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Sensitivity Analysis of the Elasto-Geometrical
Model of Cable-Driven Parallel Robots

Sana Baklouti, Stéphane Caro and Eric Courteille

Abstract This paper deals with the sensitivity analysis of the elasto-geometrical
model of Cable-Driven Parallel Robots (CDPRs) to their geometric and mechanical
uncertainties. This sensitivity analysis is crucial in order to come up with a robust
model-based control of CDPRs. Here, 62 geometrical and mechanical error sources
are considered to investigate their effect onto the static deflection of the moving-
platform (MP) under an external load. A reconfigurable CDPR, named `̀ CAROCA´́ ,
is analyzed as a case of study to highlight the main uncertainties affecting the static
deflection of its MP.

1 Introduction

In recent years, there has been an increasing number of research works on the
subject of Cable-Driven Parallel Robots (CDPRs). The latter are very promising
for engineering applications due to peculiar characteristics such as large workspace,
simple structure and large payload capacity. For instance, CDPRs have been used
in many applications like rehabilitation [1], pick-and-place [2], sandblasting and
painting [4, 3] operations.

Many spatial prototypes are equipped with eight cables for six Degrees of Freedom
(DOF) such as the CAROCA prototype, which is the subject of this paper.
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To customize CDPRs to their applications and enhance their performances, it is
necessary to model, identify and compensate all the sources of errors that affect their
accuracy.

Improving accuracy is still possible once the robot is operational through a suitable
control scheme. Numerous control schemes were proposed to enhance the CDPRs
precision on static tasks or on trajectory tracking [5, 6, 7]. The control can be either
off-line through external sensing in the feedback signal [2], or on-line control based
on a reference model [8].

This paper focuses on the sensitivity analysis of the CDPR MP static deflection
to uncertain geometrical and mechanical parameters. As an illustrative example,

Fig. 1: CAROCA prototype: a reconfigurable CDPR (Courtesy of IRT Jules Verne,
Nantes)

a suspended configuration of the reconfigurable CAROCA prototype, shown in
Fig. 1, is studied. First, the manipulator under study is described. Then, its elasto-
geometrical model is written while considering cable mass and elasticity in order to
express the static deflection of the MP subjected to an external load. An exhaustive
list of geometrical and mechanical uncertainties is given. Finally, the sensitivity of
the MP static deflection to these uncertainties is analyzed.

2 Parametrization of the CAROCA prototype

The reconfigurable CAROCA prototype illustrated in Fig. 1 was developed at IRT
Jules Verne for industrial operations in cluttered environment such as painting and
sandblasting large structures [3, 4]. This prototype is reconfigurable because its
pulleys can be displaced in a discrete manner on its frame. The size of the latter
is 7 m long, 4 m wide and 3 m high. The rotation-resistant steel cables Carl Stahl
Technocables Ref 1692 of the CAROCA prototype are 4 mm diameter. Each cable
consists of 18 strands twisted around a steel core. Each strand is made up of 7 steel



CDPR Sensitivity Analysis 3

wires. The cable breaking force is 10.29 kN. ρ denotes the cable linear mass and
E the cable modulus of elasticity.
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Fig. 2: The ith closed-loop of a CDPR

As shown in Fig. 2, the Cartesian coordinate vectors of anchor points Ai and
exit points Bi are denoted ai and bi. Vector p represents the Cartesian coordinates
of the MP geometric center, P, expressed in Fb = {O,xb,yb,zb}. The Cartesian
coordinates of Ai (Bi, resp.) expressed in the MP frame Fp = {P,xp,yp,zp} (in the
base frame Fb, resp.) are given in Tab. 1. The cable frame Fi = {Bi,xi,yi,zi} is
associated to the ith cable, where axes zi and zb are parallel.

Table 1: Cartesian coordinates of anchor points Ai (exit points Bi, resp.) expressed
in Fp (in Fb, resp.)

x (m) y (m) z (m) x (m) y (m) z (m)
B1 -3.5 2 3.5 A1 0.2 0.15 0.125
B2 3.5 2 3.5 A2 -0.2 0.15 -0.125
B3 -3.5 2 3.5 A3 -0.2 -0.15 -0.125
B4 3.5 2 3.5 A4 0.2 -0.15 0.125
B5 -3.5 -2 3.5 A5 -0.2 0.15 0.125
B6 3.5 -2 3.5 A6 0.2 0.15 -0.125
B7 -3.5 -2 3.5 A7 0.2 -0.15 -0.125
B8 3.5 -2 3.5 A8 -0.2 -0.15 0.125

3 Elasto-geometric modeling

In this section, both sag-introduced and axial stiffness of cables are considered in the
elasto-geometrical modeling of CDPR. The inverse elasto-geometrical model and
the direct elasto-geometrical model of CDPR are presented. Then, the variations in
static deflection due to external loading is defined as a sensitivity index.

3.1 Inverse Elasto-Geometric Modeling (IEGM)
The IEGM of a CDPR aims at calculating the unstrained cable length for a given pose
of its MP. If both cable mass and elasticity are considered, the inverse kinematics of
the CDPR and its static equilibrium equations should be solved simultaneously. The
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IEGM is based on geometric closed loop equations, cable sagging relationships and
static equilibrium equations.

The geometric closed-loop equations take the form:

bp = bbi +
bli− bRp

pai, (1)

where bRp is the rotation matrix from Fb to Fp and li is the cable length vector.
The cable sagging relationships between the forces ifi = [i fxi,0,i fzi] applied at the

end point Ai of the ith cable and the coordinates vector iai = [ixAi,0,i zAi] of the same
point resulting from the sagging cable model [9] are expressed in Fi as follows:

ixAi =
i fxiLusi

ES
+
|i fxi|
ρg

[sinh−1(
i fzi

f Ci
xi

)− sinh−1(
i fzi−ρgLusi

i fxi
)], (2a)

izAi =
i fxiLusi

ES
− ρgL2

usi
2ES

+
1

ρg
[

√
i fxi

2 + i fzi
2−

√
i fxi

2 +(i fzi−ρgLusi)2], (2b)

where Lusi is the unstrained length of ith cable, g is the acceleration due to gravity, S
is the cross sectional area of the cables.

The static equilibrium equations of the MP are expressed as:

Wt+wex = 0, (3)

where W is the wrench matrix, wex is the external wrench vector and t is the 8-
dimensional cable tension vector. Those tensions are computed based on the tension
distribution algorithm described in [10].

3.2 Direct elasto-geometrical model (DEGM)
The direct elasto-geometrical model (DEGM) aims to determine the pose of the
mobile platform for a given set of unstrained cable lengths. The constraints of the
DEGM are the same as the IEGM, i.e, Eq. (1) to Eq. (3). If the effect of cable weight
on the static cable profile is non-negligible, the direct kinematic model of CDPRs
will be coupled with the static equilibrium of the MP. For a 6 DOFs CDPR with 8
driving cables, there are 22 equations and 22 unknowns. In this paper, the non-linear
Matlab function `̀ lsqnonlin´́ is used to solve the DEGM.

3.3 Static deflection
If the compliant displacement of the MP under the external load is small, the static
deflection of the MP can be calculated by its static Cartesian stiffness matrix [11].
However, once the cable mass is considered, the sag-introduced stiffness should be
taken into account. Here, the small compliant displacement assumption is no longer
valid, mainly for heavy or/and long cables with light mobile platform. Consequently,
the static deflection can not be calculated through the Cartesian stiffness matrix. In
this paper, the IEGM and DEGM are used to define and calculate the static deflection
of the MP under an external load. The CDPR stiffness is characterized by the static
deflection of the MP. Note that only the positioning static deflection of the MP is
considered in order to avoid the homogenization problem [12].
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As this paper deals with the sensitivity of the CDPR accuracy to all geometrical
and mechanical errors, the elastic deformations of the CDPR is involved. This
problem is solved by deriving the static deflection of the CDPR obtained by the
subtraction of the poses calculated with and without an external payload. For a
desired pose of the MP, the IEGM gives a set of unstrained cable lengths Lus. This
set is used by the DEGM to calculate first, the pose of the MP under its own weight.
Then, the pose of the MP is calculated when an external load (mass addition) is
applied. Therefore, the static deflection of the MP is expressed as:

dp j,k = p j,k−p j,1, (4)

where p j,1 is the pose of the MP considering only its own weight for the jth pose
configuration and p j,k is the pose of the MP for the set of the jth pose and kth load
configuration.

4 Error modeling

This section aims to define the error model of the elasto-geometrical CDPR model.
Two types of errors are considered: geometrical errors and mechanical errors.

4.1 Geometrical errors
The geometrical errors of the CDPR are described by δbi, the variation in vector bi,
δai, the variation in vector ai, and δg, the uncertainty vector of the gravity center
position; So, 51 uncertainties. The geometric errors can be divided into base frame
geometrical errors and MP geometrical errors and mainly due to manufacturing
errors.

4.1.1 Base frame geometrical errors

The base frame geometrical errors are described by vectors δbi, (i=1..8). As the point
Bi is considered as part of its correspondent pulley, it is influenced by the elasticity
of the pulley mounting and its assembly tolerance. bi is particularly influenced by
pulleys tolerances and reconfigurability impact.

4.1.2 Moving-platform geometrical errors

The MP geometrical errors are described by vectors δai, (i=1..8), and δg. The gravity
center of the MP is often supposed to coincide with its geometrical center P. This
hypothesis means that the moments generated by an inaccurate knowledge of the
gravity center position or by its potential displacement are neglected. The Cartesian
coordinate vector of the geometric center G does not change in frame Fp, but strongly
depends on the real coordinates of exit points Ai that are related to uncertainties in
mechanical welding of the hooks and in MP assembly.

4.2 Mechanical errors
The mechanical errors of the CDPR are described by the uncertainty in the MP
mass (δm) and the uncertainty on the cables mechanical parameters (δρ and δE).
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Besides, uncertainties in the cables tension δ t affect the error model. As a result, 11
mechanical error sources are taken into account.

4.2.1 End-effector mass

As the MP is a mechanically welded structure, there may be some differences between
the MP mass and inertia matrix given by the CAD software and the real ones. The MP
mass and inertia may also vary in operation In this paper, MP mass uncertainty δm
is about ± 10% the nominal mass.

4.2.2 Cables parameters

Linear mass: The linear mass ρ of CAROCA cables is equal to 0.1015 kg/m. The
uncertainty of this parameter can be calculated from the measurement procedure as:

δρ =
mc δL+Lδmc

L2 , where mc is the measured cable mass for a cable length L. δL

and δmc are respectively the measurement errors of the cable length and mass.

Modulus of elasticity: This paper uses experimental hysteresis loop to discuss the
modulus of elasticity uncertainty. Figure 3 shows the measured hysteresis loop of
the 4 mm cable where the unloading path does not correspond to the loading path.
The area in the center of the hysteresis loop is the energy dissipated due to internal
friction in the cable. It depicts a non-linear correlation in the lower area between load
and elongation.
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Fig. 3: Load-elongation diagram of a steel wire cable measured in steady state
conditions at the rate of 0.05 mm/s

Based on experimental data presented in Fig. 3, Table 2 presents the modulus of
elasticity of a steel wire cable for different operating margins, when the cable is in
loading or unloading phase. This modulus is calculated as follows:

Ep−q = Lc
Fq%−Fp%

S(xq− xp)
, (5)

where S is the metallic cross-sectional area, i.e. the value obtained from the sum of
the metallic cross-sectional areas of the individual wires in the rope based on their
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nominal diameters. xp and xq are the elongations at forces equivalent to p% and q%
(Fp% and Fq%), respectively, of the nominal breaking force of the cable measured
during the loading path (Fig. 3). Lc is the measured initial cable length.

Table 2: Modulus of elasticity while loading or unloading phase

Modulus of elasticity (GPa) E1−5 E5−10 E5−20 E5−30 E10−15 E10−20 E10−30 E20−30
Loading 72.5 83.2 92.7 97.2 94.8 98.3 102.2 104.9

Unloading 59.1 82.3 96.2 106.5 100.1 105.1 115 126.8

For a given range of loads (Tab. 2), the uncertainty on the modulus of elasticity
depends only on the corresponding elongations and tensions measurements. In this
case, the absolute uncertainty associated with applied force and resulting elongation
measurements from the test bench outputs is estimated to be ± 1 N and ± 0.03 mm,
respectively; so, an uncertainty of ± 2 GPa can be applied to the calculation of the
modulus of elasticity.

According to the International Standard ISO 12076, the modulus of elasticity of a
steel wire cable is E10−30. However, the CDPR cables do not work always between
F10% and F30% in real life and the cables can be in loading or unloading phase. The
mechanical behavior of cables depends on MP dynamics, which affects the variations
in cable elongations and tensions. From Table 2, it is apparent that the elasticity
moduli of cables change with the operating point changes. For the same applied
force, the modulus of elasticity for loaded and unloaded cables are not the same.
While the range of the MP loading is unknown, a large range of uncertainties on the
modulus of elasticity should be defined as a function of the cable tensions.

4.2.3 Tension distribution

Two cases of uncertainties of force determination can be defined depending on the
control scheme:

The first case is when the control scheme gives a tension set-point to the actuators
resulting from the force distribution algorithm. If there is no feedback about the
tensions measures, the range of uncertainty is relatively high. Generally, the effort of
compensation does not consider dry and viscous friction in cable drum and pulleys.
This non-compensation leads to static errors and delay [13] that degrade the CDPR
control performance. That leads to a large range of uncertainties in tensions. As the
benefit of tension distribution algorithm used is less important in case of a suspended
configuration of CDPR than the fully-constrained one [14], a range of ± 15 N is
defined.

The second case is when the tensions are measured. If measurement signals are
very noisy, amplitude peaks of the correction signal may lead to a failure of the force
distribution. Such a failure may also occur due to variations in the MP and pulleys
parameters. Here, the deviation is defined based on the measurement tool precision.
However, it remains lower than the deviation of the first case by at least 50%.
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5 Sensitivity Analysis

Due to the non-linearities of the elasto-geometrical model, explicit sensitivity matrix
and coefficients [15, 16] cannot be computed. Therefore, the sensitivity of the elasto-
geometrical model of the CDPR to geometrical and mechanical errors is evaluated
statistically. Here, MATLAB has been coupled with modeFRONTIER, a process
integration and optimization software platform [17] for the analysis.

The RMS (Root Mean Square) of the static deflection of CAROCA MP is studied.
The nominal mass of the MP and the additional mass are equal to 180 kg and 50 kg,
respectively.

5.1 Influence of mechanical errors

In this section, all the uncertain parameters of the elasto-geometrical CAROCA
model are defined with uniformly distributed deviations. The uncertainty range
and discretization step are given in Tab. 3. In this basis, 2000 SOBOL quai-randm
observations are created.

Table 3: Uncertainties and steps used to design the error model

Parameter m (kg) ρ (kg/m) E (GPa) ai (m) bi (m) δ ti (N)
Uncertainty range ± 18 ± 0.01015 ± 18 ± 0.015 ± 0.03 ± 15

Step 0.05 3*10−5 0.05 0.0006 0.0012 0.1

In this configuration, the operating point of the MP is supposed to be unknown. A
large variation range of the modulus of elasticity is considered. The additional mass
corresponds to a variation in cable tensions from 574 N to 730 N, which corresponds
to a modulus of elasticity of 84.64 GPa. Thus, while the operating point of the MP
is unknown, an uncertainty of ± 18 GPa is defined with regard to the measured
modulus of elasticity E= 102 GPa.

Figure 4a displays the distribution fitting of the static deflection RMS. It shows
that the RMS distribution follows a quasi-uniform law whose mean µ1 is equal to
1.34 mm. The RMS of the static deflection of the MP is bounded between a minimum
value RMSmin equal to 1.12 mm and a maximum value RMSmax equal to 1.63 mm;
a variation of 0.51 mm under all uncertainties, which presents 38% of the nominal
value of the static deflection.

Figure 4b depicts the RMS of the MP static deflection as a function of varia-
tions in E and ρ simultaneously, whose values vary respectively from 0.09135 to
0.11165 kg/m and from 84.2 to 120.2 GPa. The static deflection is very sensitive
to cables mechanical behavior. The RMS varies from 0.42 mm to 0.67 mm due
to the uncertainties of these two parameters only. As a matter of fact, the higher
the cable modulus of elasticity, the smaller the RMS of the MP static deflection.
Conversely, the smaller the linear mass of the cable, the smaller the RMS of the MP
static deflection. Accordingly, the higher the sag-introduced stiffness, the higher the
MP static deflection. Besides, the higher the axial stiffness of the cable, the lower the
MP static deflection.
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Fig. 4: (a) Distribution of the RMS of the MP static deflection (b) Evolution of the
RMS under a simultaneous variations of E and ρ (c) Evolution of the RMS under a
simultaneous variations of m and ρ

Figure 4c illustrates the RMS of the MP static deflection as a function of variations
in ρ and m, whose value varies from 162 kg to 198 kg. The RMS varies from 0.52 mm
to 0.53 mm due to the uncertainties of these two parameters only. The MP mass
affects the mechanical behavior of cables: the heavier the MP, the larger the axial
stiffness, the smaller the MP static deflection. Therefore, a fine identification of m
and ρ is very important to establish a good CDPR model.

Comparing to the results plotted in Fig. 4b, it is clear that E affects the RMS of the
MP static deflection more than m and ρ . As a conclusion, the integration of cables
hysteresis effects on the error model is necessary and improves force algorithms and
the identification of the robot geometrical parameters [16].

5.2 Influence of geometrical errors

In this section, the cable tension set-points during MP operation are supposed to be
known; so, the modulus of elasticity can be calculated around the operating point
and the confidence interval is reduced to ± 2 GPa. The uncertainty range and the
discretization step are provided in Tab. 4.
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Table 4: Uncertainties and steps used to design the error model

Parameter m (kg) ρ (kg/m) E (GPa) ai (m) bi (m) δ ti (N)
Uncertainty range ± 18 ± 0.01015 ± 2 ± 0.015 ± 0.03 ± 15

Step 0.05 3*10−5 0.05 0.0006 0.0012 0.1

Static deflection RMS (mm)
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Fig. 5: (a) Distribution of the RMS of the MP static deflection (b) Effect of uncer-
tainties in ai (c) Effect of uncertainties in bi

Figure 5a displays the distribution fitting of the MP static deflection RMS. It
shows that the RMS distribution follows a normal law whose mean µ2 is equal
to 1.32 mm and its standard deviation σ2 is equal to 0.01 mm. This deviation is
relatively small, which allows to say that the calibration through static deflection
is not obvious. The RMS of the static deflection of the MP is bounded between a
minimum value RMSmin equal to 1.28 mm and a maximum value RMSmax equal to
1.39 mm; a variation of 0.11 mm under all uncertainties. The modulus of elasticity
affects the static compliant of the MP, which imposes to always consider E error
while designing a CDPR model.

The bar charts plotted in Fig. 5b and Fig. 5c present, respectively, the effects of
the uncertainties in ai and bi, (i=1..8), to the static deflection of the CAROCA for
symmetric (0 m, 0 m, 1.75 m) and non-symmetric (3.2 m, 1.7 m, 3 m) robot config-
urations. These effects are determined based on t-student index of each uncertain
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parameter. This index is a statistical tool that can estimate the relationships between
outputs and uncertain inputs. The t-Student test compares the difference between the
means of two samples of designs taken randomly in the design space:
• M+ is the mean of the n+ values for an objective S in the upper part of domain of
the input variable,
• M− is the mean of the n− values for an objective S in the lower part of domain of
the input variable.

The t-Student is defined as t =
|M−−M+|√

V 2
g

n−
+

V 2
g

n+

, where Vg is the general variance [18].

When the MP is in a symmetric configuration, all attachment points have nearly
the same effect size. However, when it is located close to points B2 and B4, the effect
size of their uncertainties becomes high. Moreover, the effect of the corresponding
mobile points (A2 and A4) increases. It means that the closer the MP to a given
point, the higher the effect of the variations in the Cartesian coordinates of the
corresponding exit point of the MP onto its static deflection. That can be explained
by the fact that when some cables are longer than others and become slack for a
non-symmetric position, the sag effect increases. Consequently, a good identification
of geometrical parameters is highly required. In order to minimize these uncertainties,
a good calibration leads to a better error model.

6 Conclusion
This paper dealt with the sensitivity analysis of the elasto-geometrical model of
CDPRs to mechanical and geometrical uncertainties. The CAROCA prototype was
used as a case of study. The validity and identifiability of the proposed model are
verified for the purpose of CDPR model-based control. That revealed the impor-
tance of integrating cables hysteresis effect into the error modeling to enhance the
knowledge about cables mechanical behavior, especially when there is no feedback
about tension measurement. It appears that the effect of geometrical errors onto the
static deflection of the moving-platform is significant too. Some calibration [19, 20]
and self-calibration [21, 22] approaches were proposed to enhance the CDPR per-
formances. More efficient strategies for CDPR calibration will be performed while
considering more sources of errors in a future work.
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