 0:0097466

0.727 0.953

BM3D IPSNR-HVS-M a � expðb � P0:5� þ c � PSNRÞ a ¼ 0:0015764;

b ¼ 19:0617;
c ¼ 0:057539

0.943 0.856

BM3D MSSIM a � expðb � P0:5� þ c � VarPÞ a ¼ 7:6169e-06;

b ¼ 30:4887;
c ¼ �264:8369

0.022 0.914

BM3D FSIM a � expðb � P0:5� þ c � VarPÞ a ¼ 6:1862e-07;
b ¼ 36:0104;

c ¼ �254:8657

0.019 0.882
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¯lters (namely, DCTF, BM3D, BLSGSM, SAIF, KSVD, and KLLD) into joint

scatter-plots — with one input parameter if only P0:5� is employed, and two input

parameters (pairs P0:5� and input PSNR, P0:5� and VarP). Fitting functions for one

and two arguments have been obtained. Two examples are presented in Figs. 14

and 15. The scatter-plot in Fig. 14 can be compared to the scatter-plot in Fig. 9. It is

seen that the main properties of these scatter-plots are very similar. Moreover, the

R2 and RMSE values are very similar, too. The only di®erence in these scatter-plots

is in the number of points (six times more points for the scatter-plot in Fig. 14).

If two parameters are used, the prediction is more accurate (see data in Fig. 15).

The value R2 increases and RMSE reduces su±ciently.

It is possible to present all obtained scatter-plots. Instead, to save space, only the

main conclusions and data are given. For IPSNR and IPSNR-HVS-M, it is worth

using input PSNR as the second parameter, whilst it is better to employ VarP as the

second parameter for IMSSIM and IFSIM. The obtained R2 and RMSE values are

very close to those presented for DCTF and BM3D in Tables 1 and 2. Here, we

present only the best results and parameters of the ¯tting functions in Table 4. As is

seen, the values of analyzed parameters are very close to the corresponding values in

Table 3. We can state that the provided approximations can be used for all six ¯lters.

In other words, for each particular image to be denoised, it is possible to predict what

the e±ciency indicators for the best existing ¯lters are.

Let us come back to the prediction accuracy. Clearly, it su±ciently depends upon

quality of ¯tting, but there are also other factors mentioned earlier. Obtaining the

Fig. 14. Scatter-plot of IMSSIM versus P0:5� and the ¯tted curve for all six ¯lters.
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scatter-plot and approximating functions can be considered as a special learning

task. If so, a question is to verify the prediction. For this purpose, we have taken an

extra 36 images from the database ESPL-LIVE HDR Image Quality database15 not

used for learning. Scatter-plots have been obtained for the DCTF ¯lter and then the

R2 and RMSE parameters have been calculated with respect to the earlier obtained

approximations (Table 4). The new data is collected in Table 5. Its analysis shows

Table 4. Approximation functions for prediction of e±ciency indicators for six ¯lters.

Metric Formula Formula Parameters RMSE R2

IPSNR a � expðb � P0:5� þ c � PSNRÞ a ¼ 0:129; b ¼ 11:404; c ¼ 0:006 0.739 0.950

IPSNR-HVS-M a � expðb � P0:5� þ c � PSNRÞ a ¼ 0:002; b ¼ 18:328; c ¼ 0:052 0.885 0.851
IMSSIM a � expðb � P0:5� þ c � VarPÞ a ¼ 9:801e-6; b ¼ 29:654; c ¼ �256:345 0.023 0.912

IFSIM a � expðb � P0:5� þ c � VarPÞ a ¼ 8:754e-7; b ¼ 34:892; c ¼ �246:875 0.018 0.879

Table 5. Approximation function veri¯cation for the DCTF.

Metric Formula RMSE R2

IPSNR a � expðb � P0:5� þ c � PSNRÞ 1.441 0.821
IPSNR-HVS-M a � expðb � P0:5� þ c � PSNRÞ 1.852 0.451

IMSSIM a � expðb � P0:5� þ c �VarPÞ 0.043 0.810

IFSIM a � expðb � P0:5� þ c �VarPÞ 0.044 0.732

Fig. 15. Scatter-plot of IMSSIM versus P0:5� and VarP and the ¯tted function for all six ¯lters.
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the following. As can be seen, RMSE values have increased almost twice and R2 have

reduced. The IPSNR-HVS-M prediction using a generalized approximation for all

¯lters is unsatisfactory and still requires some improving. For the other three metric

indicators, we can state that the designed prediction is quite general, stable, and

accurate.

From this analysis, it is possible to conclude the following. Firstly, we can rec-

ommend using individual approximating functions instead of generalized approx-

imations given in Table 4. Secondly, it is worth using more than 40 test images to

obtain scatter-plots for further curve ¯tting. Thirdly, some examples of scatter-plots

show that more complex functions can be used in ¯tting to obtain smaller RMSE and

larger R2. In spite of all these ideas and recommendations for further improvements

of the prediction accuracy, we can state that a prediction of denoising e±ciency

indicators is possible.

If an answer to the question in the paper title is positive, then the next question is

whether to apply denoising or not. The following procedure has been proposed in

Ref. 26. The initial step 1 is to skip ¯ltering if P0:5� < 0:25. For larger P0:5�, the rule

could be: apply ¯ltering if the predicted IPSNR value exceeds 3.5 dB and the pre-

dicted IPSNR-HVS-M value exceeds 1 dB.

Step 1 is motivated by an analysis of many scatter-plots, e.g. those given in

Figs. 9, 10, and 12. Improvements of the metrics in this case are negligible. The

situation changes if P0:5� exceeds 0.25. Then, a rather large IPSNR (>3.5 dB) is

needed to guarantee an essential improvement of the image quality. Concerning the

visual quality metrics, the following study has been carried out for images in the

database TID2013. A reliable denoising e±ciency measure is the opinion of observers

that have assessed a quality of noisy and ¯ltered images. Note, such images and

assessments exist for the databases TID2008 and TID2013.27,29 There are images

distorted by the AWGN (distortion type # 1) and distortions due to denoising

(distortion type # 9) in these databases. They contain 25 test images and four and

¯ve levels of distortions for TID2008 and TID2013, respectively. In our further

analysis, we have used data for the database TID2013 since it is more advanced.

Each database image is characterized by the corresponding mean opinion score

(MOS) values that can be treated as a reliable assessment of the image visual quality

(higher MOS corresponds to a better visual quality).

The scatter-plot of MOS vs PSNR-HVS-M values is presented in Fig. 16 where the

¯tted straight lines are given (points of red color relate to images corrupted by

AWGN, blue color points correspond to images with residual distortions after

denoising). These lines are in a good agreement (the angle between them is small).

This shows that the metric PSNR-HVS-M correlates with MOS well enough for the

analyzed types of distortions. If PSNR-HVS-M is about 35–40 dB (almost invisible

distortions), MOS values for the ¯ltered images are higher than for the images

corrupted by AWGN. The situation is slightly di®erent for PSNR-HVS-M smaller

than 30 dB. To be sure that the denoising is worth applying, one needs the predicted
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value of IPSNR-HVS-M to be positive. This explains why we have proposed using

the threshold equal to 1 dB at the second stage of our procedure.

The metrics IMSSIM and/or IFSIM can be potentially used in the decision un-

dertaking as well. However, their peculiarities described above prevent giving simple

and direct rules. More studies are necessary to provide such rules.

6. Conclusions

Analysis of denoising e±ciency has been carried out for several modern ¯lters with

the application to texture images corrupted by AWGN. Di®erent visual quality

metrics are employed in the analysis and comparisons. It is demonstrated that noise

removal from texture images is complicated, and even the most sophisticated

existing ¯lters often have low ¯ltering e±ciency in terms of the used metrics. Visual

examples con¯rm this observation. In such situations, it is reasonable to skip

denoising in order to save resources.

The corresponding decision can be undertaken in an automatic manner based on

the prediction of the parameters characterizing the ¯ltering e±ciency. Such a pre-

diction can be fast and accurate enough. Several ways to improve the accuracy are

put forward. The use of input PSNR as the second input parameter provides a

considerable improvement of a prediction accuracy. It is shown that a general pre-

diction approach is possible for the set of the best existing ¯lters despite the fact that

15 20 25 30 35 40 45 50
0

1
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PSNR-HVS-M

M
O

S

Additive noise
Image denoising

Fig. 16. Scatter-plots of MOS versus PSNR-HVS-M for noisy and ¯ltered images with ¯tted lines.
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they belong to di®erent groups according to their operation mechanisms and the

exploited image and noise properties.

Analysis has demonstrated that the prediction accuracy is worse for visual quality

metrics than for the conventional PSNR. Although the prediction accuracy has

been improved for visual quality metrics, it is worth continuing research in this

direction.
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