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Abstract— This paper presents a study of the parallelism of a 

Principal Component Analysis (PCA) algorithm and its 

adaptation to a manycore MPPA (Massively Parallel Processor 

Array) architecture, which gathers 256 cores distributed among 

16 clusters. This study focuses on porting hyperspectral image 

processing into manycore platforms by optimizing their 

processing to fulfill real-time constraints, fixed by the image 

capture rate of the hyperspectral sensor. Real-time is a 

challenging objective for hyperspectral image processing, as 

hyperspectral images consist of extremely large volumes of data 

and this problem is often solved by reducing image size before 

starting the processing itself. To tackle the challenge, this paper 

proposes an analysis of the intrinsic parallelism of the different 

stages of the PCA algorithm with the objective of exploiting the 

parallelization possibilities offered by an MPPA manycore 

architecture. Furthermore, the impact on internal 

communication when increasing the level of parallelism is also 

analyzed.  

Experimenting with medical images obtained from two 

different surgical use cases, an average speedup of 20 is achieved. 

Internal communications are shown to rapidly become the 

bottleneck that reduces the achievable speedup offered by the 

PCA parallelization. As a result of this study, PCA processing 

time is reduced to less than 6 seconds, a time compatible with the 

targeted brain surgery application requiring 1 frame-per-minute.  

Keywords— Dimensionality Reduction; Hyperspectral 

Imaging; Massively Parallel Processing; Real-time processing 

I. INTRODUCTION 

 Hyperspectral imaging (HI) collects both spatial and 
spectral information from across the electromagnetic spectrum, 
covering a wide range of wavelengths. This new technology 
aims at identifying elements in an image by distinguishing 
among their spectral signatures, which represent the reflectance 
measured by the sensor for each wavelength [1]. Although the 
original application field for this technology was remote 

sensing [2] [3], its use has spread over several research fields, 
such as astronomy, security, forensics and medicine [4]-[7]. 

Regarding the medical field, the ability to distinguish 
among materials has become crucial for cancer detection 
applications. This technology has already been applied in two 
different scenarios: ex-vivo and in-vivo studies –i.e., with 
images captured from a resected sample and directly taken 
from the patient, respectively. 

Related literature shows an increasing research interest 
concerning the performance of in-vivo HI processing during 
medical procedures to assist surgeons in discerning between 
tumor tissues and healthy tissues [8] [9]. Furthermore, to help 
surgeons in determining the margins of the tumor during 
surgery, a real-time analysis of the hyperspectral image 
becomes compulsory, considering this real-time as the time 
needed for the hyperspectral sensor to capture a new image. As 
nowadays hyperspectral sensors usually present a push-broom 
scanning mechanism, real-time in this context can be set to a 
maximum of 1 picture per minute. Neurosurgeons have stated 
that a processing time of one image per minute is sufficient to 
assist them during an operation [8]. Processing a diagnostic 
helping image in less than 1 minute is not possible with the 
existing alternative to HI, which is the Intraoperative Magnetic 
Resonance Imaging (iMRI) that usually needs more than thirty 
minutes to acquire one image [10]. 

Hyperspectral sensors generate large amounts of data, 
which makes meeting real-time constraints challenging. As a 
result, it is advisable to reduce the volume of data before 
beginning with high-level processing. Therefore, a 
dimensionality reduction stage is often performed as an 
essential step during image preprocessing. This dimensionality 
reduction method is usually accomplished through a principal 
components transformation [11], which selects and retains the 
most relevant information for classification. 
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Principal Component Analysis (PCA) is the most widely 
used technique in remote sensing applications, specifically in 
those using hyperspectral images. In this kind of images, the 
adjacent bands are profoundly correlated, thus providing no 
new information. PCA reduces the volume of information by 
removing the dependencies among the different bands. To do 
so, an eigenvector decomposition of the covariance matrix of 
the original data is computed [11]. 

Sequential implementations of this algorithm do not have 
the performance required to achieve the real-time constraint of 
this use case. Hence, to reach real-time performance, this study 
analyzes the intrinsic parallelism of the PCA algorithm and 
exploits the resulting parallelized model to minimize the time 
needed for an image to be processed. As this processing 
requires an extensive usage of computational resources, High 
Performance Computing (HPC) architectures are targeted.  

HPC platforms are evaluated based on two criteria: 
processing time and energy consumption. Although the former 
has frequently been the metric chosen to assess HPC platforms, 
the latter is gaining importance as a first-class performance 
criterion.  

Even though current medical applications rarely work 
under energy requirements, it is not difficult to foresee future 
clinical applications where portable and real-time HI 
processing becomes a crucial tool to support medical decisions. 
In that sense, manycore processors are today some of the most 
efficient architectures [12] [13] for the task. For instance, the 
Kalray Massively Parallel Processor Array (MPPA) in its 
Bostan version (MPPA-256-N) requires only 5W in average 
operating mode [14].  

The main contribution of this paper is the study and 
implementation of a PCA algorithm and the evaluation of its 
performance on an HPC MPPA manycore architecture. 
Additionally, this research also aims at studying the effect of 
the internal communications within the manycore architecture 
when the degree of parallelism is increased. This paper extends 
the results of [15] with a new discussion section to compare the 
current work with the state-of-the-art. In addition, the results of 
a new parallel approach and a better exploitation of the 
platform parallelism are analyzed. At last, a new data set has 
been described and employed to obtain the results. 

The rest of the paper is structured as follows. First, Section 
II describes the target MPPA platform together with the studied 
PCA algorithm. Secondly, Section III focuses on the 
implementations. Afterwards, Section IV shows the 
experimental results, and Section V provides a comparison 
with some state-of-the-art implementations. Finally, Section VI 
draws the main conclusions of this research work. 

II. HARDWARE AND ALGORITHM 

A. MPPA-256-N Kalray Platform 

The HPC platform selected for this research is the Kalray 
MPPA-256-N, whose structure is shown in Fig. 1. This 
platform is a single-chip manycore processor that gathers 256 
cores organized in 16 clusters running at up to 600MHz. It also 
contains two quad-core Input/Output (I/O) subsystems 
responsible for handling the communications between a host 

processor and the clusters, which are interconnected by a 
Network-On-Chip (NoC).  

Each cluster gathers 2 MB of memory shared among the 16 
cores within the cluster. In addition, there is also a Direct 
Memory Access (DMA) engine managing the communications 
between this memory and the NoC, and a Resource 
Management (RM) core responsible for starting the NodeOS 
operating system and handling events and interrupts for the 
whole cluster. 
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Fig. 1. The Kalray MPPA-256-N: chip (left) and cluster (right) structures 

B. Principal Component Analysis 

As mentioned in Section I, Principal Component Analysis 
is the most well-known and widely used technique for data 
shrinking in HI applications, proving to be a powerful tool for 
hyperspectral image processing [16].  

As hyperspectral images are composed of spectral 
information gathered from an extensive number of narrow 
bands, this information is frequently deeply correlated, thus 
containing a large amount of redundancies. Hence, these 
redundancies should be eliminated, reducing the image size 
and, therefore, its processing cost.   

Specifically, PCA reduces the data volume by converting 
the original data into a subspace of smaller dimension where 
the image is rearranged as a decreasing function of its spectral 
information – i.e., accumulating the useful spectral information 
in the first bands–. To do so, PCA computes the covariance 
matrix of the original data, extracts its associated eigenvectors 
and projects the image onto these eigenvectors. Finally, the 
algorithm finishes by selecting the number of bands –or 
principal components– to retain. Algo. 1 provides the 
pseudocode of the algorithm, which is divided in four stages: 

i. Image preprocessing: It is the first step of the 
algorithm, and it centers the image by computing and 
removing the average of each spectral band of the 
original image, composed by N pixels per M spectral 
bands. It shall be noted that the monochrome image 
associated to a frequency band is treated as a vector, 
ignoring the spatial relationship among pixels. 

ii. Covariance computation: This stage computes the 
covariance matrix associated to the original image 
multiplying the preprocessed image by its transpose. 

iii. Eigenvector decomposition: This step extracts the 
eigenvectors associated to the covariance matrix 
computed in the previous stage.  
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iv. Projection and reduction: This stage combines steps 4 
and 5, and it projects the original image onto the set of 
eigenvectors to store then the first P principal 
components, where P represents the number of 
principal components –or bands– to retain. 

Algorithm 1: Principal Component Analysis 

Input: Hyperspectral image Y (N x M matrix) 

    Step 1: X = Remove the average of each band of Y 

    Step 2: Covariance matrix C = XT·X 

    Step 3: E = Eigenvector decomposition of C 

    Step 4: Projection Q = Y · E 

    Step 5: Reduce Q to P principal components 

Output: Reduced hyperspectral image Q' (N x P matrix) 

Algo. 1.   PCA algorithm 

Related with the eigenvector decomposition, traditionally 
the conventional method for extracting them has involved 
computing the inverse matrix and finding the roots of its 
characteristic polynomial [17]. However, for extensively large 
matrices –e.g. hyperspectral images– this procedure is not 
feasible, therefore other methods shall be considered. 

In [17], Panju summarizes some of the iterative 
methodologies for addressing this issue. These approaches 
work by refining approximations of the eigenvectors in each 
iteration and, consequently, their convergence depends on the 
criterion set for the approximation accuracy. However, iterative 
methods usually work in detriment of real-time, as they are 
very demanding in terms of processing time. In order to 
minimize this effect, Jacobi method has been selected in this 
research due to its high degree of parallelism. 

Jacobi method [18][19][20] presents another interesting 
advantage: besides computing the eigenvalues of the input 
matrix, it also extracts the eigenvectors associated to them. As 
the latter are the ones that are of interest for PCA algorithm, a 
method that does not need extra computation for calculating 
them is a good match for the studied problem.  

This methodology only applies to real and symmetric 
matrices, and it aims at approximating the original image to a 
diagonal matrix by applying planar rotations in successive 
iterations. González et al. provide an extensive description of 
this method in [21], including the mathematical basis.  

This method applies rotations to the largest off-diagonal 
element with the objective of zeroing it. It should be noted that, 
at each step, it is possible to undo the zeros reached in previous 
iterations. However, it has been demonstrated that the overall 
effect is the magnitude decrement of the nonzero elements, as 
the sum of the squares of all the off-diagonal elements is 
proven to be reduced after each iteration. These iterations are 
repeated until all the off-diagonal elements become smaller 
than the provided stop condition (ɛ), which is an input 
parameter of the algorithm.  

The convergence of this algorithm has been demonstrated 
for two different strategies [18], regarding the order in which 
the elements are chosen to be zeroed.  

1) Classical method: As described before, this method 

zeroes the largest off-diagonal element in each rotation. 

2) Cyclic method: This method zeroes the off-diagonal 

elements in a given order, e.g. row by row.  

The first method has been proven to guarantee the least 
number of rotations, but the second one is typically faster, as it 
avoids the location of the largest element in each iteration, 
which is a quadratic order operation. 

 Specifically, each Jacobi iteration performs the following 
steps:  

 First, the next off-diagonal element to be zeroed is 
selected, following one of the two described methods 
(classical or cyclic Jacobi).  

 Secondly, the Jacobi rotation matrix (P) is calculated, 
which is similar to the model shown in equation (1). 
The dimensions of this matrix equal those of the 
covariance matrix C, which is the input for the Jacobi 
method.  

 The α value depends on the element selected to be 
zeroed –Cij, where i represent the rows of the 
covariance matrix and j represents the columns–, so it 
must be recalculated at the beginning of each 
iteration. In each iteration, equations (2) to (5) are 
applied to calculate this value and, hence, the Jacobi 
rotation matrix. 

         (
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 Once the matrix P has been computed, the operation 
provided in (6) is performed. As a result, the off-
diagonal element is now zeroed in C1, and also its 
symmetric counterpart, as C has to be symmetric. For 
the next iteration, C1 will be considered as the input of 
Jacobi algorithm. 

                                   
                                          

Each iteration repeats the described steps, zeroing one 
element at a time. However, the algorithm does not stop when 
all the elements have been chosen to be zeroed once, due to the 
fact that, in each iteration, several previous zeros can be 
undone. That is the reason why a stop factor is needed.  
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Once the last iteration finishes –K– and the convergence is 
reached, the eigenvalues are stored in the diagonal of CK, as 
shown in (7), where Pi are the successive Jacobi rotation 
matrices. 

            
            

                                            

Likewise, the eigenvectors associated to these eigenvalues 
can be calculated as depicted in (8), where the eigenvectors are 
placed in the columns of E. 

                                                                                       

As each rotation affects only a couple of rows and columns, 
several rotations can be calculated simultaneously, thus 
providing a parallel method.  

Specifically, in each iteration the elements that are changed 
in the input matrix are the ones belonging to the concerned 
rows and columns, so several elements can be processed in 
parallel if they do not share any of those positions. For 
instance, elements C23 and C45 could be processed in parallel; 
on the contrary, C23 and C34 could not be simultaneously 
zeroed.  

Next section will provide a detailed description of the 
adaptation of this method –along with the adaptation of the rest 
of the operations involved in PCA algorithm– to the 
architecture under study. 

III. IMPLEMENTATION 

A. Database 

The conducted experiments have been tested upon 
hyperspectral images extracted from the HELICoiD project 
database [22]. The in-vivo human brain surface images were 
captured during neurosurgical operations performed at the 
University Hospital Doctor Negrin of Las Palmas de Gran 
Canaria (Spain) and at the University Hospital of Southampton 
(UK).  

To capture these images, the HELICoiD setup described in 
[23] has been used. Two hyperspectral sensors compose this 
setup: one in the visible and near infrared spectral range 
(VNIR), covering from 400 nm to 1000 nm, and the other in 
the near infrared range (NIR), covering from 900 nm to 1700 
nm of the electromagnetic spectrum. Both cameras are attached 
to a push-broom scanning unit, together with an illumination 
system that provides a cold light to protect the exposed brain 
surface from the heat generated by the lamp. As the cameras 
take the images with a push-broom mechanism, each image 
needs from 1 to 2 minutes to be captured –depending on the 
spatial size of the image–, which can be considered as the 
definition of the surgery real-time constraint.  

Specifically, two different hyperspectral images have been 
used to assess the algorithm. A preprocessing stage has 
spatially limited the image to the area of interest and it has 
reduced the spectral resolution to 128 bands [24]. As a result, 
the first image –hereafter case 1– presents a spatial resolution 
of 377 lines and 329 samples –i.e., 124033 pixels–, while the 
second –hereafter case 2– contains 479 lines and 552 samples –
i.e., 264408 pixels–. Fig. 2 gathers both hyperspectral images, 
case 1 on the left and case 2 on the right. 

Considering that these images are stored as float numbers (4 

Bytes), the required memory for storing each image is 60.6 

MB for case 1 –i.e. 124033 pixels x 128 bands– and 129.1 MB 

for case 2 –i.e. 264408 pixels x 128 bands–, respectively. 

       

Fig. 2. RGB representation of the hyperspectral images extracted from the 

HELICoiD database: case 1 (left) and 2 (right) 

B. Target environment 

As mentioned in Section I, the aim of this work is to 
achieve real-time while processing hyperspectral images 
during a surgical procedure. Due to the large amount of 
information contained in these images, the computational 
complexity is such that sequential implementations of the 
algorithms do not provide enough performance to fulfill these 
requirements; thus, HPC platforms become a necessity.  

The Kalray MPPA-256-N appears to be an optimal 
solution, as it is particularly competitive in terms of energy 
efficiency, which is a parameter of growing interest. 
Specifically, the target environment is a workstation that 
includes an MPPA-256-N chip, whose simplified block 
diagram when connected to a host PC is provided in Fig. 3. 
The MPPA architecture presents three different levels: the host 
module, the I/O interface and the 256 processing units, which 
are organized in 16 clusters. The host module is responsible for 
managing the global functioning, and it communicates with the 
I/O interface through a PCI express (PCIe) connection; it also 
presents the largest memory space, with more than 10 GB of 
available memory. Similarly, the I/O interface handles both the 
communications with the host –through the PCIe connection– 
and with the clusters –through a NoC interface–; as for the 
available memory, it contains a 4 GB external DDR. Finally, 
the processing cores are responsible for the processing itself. 
As this chip contains 256 processing cores, the potential level 
of parallelism is very high. Nevertheless, this platform also 
presents an important restriction for hyperspectral image 
processing, which is the reduced amount of memory within 
each cluster –a 2 MB block of shared memory among the 16 
internal cores of each cluster–. Furthermore, some of this 
memory is reserved for both program code and operating 
system, so the available memory for storing data cannot 
represent more than 1.5 MB, approximately. 

As hyperspectral images gather extremely large volumes of 
data, this is an important limitation. As described before, the 
images used during this work require 60.6 MB –case 1– and 
129.1 MB –case 2–. Therefore, it seems obvious that, to 
process an entire image, the algorithm must be split into 
several iterations. Subsequently, iterating the processing of the 
image highlights another important limitation, which is the 
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communication between the I/O subsystems and the clusters. 
This communication is very demanding in terms of 
performance, so it seems obvious that the processing time will 
be proportional to the number of iterations needed to complete 
the algorithm execution. 

 

Fig. 3. MPPA-256-N simplified block diagram to show the memory 
hierarchy 

C. MPPA-256-N implementation 

Taking into consideration the previous features, this section 
provides a detailed description of the implementation of each 
part of the PCA algorithm, highlighting its intrinsic 
parallelism. It shall be noted that this implementation is an 
extended work of that presented in [15]. 

1) Preprocessing: To compute the covariance matrix of 

the original data, first the image ought to be mean-centered. 

To do so, the average of each spectral band is calculated and 

removed. This operation is band-wise parallelizable: the 

original matrix is divided among the clusters, and the internal 

cores compute and remove the average of the bands received 

in each cluster. Due to the high dimensionality of the image 

and the cluster memory limitation, each cluster can only 

compute the average of one band at a time; therefore, each 

iteration processes 16 bands simultaneously. As a result, each 

core computes one portion of the average of the band; then, 

the master thread –i.e., the core executing the main function– 

computes the global average and subtracts it.  

2) Covariance matrix computation: The resulting matrix is 

then multiplied by its transpose, thus generating the 

covariance matrix. As neither of these matrices fit into a 

cluster, this computation needs to be iterated; further, due to 

the dimensions of the matrices involved in the multiplication, 

this operation is the main bottleneck of the algorithm. 

Considering that the memory needed to store a row –i.e., a 

band– of the matrix is 0.48 MB in case 1 and 1 MB in case 2, 

there are two different cases: 

 For the smallest image –case 1–, two bands fit into a 

cluster, so each cluster can compute one element of 

the covariance matrix at a time. This means that, in 

each iteration, 16 elements of the covariance matrix 

can be computed simultaneously. As the dimensions 

of the resulting matrix are 128×128, 1024 iterations 

are required to complete this computation. 

 On the other hand, for the largest image, even two 

bands exceed the memory restriction, so at least two 

clusters must be used to compute just one element of 

the covariance matrix. To do so, instead of sending a 

whole row to each cluster, all the bands are divided 

in half, and each cluster only receives the halves that 

should be multiplied (as a matrix multiplication is 

just a concatenation of dot products). With this 

method, the number of iterations is thus doubled. 

In both cases, the cores within each cluster compute their 

corresponding share of the vector multiplication –as they are a 

concatenation of dot products– and send it to the I/O 

subsystem, which adds them and stores the resulting value.  

Nevertheless, it should be noted that, as multiplying a 

matrix by its transpose generates a symmetric matrix, only the 

upper triangle of the covariance matrix needs to be computed, 

thus reducing the iterations in half for both cases. 

Furthermore, it is also worth noting that, in each iteration, 

two different transmissions are required, one for each of the 

bands –or half-bands– intervening in the multiplication. 

Considering that, as mentioned before, the communications 

are one of the setbacks of the architecture under study, the 

impact of this process on the overall execution time is 

presumably very high, as the time consumed in the data 

transfers would be much higher than the one consumed in the 

processing itself. 

For that reason, another method has also been proposed for 

avoiding these data transfers. This method consists of taking 

advantage of the host of the platform to remove the memory 

restriction and, thus, all the I/O-cluster communications. 

Although the processing time will certainly increase –as the 

multiplication will not be parallelized–, the time saved in the 

communications will hypothetically compensate this increase. 

These two solutions will be evaluated in Section IV.   

3) Eigenvector decomposition: This stage deals with the 

implementation of the Jacobi method introduced in Section II. 

Among all the existing variations, the cyclic Jacobi [21] has 

finally been implemented. As described in Section II, the main 

variation of this method is that, instead of choosing the 

elements to be zeroed by finding the largest off-diagonal 

element, it chooses the next element in a given order, e. g., 

row by row. As the covariance matrix (128×128) fits into a 

cluster, the use of only one of them for implementing this step 

removes all the internal communications, as all the cores 

wihtin a cluster share the same memory. In addition, as Jacobi 

method is highly parallelizable, all cores of the chosen cluster 

have been used for implementing this step. As a result, this 

method has been implemented as follows: 
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 The master thread –i.e., the core executing the main 

function– is responsible for handling the search of the 

next element to be zeroed. In each iteration, this 

thread verifies that the stop condition is not fulfilled, 

chooses a maximum of 15 different new elements to 

be processed in parallel, calculates the rotation matrix 

and sends it to the processing cores. This process is 

repeated until the stop condition is reached by all the 

off-diagonal elements. Once this happens, this thread 

sorts the eigenvalues in a descending order, as well as 

their associated eigenvectors.  

 Likewise, the processing cores perform the operation 

shown in (9), where i represents the current iteration, 

Pi is the rotation matrix of the iteration i, Ci-1 is the 

covariance matrix modified in the previous iteration 

and Ci is the resulting matrix –i.e., the covariance 

matrix with several elements already zeroed–. It shall 

be noted that (9) is a generalization of equation (6) 

described in Section II. 

                                                
                                          

4) Projection and principal components selection: In this 

step, the original matrix is projected onto the set of 

eigenvectors and the first P bands –i.e., principal components– 

are stored. To reduce the complexity of the projection, instead 

of using the whole set of eigenvectors only the subset of the 

first P ones is utilized. Specifically, as for this application only 

the first principal component is required [25], the set of 

eigenvectors is thus reduced from 128 to 1. This also reduces 

the projection complexity, since instead of multiplying two 

matrices, just one matrix –the original data– by a vector –the 

first eigenvector– multiplication is required. Related with the 

parallelization, the method is similar to the one applied in step 

2, but much simpler. As the eigenvector fits into a cluster, it is 

broadcasted to all of them and then the original matrix is split 

and sent to the clusters in a pixel-wise order iteratively –i.e., in 

groups of 128 elements–, until all the matrix is multiplied by 

the eigenvector. From the point of view of the parallelization 

within the clusters, each one receives blocks of 1024 pixels, so 

each core projects 64 pixels onto the eigenvector and returns 

the results to the I/O subsystem.  

Consequently, concerning the MPPA-256-N resource 
usage, the PCA algorithm is divided into two blocks: steps 1, 2 
and 4 use all the available resources (16 clusters and 16 cores 
per cluster), while step 3 only uses the 16 cores of one cluster. 
It should be noted that, for the alternative solution to step 2, all 
platform resources are idle, as the processing is performed in 
the host. 

IV. RESULTS 

In this section, the results obtained while exploring the 
proposed solutions are evaluated in terms of processing time. 
First, the sequential version of the PCA algorithm on the 
MPPA-256-N is assessed; then, the parallelism is exploited, 
locating the main bottlenecks. After that, the communication 
cost is evaluated in order to analyze its effects on the overall 

computation time. Finally, the second proposed approach for 
computing the covariance matrix is evaluated. It should be 
noted that the results presented in this section have been 
measured when setting the stop factor, ε, to the maximum 
value that provides a final result with a relative error lower 
than 1% when compared to a Matlab version.  

A. First approach 

In order to address the analysis of the obtained results, the 
different stages of the PCA algorithm described before are 
characterized. To do so, as the MPPA architecture presents two 
different levels of parallelism, first the sequential 
implementation will be studied; after that, the first level of 
parallelism will be evaluated by distributing the computational 
load among the 16 clusters, but using just 1 core in each one. 
Finally, the second level of parallelism is assessed by using all 
the cores of each cluster, instead of just one.  

Table 1 provides the execution time for each of the stages 
when they are processed in a sequential way –i.e., using only 
one core of one cluster–. As expected, the main bottleneck of 
the algorithm is the covariance computation stage, as it 
consumes more than a 92% of the global execution time. 

TABLE I.  AVERAGE TOTAL EXECUTION TIME (MS) - SEQUENTIAL 

Experiment Step 1 Step 2 Step 3 Steps 4-5 Global 

Case 1 900.7 40,870.5 1,759.8 840.2 44,305.2 

Case 2 1,908.9 81,503.4 1,849.7 1,759.8 87,321.8 

 
Likewise, Table II presents the execution time of each stage 

of the algorithm, when their computational load is divided 
among the 16 available clusters –i.e., using the 16 clusters, but 
just 1 core of each of them–. As a result, it can be noticed that, 
although the execution time has decreased, the global speedup 
achieved is rather low, as ideally it should grow up to 16 but in 
reality it is, approximately, 1.5. This limitation is basically due 
to data broadcasting: as hyperspectral images contain 
extremely high volumes of information, the transmission of the 
images to the clusters could be such that it could overcome any 
speedup the processing itself may achieve. To check whether 
this hypothesis is correct, first the second level of 
parallelization is studied and, after that, the effect of 
communications is evaluated.  

TABLE II.  AVERAGE TOTAL EXECUTION TIME (MS) – FIRST LEVEL OF 

PARALLELISM 

Experiment Step 1 Step 2 Step 3 Steps 4-5 Global 

Case 1 402.7 26,699.4 1,759.8 380.3 29,244.2 

Case 2 860.4 52,990.1 1,849.7 839.6 56,540.2 

 
Table III gathers the equivalent results to those presented in 

Tables I and II, but exploiting the whole architecture, i.e., using 
the 16 cores of the 16 clusters. As can be observed, the 
speedup achieved is almost negligible when compared to the 
previous one, since it only accelerates the computation by a 
factor of 1.1, approximately. Again, the reason to explain this 
behavior is the communications: supposing that the previous 
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hypothesis was correct, it explains this new behavior, as it 
means that the processing itself cannot be further parallelized, 
and hence all the measured time is being wasted for 
communications. To prove whether this hypothesis is true, next 
subsection evaluates the impact of communications. 

TABLE III.  AVERAGE TOTAL EXECUTION TIME (MS) – SECOND LEVEL OF 

PARALLELISM 

Experiment Step 1 Step 2 Step 3 Steps 4-5 Global 

Case 1 393.3 25,726.1 350.9 369.9 26,840.2 

Case 2 831.9 51,039.5 370.3 779.8 53,021.5 

 
Before getting into the communication assessment, the 

behavior of the Jacobi algorithm should be highlighted. As 
described in Section III, Jacobi has only been implemented 
using one cluster due to the communications cost, so there is 
no difference in the time measured for Jacobi in Tables I and 
II. As for the results presented in Table III, it can be observed 
that, in this case, the Jacobi algorithm is accelerated by a factor 
of 5, approximately. This result supports the communications 
hypothesis: as described before, the input of the Jacobi 
algorithm –i.e., the covariance matrix– fits into a cluster; as a 
result, this step is the only one in which there are not any 
communications that could cause a delay in the processing of 
the algorithm. Additionally, there are two main reasons as to 
why the speedup for Jacobi step is still not near the ideal –16–. 
Firstly, the Jacobi algorithm is an iterative process that aims at 
zeroing one off-diagonal element at a time, and the order in 
which these elements are chosen affects the number of 
iterations, as each iteration can undo the zeroes achieved in the 
previous one and, hence, the number of iterations needed to 
reach the convergence criterion may vary. Secondly, the Jacobi 
algorithm has data dependencies, so its convergence may vary 
depending on the nature of the data –e.g., their dynamic range.  

B. Communications assessment 

This subsection deals with the evaluation of 
communications, so as to check whether they become a 
bottleneck or not. To do so, the measurements previously 
shown have been divided in two: transmission (hereafter, Tx) 
and processing (hereafter, Px). These measurements are 
gathered in Tables IV and V –case 1 and case 2, respectively–. 
As can be observed, each table contains the three 
configurations described before: the sequential execution (1 
cluster – 1 core), the first level of parallelism (16 clusters – 1 
core) and the second one (16 clusters – 16 cores).  

TABLE IV.  DETAILED SYSTEM EXECUTION TIME (MS) – CASE 1 

Cluster-Core 1-1 16-1 16-16 Speedup 

Step 1 
Tx 329.8 329.8 329.8 1 

Px 541.4 50.9 5.1 106.2 

Step 2 
Tx 25,609.9 25,609.9 25,609.9 1 

Px 15,257.3 1,089.4 89.9 169.7 

Step 3 
Tx 0.34 0.34 0.34 1 

Px 1,759.8 1,759.8 350.9 5.0 

Cluster-Core 1-1 16-1 16-16 Speedup 

Steps 4-5 
Tx 329.8 329.8 329.8 1 

Px 470.9 30.9 4.3 109.5 

Global 
Tx 26,269.8 26,269.8 26,269.8 1 

Px 18,029.4 2,931.1 470.5 38.3 

The most important conclusion that can be extracted from 
these tables is that, indeed, the time needed for the data to be 
transmitted to the clusters is extremely high. The most 
representative example of this behavior is the covariance 
matrix computation (step 2): as shown in both tables, even in 
the sequential execution the transmission time already 
consumes more than 60% of the covariance execution time. As 
a result, when the processing is fully parallelized, more than 
99% of the covariance execution time is dedicated to data 
transmission. 

The main reason why the communications delay is so large 
is that the I/O interface is executed sequentially, that is, the 
communications are not parallelized. This is shown in both 
tables, where there are no speedups for any communications. 
For instance, in step 1, the whole image is needed. As a result, 
when only one cluster is used, the entire image is sent to it. 
Conversely, when several clusters are involved, the image is 
distributed among them –i.e., the same amount of data is 
transmitted–, but the transmission time remains the same 
because the I/O core sends the information sequentially. 
Furthermore, each transmission is blocking, so until the 
transmission to the first cluster has finished, the second 
transmission cannot begin.  

TABLE V.  DETAILED SYSTEM EXECUTION TIME (MS) – CASE 2 

Cluster-Core 1-1 16-1 16-16 Speedup 

Step 1 
Tx 721.9 721.9 721.9 1 

Px 1,177.4 86.1 11.2 105.2 

Step 2 
Tx 50,796.8 50,796.8 50,796.8 1 

Px 30,706.2 2,193.3 178.2 172.3 

Step 3 
Tx 0.34 0.34 0.34 1 

Px 1,849.7 1,849.7 370.3 5.0 

Steps 4-5 
Tx 721.9 721.9 721.9 1 

Px 999.6 68.0 9.2 108.6 

Global 
Tx 52,240.9 52,240.9 52,240.9 1 

Px 34,732.9 4,247.1 642.3 54.1 

Finally, related with the speedups achieved on the 
processing itself, it can be observed that, in general, they are 
rather large –more than 100, without taking into consideration 
the Jacobi step, as it is not distributed among the 16 clusters–, 
which proves that the parallelization potential of this 
architecture is very high.  

As a result, the initial hypothesis has been proven correct: 
although the potential parallelism offered by an architecture 
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such as the MPPA-256-N is rather large, the communications 
within the chip quickly become the main bottleneck of data 
consuming algorithms, as PCA.  

C. Second approach 

The previous subsection has proven right the initial 
hypothesis about the communications. Now, as a proof of 
concept, the second approach proposed in Section III is 
analyzed. 

This approach aims at proving that the main bottleneck of 
the system is the communications by removing them from the 
most consuming stage of the algorithm, which is the 
covariance matrix computation. To do so, instead of 
performing computation on the clusters, the host is used for the 
task, where the memory limitation is lower and, thus, there is 
no need for communicating data.  

Specifically, Table VI gathers the results obtained when 
applying this solution, comparing them with those obtained in 
the previous one. As only the covariance matrix computation is 
involved, just the results of step 2 are provided. Additionally, 
the global execution times for both cases and in all the 
configurations are also presented, as well as the speedup 
obtained in each configuration when the mentioned 
computation is moved to the host. 

As can be noticed, performing this operation on the host 
clearly provides considerably better results in terms of 
processing time, as, for instance, a speedup of more than 35 is 
achieved when comparing a sequential execution –1 cluster, 1 
core– with the equivalent version in the host. Specifically, the 
speedup achieved with this change is such that even using all 
the resources of the chip provides far worse results than those 
generated by the sequential version of the system –but with the 
covariance computation in the host–, as the speedup achieved 
with the latter is still more than 22. 

TABLE VI.  COVARIANCE MATRIX COMPUTATION COMPARISON (MS)  

Configuration 

Case 1 Case 2 

Step 2 Global Step 2 Global 

1-1 

Clusters 40,870.5 44,305.2 81,503.4 87,321.8 

Host 1,061.1 4,518.9 2,254.7 7,737.2 

Speedup 38.5 9.8 36.1 11.3 

16-1 

Clusters 26,699.4 29,244.2 52,990.1 56,540.2 

Host 1,061.1 3,602.2 2,254.7 5,794.4 

Speedup 25.2 8.1 23.5 9.8 

16-16 

Clusters 25,726.1 26,840.2 51,039.5 53,021.5 

Host 1,061.1 2,196.6 2,254.7 4,644.7 

Speedup 24.2 12.2 22.6 11.4 

To conclude this section, Fig. 4 provides a graphical 
comparison, for case 1, of the processing times for the four 
different implementations described before: (i) the sequential 
implementation –1 cluster, 1 core–; (ii) the first parallelization 

approach –16 clusters, 1 core–; (iii) the second parallelization –
16 clusters, 16 cores–; and iv) the one that moves the 
covariance computation to the host, while the rest of the 
algorithm maintains the configuration of the second approach.  

Fig. 4 also provides the speedups of each implementation 
when compared to the sequential one; as a result, it can be 
observed that the speedup achieved when moving the 
covariance computation to the host is, approximately, 20; on 
the other hand, the speedup achieved when using only the 
MPPA resources is 12.5.  

 

Fig. 4. PCA performance comparison for case 1: execution time and speedup 

for different implementations 

 Finally, to graphically observe the generated results, Fig. 5 
displays the one-band representation of the image obtained 
when applying the PCA algorithm to both cases 1 and 2 
described before. As can be seen, these images contain a 
spatial representation of the most relevant spectral information, 
which drastically reduces data dimensionality. 

   

Fig. 5. PCA result (one band representation of the original image) for case 1 
(left) and 2 (right) 

V. DISCUSSION 

After analyzing the results obtained during this research 
work, the present section compares the performance achieved 
using the MPPA architecture with studies presented in [26] and 
[27]. The former deals with the implementation of PCA on a 
Xilinx Virtex-7 XC7VX690T FPGA, while the latter uses the 
dataflow programming language RVC-CAL [28] to highlight 
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the intrinsic parallelism of the algorithm and automatically 
distribute the workload among the available cores of an Intel 
Core i7-4790 –which gathers four processors running at 3.6 
GHz– with 32 GB of RAM. 

Before starting the comparison itself, it should be noted 
that, as HI technology initially aimed remote sensing, when 
working with hyperspectral images the most common datasets 
used in the related literature are the well-known AVIRIS 
Cuprite scene –available online

1
 and hereafter AV_Cuprite–, 

and the AVIRIS Jasper Ridge scene –hereafter AV_JRidge–. 
Both images have been widely used for validating the accuracy 
of dimensionality reduction algorithms, such as PCA. They are 
composed of several reference ground signatures of well-
known minerals, which can be also extracted from the United 
States Geological Survey (USGS

2
) database. These two images 

have been the ones used for evaluation purposes in [26]. 

However, the pervasive development of HI has led to its 
application to several other fields, such as the medical one. In 
this line, this work and the one in [27] use the same input 
dataset as introduced in Section III, which has been obtained 
from the HELICoiD project database [22].  

As a result, these implementations cannot be compared 
directly, so the comparison will be performed in terms of the 
size of the images. In [26], the images have an approximate 
size of 50 MB (AV_Cuprite, 350×350×224) and 140MB 
(Av_JRidge, 614×512×224) –lines×samples×bands–. Likewise, 
the images used in this work need 60.6 MB (case 1, 
377×329×128) and 129.1 MB (case 2, 479×552×128) –again 
lines×samples×bands– to be stored.  

From the dimensions of the images of both datasets can be 
inferred that, in the first one, the image is stored with a 
precision of 2 bytes, while in the second one the precision 
required is 4 bytes. In other words, the precision in the second 
dataset is twice the one applied in the first one, which is an 
important feature when comparing the implementations.  

For each implementation, Table VII provides the global 
processing load of each image, as well as its size. Furthermore, 
it also provides a generic metric to simplify the comparison 
among them, which is the time needed for each implementation 
to process 1 MB of information. 

As can be observed, the processing time grows linearly 
with the size of the image, as the time needed for processing 1 
MB of information remains constant regardless of the 
implementation. Additionally, as shown in Table VII, the 
FPGA implementation achieves a processing cost of almost 30 
ms per MB of information, while the MPPA implementation 
reaches a processing rate of 36 ms per MB. On the other hand, 
the Intel-i7 implementation (RVC-CAL) obtains a processing 
rate of 10 ms per MB. 

This comparison shows, again, that the memory limitation 
plays a crucial role in the processing of data consuming 
algorithms, as the x86 architecture, which is the one with the 
least memory limitations thanks to its complex cache 

                                                           
1
 http://aviris.jpl.nasa.gov 

2
 http://speclab.cr.usgs.gov/spectral-lib.html 

architecture, achieves the largest processing rate. The reason of 
this result is also that its cores run at 3.6 GHz, while those of 
the MPPA run at 600 MHz.  

However, the x86 architecture cannot compete with both 
FPGAs and manycore platforms in terms of power 
consumption. For this metric, the MPPA-256-N used during 
this research clearly outperforms both the Xilinx Virtex-7 
XC7VX690T FPGA and the Intel Core i7-4790, as they 
consume 5W [14], 30-40W [29] and 84W

3
, respectively in 

average conditions. As power consumption is an important 
feature for clinical applications, trying to minimize this value is 
very important for designing a portable prototype.  

Consequently, the implementation developed during this 
research work can be considered competitive when compared 
to those described before, as it outperforms its competitors in 
terms of power consumption. Furthermore, when compared to 
the FPGA implementation, it can be observed that the results 
are equivalent, considering that the precision used in this 
implementation is twice the precision of the FPGA one.  

TABLE VII.  PCA TIME COMPARISON (MS)  

Implementation Database 

Global 

processing 

time 

Size 

(MB) 

Processing 

time per 

MB 

FPGA AV_Cuprite 1,490.0 50.0 29.8 

FPGA AV_JRidge 4,170.0 140.0 29.8 

INTEL-i7 HELICoiD_C1 614.8 60.6 10.1 

INTEL-i7 HELICoiD_C2 1,265.1 129.1 9.8 

MPPA HELICoiD_C1 2,196.6 60.6 36.2 

MPPA HELICoiD_C2 4,644.7 129.1 36.0 

VI. CONCLUSION 

This paper has presented an analysis of the parallelism of a 
PCA algorithm, including its adaptation to the manycore 
architecture MPPA-256-N from Kalray, and its comparison 
with other state-of-the-art studies. The proposed 
implementation aims at adapting the algorithm to process 
hyperspectral image analysis in real-time, so as to help 
surgeons in locating brain tumors during surgical procedures.  

On the one hand, the obtained results show that, as 
expected in such a data consuming algorithm, communications 
among processing units quickly become the main bottleneck of 
the system. Consequently and, as a proof of concept, two 
different implementations have been carried out: first, the most 
consuming stage of the algorithm has been located and has 
been parallelized over the clusters and then it has been 
processed sequentially in the host of the platform. The analysis 
of these implementations has proven that, indeed, 
communications are the main bottleneck, as they can consume 
up to a 99% of the processing time. Therefore, a trade-off 
between the level of parallelism and the increase in internal 
communications must be met. 

                                                           
3

 http://ark.intel.com/products/80806/Intel-Core-i7-4790-

Processor-8M-Cache-up-to-4_00-GHz 
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On the other hand, the exploitation of the available 
resources on the MPPA-256-N demonstrates that, in favorable 
cases, the intrinsic parallelism of the algorithm can be fully 
exploited. Speedups up to 170 have been achieved on the 
processing of certain stages of the algorithm on a 256-core 
implementation. Although these speedups decrease to 20 due to 
communication delays, the real-time objective of one 
hyperspectral image per minute is still reached for the 
application at hand. In these conditions, the PCA algorithm 
consumes less than a 10% of the available processing time, 
keeping processing resources for other hyperspectral image 
analysis tasks. 

This implementation has been compared to state-of-the-art 
implementations of the same algorithm on an FPGA and an 
x86 architecture, the proposed solution proving to be 
competitive and providing better power efficiency rates.  

As a final conclusion, experimental results have 
demonstrated that manycores are promising architectures for 
medical hyperspectral image processing. Future studies will 
investigate the possibilities to increase the effective 
communication bandwidth, so as to achieve speedups closer to 
256x, which is the ideal speedup achievable with this 
architecture. Furthermore, OpenMP and OpenCL 
implementations of the algorithm will be compared to the 
current POSIX results. 
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