
HAL Id: hal-01622064
https://univ-rennes.hal.science/hal-01622064v1

Submitted on 16 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Porting a PCA-based hyperspectral image
dimensionality reduction algorithm for brain cancer

detection on a manycore architecture
R. Lazcano, D. Madronal, Ruben Salvador, Karol Desnos, Maxime Pelcat, R.

Guerra, H. Fabelo, S. Ortega, S. Lopez, G. M. Callico, et al.

To cite this version:
R. Lazcano, D. Madronal, Ruben Salvador, Karol Desnos, Maxime Pelcat, et al.. Porting a PCA-based
hyperspectral image dimensionality reduction algorithm for brain cancer detection on a manycore
architecture. Journal of Systems Architecture, 2017, 77, pp.101-111. �10.1016/j.sysarc.2017.05.001�.
�hal-01622064�

https://univ-rennes.hal.science/hal-01622064v1
https://hal.archives-ouvertes.fr

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Porting a PCA-based Hyperspectral Image

Dimensionality Reduction Algorithm for Brain

Cancer Detection on a Manycore Architecture

R. Lazcano
1
, D. Madroñal

1
, R. Salvador

1
, K. Desnos

2
, M. Pelcat

2
, R. Guerra

3
, H. Fabelo

3
, S. Ortega

3
, S. López

3
, G. M.

Callicó
3
, E. Juárez

1
, C. Sanz

1

1
Centre of Software Technologies and Multimedia Systems (CITSEM), Technical University of Madrid (UPM), Spain

2
IETR, INSA Rennes, CNRS UMR 6164, UEB, France

3
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Spain

{raquel.lazcano, daniel.madronal, ruben.salvador, eduardo.juarez, cesar.sanz}@upm.es

{kdesnos, mpelcat}@insa-rennes.fr

{rguerra, hfabelo, sortega, seblopez, gustavo}@iuma.ulpgc.es

Abstract— This paper presents a study of the parallelism of a

Principal Component Analysis (PCA) algorithm and its

adaptation to a manycore MPPA (Massively Parallel Processor

Array) architecture, which gathers 256 cores distributed among

16 clusters. This study focuses on porting hyperspectral image

processing into manycore platforms by optimizing their

processing to fulfill real-time constraints, fixed by the image

capture rate of the hyperspectral sensor. Real-time is a

challenging objective for hyperspectral image processing, as

hyperspectral images consist of extremely large volumes of data

and this problem is often solved by reducing image size before

starting the processing itself. To tackle the challenge, this paper

proposes an analysis of the intrinsic parallelism of the different

stages of the PCA algorithm with the objective of exploiting the

parallelization possibilities offered by an MPPA manycore

architecture. Furthermore, the impact on internal

communication when increasing the level of parallelism is also

analyzed.

Experimenting with medical images obtained from two

different surgical use cases, an average speedup of 20 is achieved.

Internal communications are shown to rapidly become the

bottleneck that reduces the achievable speedup offered by the

PCA parallelization. As a result of this study, PCA processing

time is reduced to less than 6 seconds, a time compatible with the

targeted brain surgery application requiring 1 frame-per-minute.

Keywords— Dimensionality Reduction; Hyperspectral

Imaging; Massively Parallel Processing; Real-time processing

I. INTRODUCTION

 Hyperspectral imaging (HI) collects both spatial and
spectral information from across the electromagnetic spectrum,
covering a wide range of wavelengths. This new technology
aims at identifying elements in an image by distinguishing
among their spectral signatures, which represent the reflectance
measured by the sensor for each wavelength [1]. Although the
original application field for this technology was remote

sensing [2] [3], its use has spread over several research fields,
such as astronomy, security, forensics and medicine [4]-[7].

Regarding the medical field, the ability to distinguish
among materials has become crucial for cancer detection
applications. This technology has already been applied in two
different scenarios: ex-vivo and in-vivo studies –i.e., with
images captured from a resected sample and directly taken
from the patient, respectively.

Related literature shows an increasing research interest
concerning the performance of in-vivo HI processing during
medical procedures to assist surgeons in discerning between
tumor tissues and healthy tissues [8] [9]. Furthermore, to help
surgeons in determining the margins of the tumor during
surgery, a real-time analysis of the hyperspectral image
becomes compulsory, considering this real-time as the time
needed for the hyperspectral sensor to capture a new image. As
nowadays hyperspectral sensors usually present a push-broom
scanning mechanism, real-time in this context can be set to a
maximum of 1 picture per minute. Neurosurgeons have stated
that a processing time of one image per minute is sufficient to
assist them during an operation [8]. Processing a diagnostic
helping image in less than 1 minute is not possible with the
existing alternative to HI, which is the Intraoperative Magnetic
Resonance Imaging (iMRI) that usually needs more than thirty
minutes to acquire one image [10].

Hyperspectral sensors generate large amounts of data,
which makes meeting real-time constraints challenging. As a
result, it is advisable to reduce the volume of data before
beginning with high-level processing. Therefore, a
dimensionality reduction stage is often performed as an
essential step during image preprocessing. This dimensionality
reduction method is usually accomplished through a principal
components transformation [11], which selects and retains the
most relevant information for classification.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Principal Component Analysis (PCA) is the most widely
used technique in remote sensing applications, specifically in
those using hyperspectral images. In this kind of images, the
adjacent bands are profoundly correlated, thus providing no
new information. PCA reduces the volume of information by
removing the dependencies among the different bands. To do
so, an eigenvector decomposition of the covariance matrix of
the original data is computed [11].

Sequential implementations of this algorithm do not have
the performance required to achieve the real-time constraint of
this use case. Hence, to reach real-time performance, this study
analyzes the intrinsic parallelism of the PCA algorithm and
exploits the resulting parallelized model to minimize the time
needed for an image to be processed. As this processing
requires an extensive usage of computational resources, High
Performance Computing (HPC) architectures are targeted.

HPC platforms are evaluated based on two criteria:
processing time and energy consumption. Although the former
has frequently been the metric chosen to assess HPC platforms,
the latter is gaining importance as a first-class performance
criterion.

Even though current medical applications rarely work
under energy requirements, it is not difficult to foresee future
clinical applications where portable and real-time HI
processing becomes a crucial tool to support medical decisions.
In that sense, manycore processors are today some of the most
efficient architectures [12] [13] for the task. For instance, the
Kalray Massively Parallel Processor Array (MPPA) in its
Bostan version (MPPA-256-N) requires only 5W in average
operating mode [14].

The main contribution of this paper is the study and
implementation of a PCA algorithm and the evaluation of its
performance on an HPC MPPA manycore architecture.
Additionally, this research also aims at studying the effect of
the internal communications within the manycore architecture
when the degree of parallelism is increased. This paper extends
the results of [15] with a new discussion section to compare the
current work with the state-of-the-art. In addition, the results of
a new parallel approach and a better exploitation of the
platform parallelism are analyzed. At last, a new data set has
been described and employed to obtain the results.

The rest of the paper is structured as follows. First, Section
II describes the target MPPA platform together with the studied
PCA algorithm. Secondly, Section III focuses on the
implementations. Afterwards, Section IV shows the
experimental results, and Section V provides a comparison
with some state-of-the-art implementations. Finally, Section VI
draws the main conclusions of this research work.

II. HARDWARE AND ALGORITHM

A. MPPA-256-N Kalray Platform

The HPC platform selected for this research is the Kalray
MPPA-256-N, whose structure is shown in Fig. 1. This
platform is a single-chip manycore processor that gathers 256
cores organized in 16 clusters running at up to 600MHz. It also
contains two quad-core Input/Output (I/O) subsystems
responsible for handling the communications between a host

processor and the clusters, which are interconnected by a
Network-On-Chip (NoC).

Each cluster gathers 2 MB of memory shared among the 16
cores within the cluster. In addition, there is also a Direct
Memory Access (DMA) engine managing the communications
between this memory and the NoC, and a Resource
Management (RM) core responsible for starting the NodeOS
operating system and handling events and interrupts for the
whole cluster.

RM RM RM RM

RM RM RM RM

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

I/O Subsystem

I/O Subsystem

I/
O

 S
u

b
sy

st
e

m

I/
O

 S
u

b
sy

st
e

m

PCIe
DDR

...

PCIe
DDR

...
Fig. 1. The Kalray MPPA-256-N: chip (left) and cluster (right) structures

B. Principal Component Analysis

As mentioned in Section I, Principal Component Analysis
is the most well-known and widely used technique for data
shrinking in HI applications, proving to be a powerful tool for
hyperspectral image processing [16].

As hyperspectral images are composed of spectral
information gathered from an extensive number of narrow
bands, this information is frequently deeply correlated, thus
containing a large amount of redundancies. Hence, these
redundancies should be eliminated, reducing the image size
and, therefore, its processing cost.

Specifically, PCA reduces the data volume by converting
the original data into a subspace of smaller dimension where
the image is rearranged as a decreasing function of its spectral
information – i.e., accumulating the useful spectral information
in the first bands–. To do so, PCA computes the covariance
matrix of the original data, extracts its associated eigenvectors
and projects the image onto these eigenvectors. Finally, the
algorithm finishes by selecting the number of bands –or
principal components– to retain. Algo. 1 provides the
pseudocode of the algorithm, which is divided in four stages:

i. Image preprocessing: It is the first step of the
algorithm, and it centers the image by computing and
removing the average of each spectral band of the
original image, composed by N pixels per M spectral
bands. It shall be noted that the monochrome image
associated to a frequency band is treated as a vector,
ignoring the spatial relationship among pixels.

ii. Covariance computation: This stage computes the
covariance matrix associated to the original image
multiplying the preprocessed image by its transpose.

iii. Eigenvector decomposition: This step extracts the
eigenvectors associated to the covariance matrix
computed in the previous stage.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

iv. Projection and reduction: This stage combines steps 4
and 5, and it projects the original image onto the set of
eigenvectors to store then the first P principal
components, where P represents the number of
principal components –or bands– to retain.

Algorithm 1: Principal Component Analysis

Input: Hyperspectral image Y (N x M matrix)

 Step 1: X = Remove the average of each band of Y

 Step 2: Covariance matrix C = XT·X

 Step 3: E = Eigenvector decomposition of C

 Step 4: Projection Q = Y · E

 Step 5: Reduce Q to P principal components

Output: Reduced hyperspectral image Q' (N x P matrix)

Algo. 1. PCA algorithm

Related with the eigenvector decomposition, traditionally
the conventional method for extracting them has involved
computing the inverse matrix and finding the roots of its
characteristic polynomial [17]. However, for extensively large
matrices –e.g. hyperspectral images– this procedure is not
feasible, therefore other methods shall be considered.

In [17], Panju summarizes some of the iterative
methodologies for addressing this issue. These approaches
work by refining approximations of the eigenvectors in each
iteration and, consequently, their convergence depends on the
criterion set for the approximation accuracy. However, iterative
methods usually work in detriment of real-time, as they are
very demanding in terms of processing time. In order to
minimize this effect, Jacobi method has been selected in this
research due to its high degree of parallelism.

Jacobi method [18][19][20] presents another interesting
advantage: besides computing the eigenvalues of the input
matrix, it also extracts the eigenvectors associated to them. As
the latter are the ones that are of interest for PCA algorithm, a
method that does not need extra computation for calculating
them is a good match for the studied problem.

This methodology only applies to real and symmetric
matrices, and it aims at approximating the original image to a
diagonal matrix by applying planar rotations in successive
iterations. González et al. provide an extensive description of
this method in [21], including the mathematical basis.

This method applies rotations to the largest off-diagonal
element with the objective of zeroing it. It should be noted that,
at each step, it is possible to undo the zeros reached in previous
iterations. However, it has been demonstrated that the overall
effect is the magnitude decrement of the nonzero elements, as
the sum of the squares of all the off-diagonal elements is
proven to be reduced after each iteration. These iterations are
repeated until all the off-diagonal elements become smaller
than the provided stop condition (ɛ), which is an input
parameter of the algorithm.

The convergence of this algorithm has been demonstrated
for two different strategies [18], regarding the order in which
the elements are chosen to be zeroed.

1) Classical method: As described before, this method

zeroes the largest off-diagonal element in each rotation.

2) Cyclic method: This method zeroes the off-diagonal

elements in a given order, e.g. row by row.

The first method has been proven to guarantee the least
number of rotations, but the second one is typically faster, as it
avoids the location of the largest element in each iteration,
which is a quadratic order operation.

 Specifically, each Jacobi iteration performs the following
steps:

 First, the next off-diagonal element to be zeroed is
selected, following one of the two described methods
(classical or cyclic Jacobi).

 Secondly, the Jacobi rotation matrix (P) is calculated,
which is similar to the model shown in equation (1).
The dimensions of this matrix equal those of the
covariance matrix C, which is the input for the Jacobi
method.

 The α value depends on the element selected to be
zeroed –Cij, where i represent the rows of the
covariance matrix and j represents the columns–, so it
must be recalculated at the beginning of each
iteration. In each iteration, equations (2) to (5) are
applied to calculate this value and, hence, the Jacobi
rotation matrix.

 (

)

 √

√

 Once the matrix P has been computed, the operation
provided in (6) is performed. As a result, the off-
diagonal element is now zeroed in C1, and also its
symmetric counterpart, as C has to be symmetric. For
the next iteration, C1 will be considered as the input of
Jacobi algorithm.

Each iteration repeats the described steps, zeroing one
element at a time. However, the algorithm does not stop when
all the elements have been chosen to be zeroed once, due to the
fact that, in each iteration, several previous zeros can be
undone. That is the reason why a stop factor is needed.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Once the last iteration finishes –K– and the convergence is
reached, the eigenvalues are stored in the diagonal of CK, as
shown in (7), where Pi are the successive Jacobi rotation
matrices.

Likewise, the eigenvectors associated to these eigenvalues
can be calculated as depicted in (8), where the eigenvectors are
placed in the columns of E.

As each rotation affects only a couple of rows and columns,
several rotations can be calculated simultaneously, thus
providing a parallel method.

Specifically, in each iteration the elements that are changed
in the input matrix are the ones belonging to the concerned
rows and columns, so several elements can be processed in
parallel if they do not share any of those positions. For
instance, elements C23 and C45 could be processed in parallel;
on the contrary, C23 and C34 could not be simultaneously
zeroed.

Next section will provide a detailed description of the
adaptation of this method –along with the adaptation of the rest
of the operations involved in PCA algorithm– to the
architecture under study.

III. IMPLEMENTATION

A. Database

The conducted experiments have been tested upon
hyperspectral images extracted from the HELICoiD project
database [22]. The in-vivo human brain surface images were
captured during neurosurgical operations performed at the
University Hospital Doctor Negrin of Las Palmas de Gran
Canaria (Spain) and at the University Hospital of Southampton
(UK).

To capture these images, the HELICoiD setup described in
[23] has been used. Two hyperspectral sensors compose this
setup: one in the visible and near infrared spectral range
(VNIR), covering from 400 nm to 1000 nm, and the other in
the near infrared range (NIR), covering from 900 nm to 1700
nm of the electromagnetic spectrum. Both cameras are attached
to a push-broom scanning unit, together with an illumination
system that provides a cold light to protect the exposed brain
surface from the heat generated by the lamp. As the cameras
take the images with a push-broom mechanism, each image
needs from 1 to 2 minutes to be captured –depending on the
spatial size of the image–, which can be considered as the
definition of the surgery real-time constraint.

Specifically, two different hyperspectral images have been
used to assess the algorithm. A preprocessing stage has
spatially limited the image to the area of interest and it has
reduced the spectral resolution to 128 bands [24]. As a result,
the first image –hereafter case 1– presents a spatial resolution
of 377 lines and 329 samples –i.e., 124033 pixels–, while the
second –hereafter case 2– contains 479 lines and 552 samples –
i.e., 264408 pixels–. Fig. 2 gathers both hyperspectral images,
case 1 on the left and case 2 on the right.

Considering that these images are stored as float numbers (4

Bytes), the required memory for storing each image is 60.6

MB for case 1 –i.e. 124033 pixels x 128 bands– and 129.1 MB

for case 2 –i.e. 264408 pixels x 128 bands–, respectively.

Fig. 2. RGB representation of the hyperspectral images extracted from the

HELICoiD database: case 1 (left) and 2 (right)

B. Target environment

As mentioned in Section I, the aim of this work is to
achieve real-time while processing hyperspectral images
during a surgical procedure. Due to the large amount of
information contained in these images, the computational
complexity is such that sequential implementations of the
algorithms do not provide enough performance to fulfill these
requirements; thus, HPC platforms become a necessity.

The Kalray MPPA-256-N appears to be an optimal
solution, as it is particularly competitive in terms of energy
efficiency, which is a parameter of growing interest.
Specifically, the target environment is a workstation that
includes an MPPA-256-N chip, whose simplified block
diagram when connected to a host PC is provided in Fig. 3.
The MPPA architecture presents three different levels: the host
module, the I/O interface and the 256 processing units, which
are organized in 16 clusters. The host module is responsible for
managing the global functioning, and it communicates with the
I/O interface through a PCI express (PCIe) connection; it also
presents the largest memory space, with more than 10 GB of
available memory. Similarly, the I/O interface handles both the
communications with the host –through the PCIe connection–
and with the clusters –through a NoC interface–; as for the
available memory, it contains a 4 GB external DDR. Finally,
the processing cores are responsible for the processing itself.
As this chip contains 256 processing cores, the potential level
of parallelism is very high. Nevertheless, this platform also
presents an important restriction for hyperspectral image
processing, which is the reduced amount of memory within
each cluster –a 2 MB block of shared memory among the 16
internal cores of each cluster–. Furthermore, some of this
memory is reserved for both program code and operating
system, so the available memory for storing data cannot
represent more than 1.5 MB, approximately.

As hyperspectral images gather extremely large volumes of
data, this is an important limitation. As described before, the
images used during this work require 60.6 MB –case 1– and
129.1 MB –case 2–. Therefore, it seems obvious that, to
process an entire image, the algorithm must be split into
several iterations. Subsequently, iterating the processing of the
image highlights another important limitation, which is the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

communication between the I/O subsystems and the clusters.
This communication is very demanding in terms of
performance, so it seems obvious that the processing time will
be proportional to the number of iterations needed to complete
the algorithm execution.

Fig. 3. MPPA-256-N simplified block diagram to show the memory
hierarchy

C. MPPA-256-N implementation

Taking into consideration the previous features, this section
provides a detailed description of the implementation of each
part of the PCA algorithm, highlighting its intrinsic
parallelism. It shall be noted that this implementation is an
extended work of that presented in [15].

1) Preprocessing: To compute the covariance matrix of

the original data, first the image ought to be mean-centered.

To do so, the average of each spectral band is calculated and

removed. This operation is band-wise parallelizable: the

original matrix is divided among the clusters, and the internal

cores compute and remove the average of the bands received

in each cluster. Due to the high dimensionality of the image

and the cluster memory limitation, each cluster can only

compute the average of one band at a time; therefore, each

iteration processes 16 bands simultaneously. As a result, each

core computes one portion of the average of the band; then,

the master thread –i.e., the core executing the main function–

computes the global average and subtracts it.

2) Covariance matrix computation: The resulting matrix is

then multiplied by its transpose, thus generating the

covariance matrix. As neither of these matrices fit into a

cluster, this computation needs to be iterated; further, due to

the dimensions of the matrices involved in the multiplication,

this operation is the main bottleneck of the algorithm.

Considering that the memory needed to store a row –i.e., a

band– of the matrix is 0.48 MB in case 1 and 1 MB in case 2,

there are two different cases:

 For the smallest image –case 1–, two bands fit into a

cluster, so each cluster can compute one element of

the covariance matrix at a time. This means that, in

each iteration, 16 elements of the covariance matrix

can be computed simultaneously. As the dimensions

of the resulting matrix are 128×128, 1024 iterations

are required to complete this computation.

 On the other hand, for the largest image, even two

bands exceed the memory restriction, so at least two

clusters must be used to compute just one element of

the covariance matrix. To do so, instead of sending a

whole row to each cluster, all the bands are divided

in half, and each cluster only receives the halves that

should be multiplied (as a matrix multiplication is

just a concatenation of dot products). With this

method, the number of iterations is thus doubled.

In both cases, the cores within each cluster compute their

corresponding share of the vector multiplication –as they are a

concatenation of dot products– and send it to the I/O

subsystem, which adds them and stores the resulting value.

Nevertheless, it should be noted that, as multiplying a

matrix by its transpose generates a symmetric matrix, only the

upper triangle of the covariance matrix needs to be computed,

thus reducing the iterations in half for both cases.

Furthermore, it is also worth noting that, in each iteration,

two different transmissions are required, one for each of the

bands –or half-bands– intervening in the multiplication.

Considering that, as mentioned before, the communications

are one of the setbacks of the architecture under study, the

impact of this process on the overall execution time is

presumably very high, as the time consumed in the data

transfers would be much higher than the one consumed in the

processing itself.

For that reason, another method has also been proposed for

avoiding these data transfers. This method consists of taking

advantage of the host of the platform to remove the memory

restriction and, thus, all the I/O-cluster communications.

Although the processing time will certainly increase –as the

multiplication will not be parallelized–, the time saved in the

communications will hypothetically compensate this increase.

These two solutions will be evaluated in Section IV.

3) Eigenvector decomposition: This stage deals with the

implementation of the Jacobi method introduced in Section II.

Among all the existing variations, the cyclic Jacobi [21] has

finally been implemented. As described in Section II, the main

variation of this method is that, instead of choosing the

elements to be zeroed by finding the largest off-diagonal

element, it chooses the next element in a given order, e. g.,

row by row. As the covariance matrix (128×128) fits into a

cluster, the use of only one of them for implementing this step

removes all the internal communications, as all the cores

wihtin a cluster share the same memory. In addition, as Jacobi

method is highly parallelizable, all cores of the chosen cluster

have been used for implementing this step. As a result, this

method has been implemented as follows:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 The master thread –i.e., the core executing the main

function– is responsible for handling the search of the

next element to be zeroed. In each iteration, this

thread verifies that the stop condition is not fulfilled,

chooses a maximum of 15 different new elements to

be processed in parallel, calculates the rotation matrix

and sends it to the processing cores. This process is

repeated until the stop condition is reached by all the

off-diagonal elements. Once this happens, this thread

sorts the eigenvalues in a descending order, as well as

their associated eigenvectors.

 Likewise, the processing cores perform the operation

shown in (9), where i represents the current iteration,

Pi is the rotation matrix of the iteration i, Ci-1 is the

covariance matrix modified in the previous iteration

and Ci is the resulting matrix –i.e., the covariance

matrix with several elements already zeroed–. It shall

be noted that (9) is a generalization of equation (6)

described in Section II.

4) Projection and principal components selection: In this

step, the original matrix is projected onto the set of

eigenvectors and the first P bands –i.e., principal components–

are stored. To reduce the complexity of the projection, instead

of using the whole set of eigenvectors only the subset of the

first P ones is utilized. Specifically, as for this application only

the first principal component is required [25], the set of

eigenvectors is thus reduced from 128 to 1. This also reduces

the projection complexity, since instead of multiplying two

matrices, just one matrix –the original data– by a vector –the

first eigenvector– multiplication is required. Related with the

parallelization, the method is similar to the one applied in step

2, but much simpler. As the eigenvector fits into a cluster, it is

broadcasted to all of them and then the original matrix is split

and sent to the clusters in a pixel-wise order iteratively –i.e., in

groups of 128 elements–, until all the matrix is multiplied by

the eigenvector. From the point of view of the parallelization

within the clusters, each one receives blocks of 1024 pixels, so

each core projects 64 pixels onto the eigenvector and returns

the results to the I/O subsystem.

Consequently, concerning the MPPA-256-N resource
usage, the PCA algorithm is divided into two blocks: steps 1, 2
and 4 use all the available resources (16 clusters and 16 cores
per cluster), while step 3 only uses the 16 cores of one cluster.
It should be noted that, for the alternative solution to step 2, all
platform resources are idle, as the processing is performed in
the host.

IV. RESULTS

In this section, the results obtained while exploring the
proposed solutions are evaluated in terms of processing time.
First, the sequential version of the PCA algorithm on the
MPPA-256-N is assessed; then, the parallelism is exploited,
locating the main bottlenecks. After that, the communication
cost is evaluated in order to analyze its effects on the overall

computation time. Finally, the second proposed approach for
computing the covariance matrix is evaluated. It should be
noted that the results presented in this section have been
measured when setting the stop factor, ε, to the maximum
value that provides a final result with a relative error lower
than 1% when compared to a Matlab version.

A. First approach

In order to address the analysis of the obtained results, the
different stages of the PCA algorithm described before are
characterized. To do so, as the MPPA architecture presents two
different levels of parallelism, first the sequential
implementation will be studied; after that, the first level of
parallelism will be evaluated by distributing the computational
load among the 16 clusters, but using just 1 core in each one.
Finally, the second level of parallelism is assessed by using all
the cores of each cluster, instead of just one.

Table 1 provides the execution time for each of the stages
when they are processed in a sequential way –i.e., using only
one core of one cluster–. As expected, the main bottleneck of
the algorithm is the covariance computation stage, as it
consumes more than a 92% of the global execution time.

TABLE I. AVERAGE TOTAL EXECUTION TIME (MS) - SEQUENTIAL

Experiment Step 1 Step 2 Step 3 Steps 4-5 Global

Case 1 900.7 40,870.5 1,759.8 840.2 44,305.2

Case 2 1,908.9 81,503.4 1,849.7 1,759.8 87,321.8

Likewise, Table II presents the execution time of each stage

of the algorithm, when their computational load is divided
among the 16 available clusters –i.e., using the 16 clusters, but
just 1 core of each of them–. As a result, it can be noticed that,
although the execution time has decreased, the global speedup
achieved is rather low, as ideally it should grow up to 16 but in
reality it is, approximately, 1.5. This limitation is basically due
to data broadcasting: as hyperspectral images contain
extremely high volumes of information, the transmission of the
images to the clusters could be such that it could overcome any
speedup the processing itself may achieve. To check whether
this hypothesis is correct, first the second level of
parallelization is studied and, after that, the effect of
communications is evaluated.

TABLE II. AVERAGE TOTAL EXECUTION TIME (MS) – FIRST LEVEL OF

PARALLELISM

Experiment Step 1 Step 2 Step 3 Steps 4-5 Global

Case 1 402.7 26,699.4 1,759.8 380.3 29,244.2

Case 2 860.4 52,990.1 1,849.7 839.6 56,540.2

Table III gathers the equivalent results to those presented in

Tables I and II, but exploiting the whole architecture, i.e., using
the 16 cores of the 16 clusters. As can be observed, the
speedup achieved is almost negligible when compared to the
previous one, since it only accelerates the computation by a
factor of 1.1, approximately. Again, the reason to explain this
behavior is the communications: supposing that the previous

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

hypothesis was correct, it explains this new behavior, as it
means that the processing itself cannot be further parallelized,
and hence all the measured time is being wasted for
communications. To prove whether this hypothesis is true, next
subsection evaluates the impact of communications.

TABLE III. AVERAGE TOTAL EXECUTION TIME (MS) – SECOND LEVEL OF

PARALLELISM

Experiment Step 1 Step 2 Step 3 Steps 4-5 Global

Case 1 393.3 25,726.1 350.9 369.9 26,840.2

Case 2 831.9 51,039.5 370.3 779.8 53,021.5

Before getting into the communication assessment, the

behavior of the Jacobi algorithm should be highlighted. As
described in Section III, Jacobi has only been implemented
using one cluster due to the communications cost, so there is
no difference in the time measured for Jacobi in Tables I and
II. As for the results presented in Table III, it can be observed
that, in this case, the Jacobi algorithm is accelerated by a factor
of 5, approximately. This result supports the communications
hypothesis: as described before, the input of the Jacobi
algorithm –i.e., the covariance matrix– fits into a cluster; as a
result, this step is the only one in which there are not any
communications that could cause a delay in the processing of
the algorithm. Additionally, there are two main reasons as to
why the speedup for Jacobi step is still not near the ideal –16–.
Firstly, the Jacobi algorithm is an iterative process that aims at
zeroing one off-diagonal element at a time, and the order in
which these elements are chosen affects the number of
iterations, as each iteration can undo the zeroes achieved in the
previous one and, hence, the number of iterations needed to
reach the convergence criterion may vary. Secondly, the Jacobi
algorithm has data dependencies, so its convergence may vary
depending on the nature of the data –e.g., their dynamic range.

B. Communications assessment

This subsection deals with the evaluation of
communications, so as to check whether they become a
bottleneck or not. To do so, the measurements previously
shown have been divided in two: transmission (hereafter, Tx)
and processing (hereafter, Px). These measurements are
gathered in Tables IV and V –case 1 and case 2, respectively–.
As can be observed, each table contains the three
configurations described before: the sequential execution (1
cluster – 1 core), the first level of parallelism (16 clusters – 1
core) and the second one (16 clusters – 16 cores).

TABLE IV. DETAILED SYSTEM EXECUTION TIME (MS) – CASE 1

Cluster-Core 1-1 16-1 16-16 Speedup

Step 1
Tx 329.8 329.8 329.8 1

Px 541.4 50.9 5.1 106.2

Step 2
Tx 25,609.9 25,609.9 25,609.9 1

Px 15,257.3 1,089.4 89.9 169.7

Step 3
Tx 0.34 0.34 0.34 1

Px 1,759.8 1,759.8 350.9 5.0

Cluster-Core 1-1 16-1 16-16 Speedup

Steps 4-5
Tx 329.8 329.8 329.8 1

Px 470.9 30.9 4.3 109.5

Global
Tx 26,269.8 26,269.8 26,269.8 1

Px 18,029.4 2,931.1 470.5 38.3

The most important conclusion that can be extracted from
these tables is that, indeed, the time needed for the data to be
transmitted to the clusters is extremely high. The most
representative example of this behavior is the covariance
matrix computation (step 2): as shown in both tables, even in
the sequential execution the transmission time already
consumes more than 60% of the covariance execution time. As
a result, when the processing is fully parallelized, more than
99% of the covariance execution time is dedicated to data
transmission.

The main reason why the communications delay is so large
is that the I/O interface is executed sequentially, that is, the
communications are not parallelized. This is shown in both
tables, where there are no speedups for any communications.
For instance, in step 1, the whole image is needed. As a result,
when only one cluster is used, the entire image is sent to it.
Conversely, when several clusters are involved, the image is
distributed among them –i.e., the same amount of data is
transmitted–, but the transmission time remains the same
because the I/O core sends the information sequentially.
Furthermore, each transmission is blocking, so until the
transmission to the first cluster has finished, the second
transmission cannot begin.

TABLE V. DETAILED SYSTEM EXECUTION TIME (MS) – CASE 2

Cluster-Core 1-1 16-1 16-16 Speedup

Step 1
Tx 721.9 721.9 721.9 1

Px 1,177.4 86.1 11.2 105.2

Step 2
Tx 50,796.8 50,796.8 50,796.8 1

Px 30,706.2 2,193.3 178.2 172.3

Step 3
Tx 0.34 0.34 0.34 1

Px 1,849.7 1,849.7 370.3 5.0

Steps 4-5
Tx 721.9 721.9 721.9 1

Px 999.6 68.0 9.2 108.6

Global
Tx 52,240.9 52,240.9 52,240.9 1

Px 34,732.9 4,247.1 642.3 54.1

Finally, related with the speedups achieved on the
processing itself, it can be observed that, in general, they are
rather large –more than 100, without taking into consideration
the Jacobi step, as it is not distributed among the 16 clusters–,
which proves that the parallelization potential of this
architecture is very high.

As a result, the initial hypothesis has been proven correct:
although the potential parallelism offered by an architecture

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

such as the MPPA-256-N is rather large, the communications
within the chip quickly become the main bottleneck of data
consuming algorithms, as PCA.

C. Second approach

The previous subsection has proven right the initial
hypothesis about the communications. Now, as a proof of
concept, the second approach proposed in Section III is
analyzed.

This approach aims at proving that the main bottleneck of
the system is the communications by removing them from the
most consuming stage of the algorithm, which is the
covariance matrix computation. To do so, instead of
performing computation on the clusters, the host is used for the
task, where the memory limitation is lower and, thus, there is
no need for communicating data.

Specifically, Table VI gathers the results obtained when
applying this solution, comparing them with those obtained in
the previous one. As only the covariance matrix computation is
involved, just the results of step 2 are provided. Additionally,
the global execution times for both cases and in all the
configurations are also presented, as well as the speedup
obtained in each configuration when the mentioned
computation is moved to the host.

As can be noticed, performing this operation on the host
clearly provides considerably better results in terms of
processing time, as, for instance, a speedup of more than 35 is
achieved when comparing a sequential execution –1 cluster, 1
core– with the equivalent version in the host. Specifically, the
speedup achieved with this change is such that even using all
the resources of the chip provides far worse results than those
generated by the sequential version of the system –but with the
covariance computation in the host–, as the speedup achieved
with the latter is still more than 22.

TABLE VI. COVARIANCE MATRIX COMPUTATION COMPARISON (MS)

Configuration

Case 1 Case 2

Step 2 Global Step 2 Global

1-1

Clusters 40,870.5 44,305.2 81,503.4 87,321.8

Host 1,061.1 4,518.9 2,254.7 7,737.2

Speedup 38.5 9.8 36.1 11.3

16-1

Clusters 26,699.4 29,244.2 52,990.1 56,540.2

Host 1,061.1 3,602.2 2,254.7 5,794.4

Speedup 25.2 8.1 23.5 9.8

16-16

Clusters 25,726.1 26,840.2 51,039.5 53,021.5

Host 1,061.1 2,196.6 2,254.7 4,644.7

Speedup 24.2 12.2 22.6 11.4

To conclude this section, Fig. 4 provides a graphical
comparison, for case 1, of the processing times for the four
different implementations described before: (i) the sequential
implementation –1 cluster, 1 core–; (ii) the first parallelization

approach –16 clusters, 1 core–; (iii) the second parallelization –
16 clusters, 16 cores–; and iv) the one that moves the
covariance computation to the host, while the rest of the
algorithm maintains the configuration of the second approach.

Fig. 4 also provides the speedups of each implementation
when compared to the sequential one; as a result, it can be
observed that the speedup achieved when moving the
covariance computation to the host is, approximately, 20; on
the other hand, the speedup achieved when using only the
MPPA resources is 12.5.

Fig. 4. PCA performance comparison for case 1: execution time and speedup

for different implementations

 Finally, to graphically observe the generated results, Fig. 5
displays the one-band representation of the image obtained
when applying the PCA algorithm to both cases 1 and 2
described before. As can be seen, these images contain a
spatial representation of the most relevant spectral information,
which drastically reduces data dimensionality.

Fig. 5. PCA result (one band representation of the original image) for case 1
(left) and 2 (right)

V. DISCUSSION

After analyzing the results obtained during this research
work, the present section compares the performance achieved
using the MPPA architecture with studies presented in [26] and
[27]. The former deals with the implementation of PCA on a
Xilinx Virtex-7 XC7VX690T FPGA, while the latter uses the
dataflow programming language RVC-CAL [28] to highlight

0

5

10

15

20

25

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 16 256 256+host

Sp
e

e
d

u
p

Ti
m

e
 (

m
s)

Implementation

PCA PERFORMANCE COMPARISON - CASE 1

Processing time Speedup

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the intrinsic parallelism of the algorithm and automatically
distribute the workload among the available cores of an Intel
Core i7-4790 –which gathers four processors running at 3.6
GHz– with 32 GB of RAM.

Before starting the comparison itself, it should be noted
that, as HI technology initially aimed remote sensing, when
working with hyperspectral images the most common datasets
used in the related literature are the well-known AVIRIS
Cuprite scene –available online

1
 and hereafter AV_Cuprite–,

and the AVIRIS Jasper Ridge scene –hereafter AV_JRidge–.
Both images have been widely used for validating the accuracy
of dimensionality reduction algorithms, such as PCA. They are
composed of several reference ground signatures of well-
known minerals, which can be also extracted from the United
States Geological Survey (USGS

2
) database. These two images

have been the ones used for evaluation purposes in [26].

However, the pervasive development of HI has led to its
application to several other fields, such as the medical one. In
this line, this work and the one in [27] use the same input
dataset as introduced in Section III, which has been obtained
from the HELICoiD project database [22].

As a result, these implementations cannot be compared
directly, so the comparison will be performed in terms of the
size of the images. In [26], the images have an approximate
size of 50 MB (AV_Cuprite, 350×350×224) and 140MB
(Av_JRidge, 614×512×224) –lines×samples×bands–. Likewise,
the images used in this work need 60.6 MB (case 1,
377×329×128) and 129.1 MB (case 2, 479×552×128) –again
lines×samples×bands– to be stored.

From the dimensions of the images of both datasets can be
inferred that, in the first one, the image is stored with a
precision of 2 bytes, while in the second one the precision
required is 4 bytes. In other words, the precision in the second
dataset is twice the one applied in the first one, which is an
important feature when comparing the implementations.

For each implementation, Table VII provides the global
processing load of each image, as well as its size. Furthermore,
it also provides a generic metric to simplify the comparison
among them, which is the time needed for each implementation
to process 1 MB of information.

As can be observed, the processing time grows linearly
with the size of the image, as the time needed for processing 1
MB of information remains constant regardless of the
implementation. Additionally, as shown in Table VII, the
FPGA implementation achieves a processing cost of almost 30
ms per MB of information, while the MPPA implementation
reaches a processing rate of 36 ms per MB. On the other hand,
the Intel-i7 implementation (RVC-CAL) obtains a processing
rate of 10 ms per MB.

This comparison shows, again, that the memory limitation
plays a crucial role in the processing of data consuming
algorithms, as the x86 architecture, which is the one with the
least memory limitations thanks to its complex cache

1
 http://aviris.jpl.nasa.gov

2
 http://speclab.cr.usgs.gov/spectral-lib.html

architecture, achieves the largest processing rate. The reason of
this result is also that its cores run at 3.6 GHz, while those of
the MPPA run at 600 MHz.

However, the x86 architecture cannot compete with both
FPGAs and manycore platforms in terms of power
consumption. For this metric, the MPPA-256-N used during
this research clearly outperforms both the Xilinx Virtex-7
XC7VX690T FPGA and the Intel Core i7-4790, as they
consume 5W [14], 30-40W [29] and 84W

3
, respectively in

average conditions. As power consumption is an important
feature for clinical applications, trying to minimize this value is
very important for designing a portable prototype.

Consequently, the implementation developed during this
research work can be considered competitive when compared
to those described before, as it outperforms its competitors in
terms of power consumption. Furthermore, when compared to
the FPGA implementation, it can be observed that the results
are equivalent, considering that the precision used in this
implementation is twice the precision of the FPGA one.

TABLE VII. PCA TIME COMPARISON (MS)

Implementation Database

Global

processing

time

Size

(MB)

Processing

time per

MB

FPGA AV_Cuprite 1,490.0 50.0 29.8

FPGA AV_JRidge 4,170.0 140.0 29.8

INTEL-i7 HELICoiD_C1 614.8 60.6 10.1

INTEL-i7 HELICoiD_C2 1,265.1 129.1 9.8

MPPA HELICoiD_C1 2,196.6 60.6 36.2

MPPA HELICoiD_C2 4,644.7 129.1 36.0

VI. CONCLUSION

This paper has presented an analysis of the parallelism of a
PCA algorithm, including its adaptation to the manycore
architecture MPPA-256-N from Kalray, and its comparison
with other state-of-the-art studies. The proposed
implementation aims at adapting the algorithm to process
hyperspectral image analysis in real-time, so as to help
surgeons in locating brain tumors during surgical procedures.

On the one hand, the obtained results show that, as
expected in such a data consuming algorithm, communications
among processing units quickly become the main bottleneck of
the system. Consequently and, as a proof of concept, two
different implementations have been carried out: first, the most
consuming stage of the algorithm has been located and has
been parallelized over the clusters and then it has been
processed sequentially in the host of the platform. The analysis
of these implementations has proven that, indeed,
communications are the main bottleneck, as they can consume
up to a 99% of the processing time. Therefore, a trade-off
between the level of parallelism and the increase in internal
communications must be met.

3

 http://ark.intel.com/products/80806/Intel-Core-i7-4790-

Processor-8M-Cache-up-to-4_00-GHz

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, the exploitation of the available
resources on the MPPA-256-N demonstrates that, in favorable
cases, the intrinsic parallelism of the algorithm can be fully
exploited. Speedups up to 170 have been achieved on the
processing of certain stages of the algorithm on a 256-core
implementation. Although these speedups decrease to 20 due to
communication delays, the real-time objective of one
hyperspectral image per minute is still reached for the
application at hand. In these conditions, the PCA algorithm
consumes less than a 10% of the available processing time,
keeping processing resources for other hyperspectral image
analysis tasks.

This implementation has been compared to state-of-the-art
implementations of the same algorithm on an FPGA and an
x86 architecture, the proposed solution proving to be
competitive and providing better power efficiency rates.

As a final conclusion, experimental results have
demonstrated that manycores are promising architectures for
medical hyperspectral image processing. Future studies will
investigate the possibilities to increase the effective
communication bandwidth, so as to achieve speedups closer to
256x, which is the ideal speedup achievable with this
architecture. Furthermore, OpenMP and OpenCL
implementations of the algorithm will be compared to the
current POSIX results.

ACKNOWLEDGEMENTS

This research has been funded by the EU FET HELICoiD
(HypErspectraL Imaging Cancer Detection) project (FP7-ICT-
2013.9.2 (FET Open) 618080).

REFERENCES

[1] D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral
imaging applications,” IEEE Signal Processing Magazine, vol. 19, no. 1,
pp. 29–43, 2002.

[2] M. Govender, K. Chetty and H. Bulcock, “A review of hyperspectral
remote sensing and its application in vegetation and water resource
studies,” Water Sa, vol. 33, no. 2, 2007.

[3] C. Gomez, R.A.V. Rossel and A.B. McBratney, “Soil organic carbon
prediction by hyperspectral remote sensing and field vis-NIR
spectroscopy: An Australian case study,” Geoderme, vol. 146, no. 3, pp.
403-411, August 2008.

[4] E.K. Hege, D. O’Connell, W. Johnson, S. Basty and E.L. Dereniak,
“Hyperspectral imaging for astronomy and space surviellance,” in
Optical Science and Technology, SPIE’s 48th Annual Meeting,
International Sociesty for Optics and Photonics, pp. 380-391, January
2004.

[5] D. Manolakis, D. Marden and G.A. Shaw, “Hyperspectral image
processing for automatic target detection applications,” Lincoln
Laboratory Juornal, vol. 14, no. 1, pp. 79-116, January 2003.

[6] G.J. Edelman, E. Gaston, T.G. Van Leeuwen, P.J. Cullen and M.C.G.
Aalders, “Hyperspectral imaging for non-contact analysis of forensics
traces,” Forensic science international, vol. 223, no. 1, pp. 28-39,
November 2012.

[7] M.E. Martin, et al, “Development of an advanced hyperspectral imaging
(HIS) system with applications for cancer detection,” Annals of
biomedical engineering, vol. 34, no. 6, pp. 1061-1068.

[8] H. Fabelo et al, “HELICoiD project: a new use of hyperspectral imaging
for brain cancer detection in real-time during neurosurgical operations,”
Hyperspectral Imaging Sensors: Innovative Applications and Sensor
Standards 2016, Proc. SPIE 986002 (2016).

[9] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of
Biomedical Optics, vol. 19, no. 1, 2014.

[10] J. Ramm-Pettersen et al, “Intra-operative MRI facilitates tumour
resection during trans-sphenoidal surgery for pituitary adenomas,” Acta
neurochirurgica, vol. 153, no. 7, pp. 1367–1373, 2011.

[11] C. Rodarmel and J. Shan, “Pincipal component analysis for
hyperspectral image classification,” Surveying and Land Information
Science, vol. 62, no. 2, p. 115, 2002.

[12] M. Castro, F. Dupros, E. Francesquini, J.F. Méhautk, P.O.A. Navaux,
“Energy efficient seismic wave propagation simulation on a low-power
manycore processor,” IEEE Xplore Digital Library, 26th International
Symposium on Computer Architecture and High Performance
Computing, p. 8, October 2014.

[13] E. Francesquini, et al, “On the energy efficiency and performance of
irregular application executions on multicore, NUMA and manycore
platforms,” Journal of Parallel and Distributed Computing, vol. 76, pp.
32-48, February 2015.

[14] B.D. de Dinechi et al., “A clustered manycore processor architecture for
embedded and accelerated applications,” High Performance Extreme
Computing Conference (HPEC), pp. 1-6, 2010.

[15] R. Lazcano et al, “Parallelism Exploitation of a Dimensionality
Reduction Algorithm Applied to Hyperspectral Images” Design and
Architectures for Signal and Image Processing (DASIP), 2016
Conference on, October 2016.

[16] J. M. Bioucas-Dias et al., “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geoscience and Remote Sensing
Magazine, vol. 1, no. 2, pp. 6-36, 2013.

[17] M. Panju, “Iterative methods for computing eigenvalues and
eigenvectors,” Waterloo Mathematics Review, pp. 9-18, 2011.

[18] G. H. Golub and C. F. van Loan, “Matrix computations”, 3rd edition,
John Hopkins University Press, Baltimore, 1996.

[19] A. Quarteroni, R. Sacco, and F. Saleri, “Numerical mathematics,” 2nd
edition, New York, NY, USA: Springer, pp. 183-238, 2007.

[20] G. E. Forsythe, and P. Henrici, “The cyclic Jacobi method for
computing the principal values of a complex matrix,”, Transactions of
the American Mathematical Society, vol. 94, no. 1, pp. 1-23, 1960.

[21] C. González, S. López, D. Mozos, and R. Sarmiento, “FPGA
implementation on the HySime algorithm for the determination of the
number of endmembers in hyperspectral data,” IEEE Journal on
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 8, no. 6, pp. 2870-2883, 2015.

[22] S. Kabwama et al, “Intra-operative Hyperspectral Imaging for Brain
Tumour Detection and Delineation,” XXXI Design of Circuits and
Integrated Systems Conference (DCIS), 2016.

[23] R. Salvador et al, “Demonstrator of the HELICoiD tool to detect in real
time brain cancer,” Design and Architectures for Signal and Image
Processing (DASIP), 2016 Conference on, pp. 1-2, IEEE, October 2016.

[24] H. Fabelo et al, “A Novel Use of Hyperspectral Images for Human
Brain Cancer Detection using in-Vivo Samples,” Proceedings of the 9th
International Joint Conference on Biomedical Engineering Systems and
Technologies, pp. 311-320, 2016.

[25] K. Huang, S. Li, X. Kang and L. Fang, “Spectral-Spatial Hyperspectral
Image Classification Based on KNN,” Sensing and Imaging, vol. 17, no.
1, pp. 1-13, 2016.

[26] D. Fernandez, C. Gonzalez, D. Mozos and S. Lopez, “FPGA
implementation of the Principal Component Analysis algorithm for
dimensionality reduction of hyperspectral images”, Journal of Real-
Time Image Processing, pp. 1-12, 2016.

[27] R. Lazcano et al., “Parallelism exploitation of a PCA algorithm for
hyperspectral images using RVC-CAL”, SPIE Remote Sensing,
International Society for Optics and Photonics, 2016.

[28] J. Eker and J. W. Janneck, “Cal language report,” Tech. Rep. UCB/ERL
M03/48, University of California at Berkeley, 2003.

[29] K.K. Matam et al., "Evaluating energy efficiency of floating point
matrix multiplication on FPGAs." High Performance Extreme
Computing Conference (HPEC), pp. 1-6, 2013.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Raquel Lazcano received her B.Sc. degree in Communication Electronics Engineering from Universidad Politécnica

de Madrid (UPM), Spain, in 2014, and her M.Sc. degree in Systems and Services Engineering for the Information

Society from Universidad Politécnica de Madrid (UPM), Spain, in 2015. She is currently a student of the PhD degree in

Systems and Services Engineering for the Information Society at the Electronic and Microelectronic Design Group

(GDEM), UPM. In 2015, she stayed 4 months at the Institute of Electronics and Telecommunications of Rennes

(IETR), at the National Institute of Applied Sciences (INSA), France, as an interchange student of the M.Sc. degree.

Her research interests include high-performance multicore processing systems, real-time hyperspectral image

processing and the automatic optimization of the parallelism in real-time systems. She is author or co-author of 9

contributions to technical conferences.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Daniel Madroñal received his B.Sc. degree in Communication Electronics Engineering from Universidad Politécnica

de Madrid (UPM), Spain, in 2014, and his M.Sc. degree in Systems and Services Engineering for the Information

Society from Universidad Politécnica de Madrid (UPM), Spain, in 2015. He is currently a student of the PhD degree in

Systems and Services Engineering for the Information Society at the Electronic and Microelectronic Design Group

(GDEM), UPM. In 2015, he stayed 4 months at the National Institute of Applied Sciences (INSA), France, as an

interchange student of the M.Sc. degree. His research interests include high-performance multicore processing systems,

real-time hyperspectral image processing and the automatic optimization of the energy consumption in high-

performance systems. He is author or co-author of 9 contributions to technical conferences.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Rubén Salvador (PhD'2015–MSc'2007 Industrial Electronics, UPM) is currently an Assistant Professor at the

department of Telematics and Electronics Engineering and member of the Electronics and Microelectronics design

group (GDEM), at the Research Center on Software Technologies and Multimedia Systems for Sustainability

(CITSEM), Universidad Politécnica de Madrid (UPM). Previously, he was a Research Assistant at the Center of

Industrial Electronics (CEI, UPM, 2006-2011) where he obtained his PhD (cum laude). Before that, he was a researcher

at the Intelligent Vehicle Systems division of the University Institute for Automobile research (INSIA, UPM, 2005-

2006). In 2009 he was a visiting research student at the Department of Computer Systems, Brno University of

Technology.

He is author or coauthor of more than 6 indexed journals and 20 refereed conference papers and one book chapter. He

serves as technical program committee member of international conferences like ReCoSoC and DASIP and is a

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

reviewer of several international journals and conferences. Besides, he is an IEEE and ACM member. His current

research interests are focused in the embedded systems domain including reconfigurable, heterogeneous and parallel

computing for FPGAs and manycore accelerators, with a focus on system self-adaptation, HW/SW dynamic

reconfiguration techniques, evolvable hardware and approximate computing. He is interested in design tools and

specification methods for highly parallel and energy efficient accelerators for embedded and high performance

computing systems. The applications targeted span the biomedical and space fields, using hyperspectral image

processing and machine learning techniques for diagnostic imaging systems and system self-adaptation in harsh

environments.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Karol Desnos is a Teaching Assistant at the National Institute of Applied Science (INSA) of

Rennes and Maître de Conférences. He carries is research under the supervision of Pr. Jean-

François Nezan and Dr. Maxime Pelcat, and in collaboration with Texas Instrument France. Karol

Desnos received his Master of Engineering in Electronics and Computer Engineering from the

INSA of Rennes in 2011 and his Ph. D in 2014. In Fall 2012, Karol Desnos was a visiting

researcher at the University of Maryland in the research group led by Pr. Shuvra Bhattacharyya.

Since 2012, he is a member of the Multicore Association and takes part in the working group on the

Multicore Task Management API (MTAPI). His research interests focus on dataflow models of

computation and associated implementation techniques for heterogeneous MPSoCs.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Maxime Pelcat is an associate professor at the Department of Electrical and Computer Engineering

at the National Institute of Applied Sciences (INSA) in Rennes. He holds a joint appointment in the

Institute of Electronics and Telecommunications of Rennes (IETR), a CNRS research unit. His

main research interests include dataflow models, multimedia and telecommunication processing,

and programming of distributed embedded systems. Maxime Pelcat is a member of the HiPEAC

network. He obtained his Ph.D. in signal processing from INSA in 2010. The Ph.D. thesis resulted

from a collaboration of INSA Rennes and Texas Instruments, Nice, and followed a contract as

research engineer. Previously, after one year in the Audio and Multimedia department at

Fraunhofer-Institute IIS in Erlangen, Germany, he worked as a contractor at France Telecom

Research and Development.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Raúl Guerra was born in Las Palmas de Gran Canaria, Spain, in 1988. He received the industrial

engineer degree by the University of Las Palmas de Gran Canaria in 2012. In 2013 he received the

master degree in telecommunications technologies imparted by the Institute of Applied

Microelectronics, IUMA. He has been funded by this institute to do his PhD research in the

Integrated System Design Division. His current research interests include the parallelization of

algorithms for multispectral and hyperspectral images processing and hardware implementation.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Himar Fabelo, received the telecommunication engineer degree and the master degree in telecommunication

technologies from the University of Las Palmas de Gran Canaria, Spain, in 2013, and 2014, respectively. Since then, he

has conducted his research activity in the Integrated System Design Division at the Institute for Applied

Microelectronics, University of Las Palmas de Gran Canaria, in the field of electronic and bioengineering. In 2015 he

started to work as a coordination assistant and researcher in the HELICoiD European project, co-funded by the

European Commission. His current research interests are in the use of classification algorithms together with

hyperspectral images to detect human brain cancer using in-vivo hyperspectral images. He obtained the best paper

award in the Jornadas de Computación Empotrada (JCE2015) in September of 2015 with the paper entitled “HELICoiD

Demonstrator for Intraoperative Brain Cancer Detection using Hyperspectral Images”.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Samuel Ortega, received the telecommunication engineer degree and the research master degree in telecommunication

technologies from the University of Las Palmas de Gran Canaria, Spain, in 2014, and 2015, respectively. Since then, he

has conducted his research activity in the Integrated System Design Division at the Institute for Applied

Microelectronics, University of Las Palmas de Gran Canaria, in the field of electronic and bioengineering. In 2015 he

started to work as a coordination assistant and researcher in the HELICoiD European project, co-funded by the

European Commission. His current research interests are in the use of machine learning algorithms in medical

applications using hyperspectral images.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sebastian Lopez was born in Las Palmas de Gran Canaria, Spain, in 1978. He received the Electronic Engineer degree

by the University of La Laguna in 2001, obtaining regional and national awards for his CV during his degree. He got his

PhD degree by the University of Las Palmas de Gran Canaria in 2006, where he is currently an Associate Professor,

developing his research activities at the Integrated Systems Design Division of the Institute for Applied

Microelectronics (IUMA). He is a member of the IEEE Geoscience & Remote Sensing and Consumer Electronics

Societies as well as an associate editor of the IEEE Transactions on Consumer Electronics. Additionally, he currently

serves as an active reviewer of the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

(JSTARS), IEEE Transactions on Geoscience and Remote Sensing, IEEE Geoscience and Remote Sensing Letters,

IEEE Transactions on Circuits and Systems for Video Technology, the Journal of Real Time Image Processing,

Microprocessors and Microsystems: Embedded Hardware Design (MICPRO), and the IET Electronics Letters, among

others. He is also a program committee member of different international conferences including the SPIE Conference

on Satellite Data Compression, Communication and Processing, IEEE Workshop on Hyperspectral Image and Signal

Processing: Evolution in Remote Sensing (WHISPERS), and SPIE Conference of High Performance Computing in

Remote Sensing. Furthermore, he has been designated as the program co-chair of the last two aforementioned

conferences for their upcoming editions in 2013. He has published more than 60 papers in international journals and

conferences. His research interests include real-time hyperspectral imaging systems, reconfigurable architectures, video

coding standards, and hyperspectral compression systems.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Gustavo M. Callicó received the Telecommunication Engineer degree in 1995 and the Ph.D.

degree and the European Doctorate in 2003, all from the University of Las Palmas de Gran Canaria

(ULPGC) and all with honours. From 1996 to 1997 he was granted with a national research grant

from the Educational Ministry and in 1997 he was hired by the ULPGC as an electronic lecturer. In

1994 he joined the Institute for Applied Microelectronics (IUMA) and from 2000 to 2001 he did a

stay at the Philips Research Laboratories (NatLab) in Eindhoven, The Netherlands, as a visiting

scientist, where he developed his Ph.D. thesis. He is currently an Associate Professor at the ULPGC

and develops his research activities at the Integrated Systems Design Division of the IUMA. He has

more than 90 publications in national and international journals and conferences and has

participated in 17 research projects funded by the European Community, the Spanish Government

and international private industries. He is a member of the Consumer Electronics Society as well as

a member of the Publications Review Committee of the IEEE Transactions on Consumer

Electronics. Additionally, he currently serves as an active reviewer of the ACM Transactions on

Design Automation of Electronic Systems, the Electronics and Telecommunications Research

Institute (ETRI), the EURASIP Journal on Embedded Systems, the SPIE Journal of Electronic

Imaging, the SPRINGER Journal of Real-Time Image Processing and the ELSEVIER Journal of

Microprocessors and Microsystems: Embedded Hardware Design. His current research fields

include real-time super-resolution algorithms, synthesis-based design for SOCs, real-time

hyperspectral imaging systems and circuits for multimedia processing and video coding standards.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eduardo Juárez (M’96) received the Ingeniero de Telecomunicación degree from the Universidad

Politécnica de Madrid (UPM), Madrid, Spain in 1993 and the Docteur ès Sciences Techniques

degree from the École Polytechnique Fédéral de Lausanne (EPFL), Switzerland in 2003. In 1994,

he joined the Digital Architecture Group (GAD) of the UPM as a researcher. In 1998, he joined the

Integrated Systems Laboratory (LSI) of the EPFL as an Assistant. In 2000, he joined Transwitch

Corp., Switzerland, as a Senior System Engineer. In 2004, he joined the Electronic and

Microelectronic Design Group (GDEM) as a post-doctoral researcher. Since 2013, he has been a

researcher in the Research Centre of Software Technologies and Multimedia Systems (CITSEM).

His current interests are related to the field of low power hyperspectral embedded imaging systems

for health applications.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

C. Sanz (S’87-M’88-SM’13) received both his Ingeniero de Telecomunicación degree (1989) and

his Doctor Ingeniero de Telecomunicación degree (1998) from the Universidad Politécnica de

Madrid (Spain). Since 2008, he has been the director of the E.U.I.T. de Telecomunicación and

currently leads the Electronic and Microelectronic Design Group (GDEM) involved in R&D

projects with Spanish and European companies and public institutions. His areas of interest are

microelectronic design applied to image coding, digital TV, digital video broadcasting and

hyperspectral imaging.

