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Abstract: MP2RAGE is a T1 weighted MRI sequence that estimates a composite image providing much
reduction of the receiver bias, has a high intensity dynamic range, and provides an estimate of T1

mapping. It is, therefore, an appealing option for brain morphometry studies. However, previous stud-
ies have reported a difference in cortical thickness computed from MP2RAGE compared with widely
used Multi-Echo MPRAGE. In this article, we demonstrated that using standard segmentation and par-
tial volume estimation techniques on MP2RAGE introduces systematic errors, and we proposed a new
model to estimate partial volume of the cortical gray matter. We also included in their model a local
estimate of tissue intensity to take into account the natural variation of tissue intensity across the
brain. A theoretical framework is provided and validated using synthetic and physical phantoms. A
repeatability experiment comparing MPRAGE and MP2RAGE confirmed that MP2RAGE using our
model could be considered for structural imaging in brain morphology study, with similar cortical
thickness estimate than that computed with MPRAGE. Hum Brain Mapp 38:5115–5127, 2017. VC 2017

Wiley Periodicals, Inc.
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INTRODUCTION

Brain atrophy is a widely accepted imaging biomarker for
several brain disorders and ageing that can be computed
from a standard T1-weighted (T1w) magnetic resonance
imaging (MRI) sequence. Several morphological measure-
ments can be estimated by post-processing T1w brain scans,
such as cortical thickness or gray matter (GM) volume.
Many of those methods include an image segmentation step
that typically aims at identifying three main brain tissues:
GM, white matter (WM), and cerebrospinal fluid (CSF).
However, limitations of the MRI acquisition, such as the
radiofrequency (RF) B1 inhomogeneities, noise, and rela-
tively low resolution introducing partial volume (PV)
effects, hamper automated image segmentation methods,
and eventually reduces the precision of the derived imaging
biomarkers.

MPRAGE [Mugler and Brookeman, 1990] is a widely
used T1w sequence for brain imaging with optimized con-
trast between GM and WM, and a resolution allowing the
visualization of the major brain structures on standard
clinical scanners. A 1 mm isotropic resolution MPRAGE
image can be acquired in about 5 min on most modern 3T
MRI. MPRAGE has been used in many clinical studies,
and for example is a key data source for the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [Jack et al., 2008],
which contributed greatly in establishing standard mor-
phological imaging biomarkers.

MPRAGE is affected by the spatial variation of the signal
intensity across the scan, usually attributed to variations of
the B1 receiver field. Many popular segmentation techniques
assume that each of the main brain tissue types has a con-
stant intensity across the brain (e.g., Freesurfer [Dale et al.,
1999; Fischl et al., 1999], SPM [Ashburner and Friston, 1997],
FSL [Zhang et al., 2001; Smith et al., 2004]), and model the
intensity of each tissue type with one or a sum of normal dis-
tributions [Acosta et al., 2009; Ashburner and Friston, 2005;
Gonzalez Ballester et al., 2002; Tohka et al., 2004; Van
Leemput et al., 2003], or with the closely related fuzzy mem-
bership [Pham and Prince, 1998]. This assumption requires,
thus, to remove the intensity variations with techniques usu-
ally known as bias field correction, either performed as a
pre-processing step [Tustison et al., 2010], or embedded in
the segmentation algorithms [Acosta et al., 2009 ; Ashburner
and Friston, 2005; Leemput et al., 1999a]. In this publication
we have used without loss of generality a technique
proposed by Leemput et al. [1999a,b], based on a fourth
order 3D polynomial based bias field model also used in
other brain morphometry studies [Acosta et al., 2009].

A relatively new MRI sequence is the focus of this article:
the Magnetization Prepared 2 Rapid Acquisition Gradient
Echoes (MP2RAGE) sequence [Marques et al., 2010]. This
sequence provides an image with twice the intensity
dynamic range than MPRAGE, is less affected by B1 related
intensity inhomogeneity, and estimates a T1 map, albeit
with a longer acquisition time (11 min in our study). It is
therefore an excellent candidate for automated post-

processing, and atrophy biomarker. Indeed, MP2RAGE has
been shown to improve the segmentation of brain tissues
and cerebral structures, especially at 7T where the RF inho-
mogeneities are stronger [Bazin et al., 2013].

Despite the advantages of the MP2RAGE technique over
MPRAGE, a number of important questions remain unan-
swered. Recently, it has been reported that the cortex seg-
mented from MP2RAGE was consistently thinner compared
with a reconstruction from the standard multi-echo MPRAGE
sequence (0.12 mm of difference on average) [Fujimoto et al.,
2014].

Cortical thickness estimation may be affected by PV effect
that occurs when two different tissues, having different mag-
netic properties, contribute to the signal of a single voxel. PV
estimation (PVE) consists of assigning a fractional content,
that is, a proportion, to each of the tissues composing a voxel
labeled as a PV voxel. PVE has been proposed for precise
cortical thickness estimation (CTE), especially when used as a
biomarker [Acosta et al., 2008, 2009; Bourgeat et al., 2008;
Dor�e et al., 2013; Zuluaga et al., 2008]. The cerebral cortex, or
GM, is surrounded by two different tissues: WM and CSF.
The cortex is thus subject to PV effects at its two interfaces:
GM/WM and GM/CSF. Additionally, as cortical thickness is
of the same order of magnitude as the image resolution, typi-
cally a few mm, the convoluted structure makes cortical
thickness quantification very sensitive to PV effects. A num-
ber of methods have been proposed for PV modeling that
assume signal homogeneity of WM and GM tissues [Brouwer
et al., 2010; Choi et al., 1991; Pham and Prince, 1998; Santago
et al., 1993]. Most models rely on a linear combination of pure
tissue signal intensities. Recently, it has been shown that the
linear PV model could not be adapted for MP2RAGE data
since the bias free image results from a non-linear combina-
tion of two images [Duch�e et al., 2014].

Our study builds on several related publications: Mar-
ques et al. developed the MP2RAGE sequence [Marques
et al., 2010], Duch�e et al. proposed a tissue-based PV
model [Duch�e et al., 2012] and Fujimoto et al. showed that
the thickness of cortical surfaces was constantly thinner
when reconstructed from MP2RAGE data compared with
Multi-echo MPRAGE data [Fujimoto et al., 2014]. We have
undertaken two experiments to study PV modeling with
MP2RAGE data. A physical phantom experiment provided
evidence that using a linear PV model with MP2RAGE
data results in bias in the fractional content estimation. An
in vivo data experiment was designed to study the propa-
gation of this PV error on cortical thickness estimation
with MP2RAGE data. Our objective was to investigate the
application of the well-established linear model and a
Bloch-based PV model for PVE to estimate the fractional
tissue content in brain MRI using the MP2RAGE sequence.
Finally, we examined how tissue intensities vary across
the brain, and compared the constant tissue mean intensity
to a local estimate of tissue intensity. We show that model-
ing the natural signal variation across the brain can
improve the estimation of fractional tissue content.
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METHODS

MP2RAGE Sequence

MP2RAGE [Marques et al., 2010] is a recent sequence
based on the popular MPRAGE sequence [Mugler and
Brookeman, 1990]. It has the advantage of nulling out B2

1

RF inhomogeneities (receiver) and limiting the impact of
the B1

1 transmit field (TF) inhomogeneities. This feature is
particularly interesting when images are acquired at a
high magnetic field (�3T) because the RF inhomogeneities
are larger [Bazin et al., 2013], which may hamper some
processing steps. The inhomogeneity of the signal coming
from a tissue across the scanned volume can be large and
may lead to non-negligible segmentation errors. The
sequence starts with a magnetization preparation (inver-
sion pulse) followed by two gradient echo blocks provid-
ing two identically oriented and differently contrasted
complex images S1 and S2. The RF inhomogeneities are
removed with the computation of a uniform image U com-
puted inline with the two images in a way that reduces
most of the inhomogeneities in the receive RF field out.
The sequence was also designed to optimize contrast-to-
noise ratio per unit of time between brain tissues and
enable high resolution T1 mapping.

The first image, S1, is similar to a T1w image whereas S2 is
similar to a proton density-weighted image. As the RF inho-
mogeneity can be modeled as a local multiplicative factor
affecting S1 and S2 in a similar manner, U is free of RF inho-
mogeneity when computed with the following equation.

U5
Real S�1S2

� �
jS1j21jS2j2

(1)

where, the symbol � stands for the complex conjugate.
More details can be found in Marques et al. [2010].
Equation (1) has the advantage of constraining the possible
values in U between the predefined range [20.5,0.5]. U is
not linear with respect to the signals measured in S1 and
S2. The resulting signal keeps the information of whether
there was a phase change between the first and second
inversion times. The two images are also used to estimate
a high resolution T1 map by assigning T1 values to every

voxel based on their signal using a lookup table. Marques
et al. simulated signals with Bloch equations and showed
that the accuracy of the T1 estimation with MP2RAGE
was of 0.03 s within a range of T1 values of 0.6–3.0 s for a
magnetic field strength of 3T.

For tissues with a long longitudinal relaxation time T1,
the short first inversion time in MP2RAGE results in nega-
tive longitudinal magnetizations. In our study, the sign
information associated with S1 was estimated by assuming
that S2 has positive signals due to the brain tissues relaxa-
tion range, before the second image was acquired; and
therefore the sign of U is a good estimator for the sign
associated with S1. The sign of U was obtained by trans-
forming the range of the native 12 bit image 0; 4095½ � range
to the 20:5; 0:5½ � range in which the values from Eq. (1)
are supposed to lie in. This allows using the entire
dynamic range of S1 in a new polarity-signed image called
S6

1 . To do so, Eq. (1) was inverted:

S6
1 5U jS1j21jS2j2

� �
=jS2j (2)

This new image preserves the full dynamic range for
signal values and allows for the interpolation of the
GM/WM PV signals without ambiguity.

Partial Volume Models

We used a set of MP2RAGE images, as shown in Figure
1, where brain tissues have already been segmented from
the uniform image U into GM, WM, and CSF using an
established and validated method [Acosta et al., 2009]. A
two-step approach for PVE was chosen to compare the
GM fractional content estimated with two PV models at
the GM boundaries with the same population of voxels.
PV voxels were labeled and their tissue components iden-
tified: we used the assumption that a voxel contains no
more than two different tissues, as it is often the case in
existing studies, and the two tissues were identified as
those being the closest to each PVE voxel [Brouwer et al.,
2010; Choi et al., 1991;Khademi et al., 2014; Pham and
Prince, 1998; Ruan et al., 2000; Santago et al., 1993; Shat-
tuck et al., 2001; Tohka et al., 2004; Van Leemput et al.,

Figure 1.

Coronal view of reconstructed images from an MP2RAGE sequence acquired with a 3T Siemens

scanner on a subject of the study. The several outputs of the MP2RAGE sequence are (a) S1, (b)

S2, (c) the bias-free reconstructed U, (d) the T1 map and (e) our phase-sensitive inversion recov-

ery reconstructed image S6
1 .
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2003]. The two distinct spin populations associated with
two tissue types have different protons density and will
be relaxing at different longitudinal rates. The signal gen-
erated will be the expectation of the ensemble and the PV
signal is the linear combination of two signals that would
be measured if pure tissues were to be observed. The
weights associated to each of the tissues are the unknown
fractional contents of the identified tissues, their sum
should be 1. For the sake of clarity, in the next subsections,
we consider only PVE models at the GM/WM interface, a
similar reasoning can be applied to a GM/CSF voxel. The
unknown GM fractional content is called a 2 0; 1½ �.

Linear Partial Volume Model

In previous works [Pham and Prince, 1998; Ruan et al.,
2000; Santago et al., 1993; Tohka et al., 2004], regardless of
the sequence, the signal sgw of a voxel composed of GM
and WM has been modeled as a linear combination of
intensity means (lg and lw) of these tissues, assuming no
intensity inhomogeneity:

sgw5alg1 12að Þlw (3)

As MP2RAGE provides much reduction of the receiver
bias, this linear model seems a good candidate for PVE on
the reconstructed image U. The model was parameterized
by considering the pure tissue means where PV is esti-
mated. The fractional content could thus be computed by
interpolating the signal sgw, with f constraining the value
of a in 0; 1½ �:

a5f
lw2sgw

lw2lg

 !
(4)

where f is defined as

f xð Þ5

0 if x < 0

x if x 2 0; 1½ �

1 if x > 1

8>><
>>: (5)

The linear PV model could also be independently applied
to S6

1 or S2 but RF inhomogeneities would be present and
the optimized contrasts between cerebral tissues obtained
in U would not be exploited thus eliminating the advan-
tages of the MP2RAGE sequence.

Bloch-Based Partial Volume Model

In previous short publications [Duch�e et al., 2012, 2014],
we proposed a new partial volume model to estimate PV
from MP2RAGE data. In this model, the parameters con-
tributing to the signal are expressed as the tissue proper-
ties ~T5 q;T1;T2;T

�
2

� �
and the sequence parameters ~U. The

tissue properties are the proton density, the longitudinal
relaxation time T1, the transversal relaxation time T2 and

the T�2 relaxation time. In MP2RAGE, the sequence param-
eters can be decomposed in two sets of parameters ~U15

MP2RAGETR;TI1;a1;TI2; a2;TE;TR;Nzslicesf g and ~U25

MP2RAGETR;TI1;a1;TI2;a2;TE;TR;Nzslicesf g corresponding
to the two individual acquisitions before combining them
with Eq. (1). Hence, the signal measured in a pure tissue
voxel is weighted by the longitudinal magnetization of the
protons population M0. Consequently, the two PV signals
in S6

1 and S2 are defined as a linear combination of two
pure signals:

s1gw5M0g s1
~U1 ; ~Tg

� �
1M0ws1

~U1 ; ~Tw

� �
5M0gs1g1M0ws1w

s2gw5M0g s2
~U2 ; ~Tg

� �
1M0ws2

~U2 ; ~Tw

� �
5M0gs2g1M0ws2w

8><
>:

(6)

where Tg

*

and Tw

*

are the tissue properties of pure GM
and WM. T1 values were estimated using the T1 map pro-
duced by MP2RAGE, while T2, T�2 ; and proton density val-
ues were assumed constant and taken from the literature
[Rooney et al., 2007; Wansapura et al., 1999]. The signal
functions s1 and s2 are the MP2RAGE signals measured
with the first and second inversion times. More details
about these functions can be found in [Marques et al.,
2010]. The signals s1 and s2 can then be computed for
particular pure tissues, resulting in the estimation of the
values s1g; s2g; s1w; s2w. They represent the pure GM and
WM signals in S6

1 and S2 for M051.
The voxel-wise linear system [Eq. (6)] can be solved for

M0g;M0w

� �
which are the amounts of respective tissues in

the voxel, they represent the same physical information in
both MP2RAGE images. Once the signals demodulation is
performed, the fractional content of GM is calculated as:

a5
M0g

M0g1M0w
(7)

This model is parameterized by the T1 values of tissues.
T�2 has a limited impact on a, as the sequence is strongly
T1 weighted [Mugler and Brookeman, 1990].

As the partial volume is estimated from the signal equa-
tions, we will later refer to this method as the Bloch model.

Local and Global Models

In our experiments, MPRAGE scans were corrected for
bias field using N4 [Tustison et al., 2010], whereas
MP2RAGE data were not corrected since the data are
natively bias-free. However, upon close inspection some
intensity variations were still noticeable in the corrected
MPRAGE and the MP2RAGE images (Fig. 2). Those varia-
tions have been reported [Sereno et al., 2013] before as natu-
ral contrast variation between GM and WM, and have even
been investigated as a possible biomarkers of ageing [Salat
et al., 2009]. In addition to estimating one global mean for
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each tissue as is usually done, we therefore also estimated
local tissue intensity.

In the global approach, the parameters of the PV models
(cf., Table I) were estimated using the pre-obtained seg-
mentation maps. The GM and WM masks were eroded
with a spherical structuring element of radius 1 mm to
reduce PV. For the CSF, the ventricles were used and
eroded similarly to estimate CSF parameters. The mean
intensity values for every tissue inside those masks were
used as model parameters for either the linear model
(mean intensity in image U) or the Bloch model (T1 values)
and were fixed for every PV voxel in the brain.

The local method consisted in estimating local pure tis-
sue intensity means for the linear model and local T1 val-
ues for the Bloch model (see Table I). For each PV voxel
(see section “Real Brain MR Data at 3T” for the identifica-
tion of those), a sphere of radius r520 mm was created.
The radius of the sphere was chosen after experimenting
with different sizes. It needs to be large enough to be sta-
tistically robust but not too large to miss fast spatial varia-
tion in intensity. Every voxel labeled as pure tissue inside
that sphere contributed to the calculation of the corre-
sponding local pure tissue parameters. T1 maps obtained
with MP2RAGE were used to estimate the local T1 values
for the Bloch model while images U provided the linear
model parameters. This local approach allows taking into
account the natural variability of the tissue properties
across the brain [Salat et al., 2009].

These maps were also used to construct gray-to-white
matter signal intensity ratios (GWR) at the cortical bound-
ary to compare contrast across sequences. The GWR was
utilized in Salat et al. [2009] to reflect the evolution of local
GM/WM contrast properties with age.

Simulated Data

In order to compare the various PVE methods, we
applied the two PV models on synthetic data that we gen-
erated. Two tissues of interest were simulated with

different T1 values. PV voxels were simulated by mixing
signal with fractional content values ai, ranging from 0 to
1 by increment of 0.01. The PV signals were modeled as
linear combinations of two pure tissue signals. The robust-
ness to noise of the PVE methods was evaluated with a
Monte Carlo approach. The two inversion times were sim-
ulated with various levels of additive Gaussian noise,
approximating Rician noise in tissue, and the composite
signals were calculated with Eq. (1). The two PVE methods
were applied to estimate the fractional content ai. For each
ai, the operation was repeated with N 5 100.000 samples.
For every PVE method and level of noise, the mean and
the standard deviation were calculated.

For noiseless simulations, PVE by the various methods
was expressed as a function fs of the ground truth, the PV
coefficients ai. These functions were plotted and compared
with the ground truth function fGT : a! a. The root mean
squared error (RMSE) between the ground truth and the
PV estimates was computed.

This simulation was done for six combinations of pair of
tissues with the same MP2RAGE imaging parameters. First,
the gray-white and gray-pial boundaries were simulated
with T1 values measured in experimental data of subjects at
3T. The evaluation of the PV estimation errors was extended
to brain tissues scanned with MP2RAGE at 7T. T1 values,
increasing with the magnetic field strength, were estimated
from MP2RAGE T1 maps of the publicly available MRI data
set [Forstmann et al., 2014]. In addition, simulations of the
PV boundaries obtained in the physical phantom described
in the next subsection and scanned at 3T were performed.
All the values used for the different magnetic fields and
objects are reported in Table II.

The acquisition parameters for the 3T simulations were
similar to those used for the physical phantom and real

Figure 2.

Gray to white matter (GWR) ratios maps computed from

MPRAGE, bias-corrected MRPAGE and MP2RAGE data. These

maps were estimated in each voxel of the cortex by computing

the ratio between mean gray matter and white matter signals in

the neighboring voxels (within a sphere of radius 20 mm) previ-

ously classified as GM or WM. [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE I. Summary of the PV estimation methods

PV model
Parameters

(extracted from)
PV estimated

with

Linear model lg; lw; lc Uð Þ U

Bloch model T1g; T1w; T1c T1 mapð Þ S6
1 ; S2

The second column lists the required parameters and the input
image(s). The right column lists the image(s) from which the PV
estimation is done.

TABLE II. T1 values used for the simulated partial vol-

ume GM/WM or GM/CSF voxels

Simulated
tissues

T1 values
at 3T (ms)

(brain)

T1 values
at 7T (ms)

(brain)

T1 values
at 3T (ms)

(physical phantom)

WM 846 1,220 316
GM 1,350 2,132 504
CSF 2,900 4,425 898

r Partial Volume Model in MP2RAGE r
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data experiments (described in the next subsection): TI1/
TI2/TE/TR/a1=a2/BW 5 700 ms/2,500 ms/2.98 ms/5,000
ms/48/58/240 Hz/px. Those for the 7T simulations were
TI1/TI2/TE/TR/a1=a2/BW 5 900 ms/2,750 ms/2.45 ms/
5,000 ms/58/38/240 Hz/px as in [Forstmann et al., 2014].

Physical Phantom

A physical phantom experiment was designed to com-
pare the PVE methods against a known ground truth.

Design

The phantom consisted of three agar layers. We varied
the concentration of gadolinium diethylenetriamine penta-
acetic acid (Gd-DTPA) in the gels to reproduce the order
of T1 values as it may be found in cerebral tissues
(T1WM < T1GM < T1CSF). The gel layers were designed to be
as flat as possible by pouring the hot agar solution onto a
flat piece of glass. The three gels were placed on top of
each other to obtain a flat interface between neighboring
gels. The GM-like gel was positioned in the bottom fol-
lowed by the WM-like gel in the middle and the CSF-like
gel on top.

Imaging Protocol

The phantom was scanned in a 3T Siemens Skyra Scan-
ner with a 20-channel head coil. A first volume was
acquired by placing as precisely as possible the field of
view (FOV) coplanar to the flat intersections between gels.
This strategy ensures that one slice of the acquired volume
(angle 08) is subject to PV. The FOV was incrementally
rotated by an angle du510� until a final FOV angle of 908

was reached. Each FOV position was scanned with a 3D
isotropic (1 mm3) MP2RAGE protocol with the following
parameters: TI1/TI2/TE/TR/a1=a2/BW 5 700 ms/2,500
ms/2.98 ms/5,000 ms/48/58/240 Hz/px.

Ground Truth Separating Surface Estimation

We made the assumption that locally at the scale of a
few pixels, the separating surface between two gels could
be approximated with a plane, expressed in the phantom
coordinate system. In other words, there exists an optimal
plane ðP̂Þ of equation âx1b̂y1ĉz1d̂50 that represents the
interface between two pure tissues. An initial plane was
estimated from a manually labeled zone in the first
acquired image in a region of the phantom where the PV
effects seemed to occur in a single slice. We optimized the
plane position by minimizing the root mean squared error
(RMSE) between the fractional contents estimated with a
PVE method and the computed ground truth:

â; b̂; ĉ; d̂
� �

5 min
a;b;c;d

XN

i51

PVa;b;c;d
GT ið Þ2PVEmeth ið Þ

� �2
(8)

where PVa;b;c;d
GT ið Þ is the fractional content ground truth cal-

culated at the voxel index i in the region of interest for the
current plane position a; b; c; dð Þ. PVEmeth ið Þ is the fractional
content estimated with the method chosen to minimize the
criterion. This procedure was repeated for the linear and
Bloch PV models at both interfaces.

Partial Volume Ground Truth Calculation

For every PV voxel, the volume on each side of the
intersecting plane surface was geometrically computed
from the positions of the intersection points of the current
plane and the voxel bounding box. This volume, normal-
ized by the voxel volume, was assigned to the correspond-
ing tissue PV map. PV was estimated on voxels identified
as PV voxels during the ground truth calculation step. The
parameters for the PVE methods were measured with
manually labeled regions for each of the three tissues.

Real Brain MR Data at 3T

Six healthy volunteers were scanned in a 3T Siemens
Skyra scanner with a 20-channel head coil (Siemens,
Erlangen Germany), at Monash University, Melbourne,
Australia, under ethics approval of the Monash University
Human Research Ethics Committee (MUHREC). Each sub-
ject was scanned with a 3D isotropic (1 mm3) MP2RAGE
protocol (the parameters were similar to those used in the
physical phantom experiment, the resulting MP2RAGE
images are shown in Fig. 1) and a 3D isotropic MPRAGE
protocol with the following parameters: TI=TR=TE=a=BW 5

900 ms=2; 300 ms=2:07 ms=9�=230 Hz=px. The subject was
scanned a first time (scan) with both sequences, and then
was asked to stand up before acquiring another pair of
images (rescan). The subject had therefore two different
head positions between the two scanning sessions.

Each subject was processed with the following pipeline.
The four volumes (MP2RAGE scan and rescan and
MPRAGE scan and rescan) were coregistered to a common
coordinate system thus allowing to compute an average vol-
ume. This volume was segmented into five classes: CSF,
CSF/GM, GM, GM/WM, and WM as detailed in Acosta
et al. [2009]. The obtained mask was projected backward in
the original space of each volume with the inverse trans-
forms calculated during the previous step. GM PV maps
were obtained by applying the PV models presented earlier:
Partial Volume Models subsection the linear and Bloch PV
models for the MP2RAGE volumes and the linear model for
the MPRAGE volumes.

These PV maps were either obtained using global pure
tissue intensity means or local pure tissue intensity means
as described in the Methods section.

The influence of PVE on cortical thickness measure-
ments was assessed. Cortical thickness was estimated with
a voxel-based method [Acosta et al., 2009] that requires a
GM/WM/CSF segmentation and a GM PV map as inputs.
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The cortical thickness maps associated to each PVE
method were computed with a common segmentation and
the three different estimated GM PV maps.

For each scan, three cortical thickness maps were esti-
mated. Hence, six cortical thickness maps were obtained
per subject. They were aligned on a common template sur-
face to compare the results on a vertex-wise basis. The
average cortical thickness in the whole neocortex was com-
puted and compared between PV models.

The topologically equivalent surfaces allowed vertex-
wise comparisons. We computed the mean cortical thick-
ness difference between all the pair of PV models among
the 12 images (6 subjects 3 2 scans). Reproducibility of
cortical thickness measurement was estimated by comput-
ing the R2 correlation coefficient for vertex-wise cortical
thickness values between the first and the second scans.

A vertex-wise statistical analysis was performed in order
to compare PV models. The cortical thickness yi;s;t of indi-
vidual i at vertex s for the scan number t was modeled
with the following linear mixed effects model similar as
the one presented in Ospina et al. [2012]:

yi;s;t5b0;s1b1;sui1ei;s1ei;t (9)

where, b0;s is the average cortical thickness of the popula-
tion at vertex s, b1;s is the average cortical thickness differ-
ence between two PV models at vertex s, ui is 0 if yi;s;t was
estimated with the linear model and 1 otherwise (yi;s;t was
estimated with the Bloch model), ei;s is the deviation of
individual i from the population and ei;t is a random error
related to scan number t. The statistical test consisted in
testing the following null hypothesis: b̂1;s50. If the null
hypothesis was not rejected, there was no evidence of dif-
ferences in yi;s;t between the cortical thickness estimated
from the two different PV models. If the null hypothesis
was rejected, PV models were said to induce statistically
significant differences in the estimation of cortical thick-
ness. The vertices with significant difference between the
two metrics were displayed on our template surface.

RESULTS

Local and Global Models

Figure 2 shows gray to white matter signal intensity ratios
(GWR) at each vertex of a cortical surface reconstructed
from MPRAGE and MP2RAGE data, showing consistent
results as those reported by Salat et al. [2009]. MP2RAGE
had superior tissue contrast compared with MPRAGE. The
average GWR over the surface for the subject shown in Fig-
ure 1 was 0.68 for MP2RAGE data and 0.78 for MPRAGE
data. Figure 2 also highlights that GWR contrast varies
throughout the cortex, even in MPRAGE after correction
with N4. It shows that the GWR variation patterns across the
brain were similar between MPRAGE (with and without
N4 bias correction) and MP2RAGE (no bias correction);
however, the amplitude of the variations was different.

Simulated Data

The sensitivity to noise on the estimate of the ai coeffi-
cients with the two PVE methods on MP2RAGE simulated
data appeared to vary linearly with noise level. The linear
relationship was the same for the linear and Bloch models.
While the Bloch model did not exhibit bias in the PV coef-
ficients estimation, the linear model resulted in systematic
errors for any pair of tissues considered in the simulations
when applied on the uniform MP2RAGE image. The shape
of the error function varies with the pair of tissues consid-
ered for partial volume correction (Fig. 3). The theoretical
error is a function of the tissue properties; therefore, the
trend of the error function varies with the magnetic field
strength.

We also investigated the effect of higher field strength
(7T). At 3T, depending on the actual GM PV coefficient,
positive or negative low magnitude (jâ2aj < 0:02) PV
errors occur at the GM/CSF boundary and negative errors
occur at the GM/WM boundary. At 7T, the errors are con-
sistently negative: the linear model underestimates the
proportion of GM at both boundaries, the errors at 7T
were larger than those at 3T.

Physical Phantom

The T1 values of the phantom measured with the
MP2RAGE T1 map were of 504 ms for the GM-like gel, 316
ms for the WM-like and 898 ms for the CSF-like, and
although these values were not identical to cerebral tissue
properties measured at 3T (due to experimental constraints),
the gels reproduce T1 values in the same order as it may be

Figure 3.

Estimated partial volume coefficients (â) versus ground truth coef-

ficients (a) with simulated MP2RAGE signals using the linear PV

model for various tissue boundaries and magnetic field strengths.

[Color figure can be viewed at wileyonlinelibrary.com]
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found in cerebral tissues (T1WM < T1GM < T1CSF). Figure 4
(top) shows three regions of interest obtained in MP2RAGE
uniform images acquired with various FOV inclination
angles. The acquisition strategy resulted in a uniform sam-
pling of the PV coefficients as the patterns observable at
interfaces vary between images. Intensity profiles were
drawn from these images and were plotted in Figure 4
(bottom).

The optimized plane positions obtained for each PV
model were very similar, validating that both models esti-
mated a common optimal plane solution. Indeed, the nor-
mal coefficients a; b; cð Þ differed by less than 0.1% between
the linear and Bloch PV models and the elevation of the
plane differed by only 0.02 mm. RMSE obtained by mini-
mizing the criterion with the linear model (0.21) was
higher than the Bloch model (0.12) for the WM/CSF
boundary, consistent with the hypothesis that the linear
model is subject to both statistical and systematic errors
while the Bloch model may be subject to the noise contri-
bution only.

The scatter plots of PV voxels obtained at both bound-
aries are shown in Figure 5 (top: WM/CSF, bottom:
GM/WM). The x-axis is the PV ground truth obtained for
the optimal plane position while the y-axis is the PV

estimated with the PV model used for optimization. These
plots show a bias for the linear model at the WM/CSF
boundary, consistent with our simulation results, and well
fitted with a second degree polynomial as predicted from
simulations.

Real Brain MR Data at 3T

The results of the comparisons between PV models and
sequences with the local PV approach are summarized in
Figure 6. The top row contains the cumulated histograms
of cortical thickness differences across the population and
the bottom row exhibits surfaces where the vertices code
for the p-value calculated from the linear mixed effects
model presented in Eq. (9).

The average cortical thickness difference between the
Bloch and linear models with MP2RAGE data was 0.13 mm
for the local model (0.09 mm for the global model), shown in
the histograms in the Figure 6 upper row, rightmost column.
Between the Bloch model (MP2RAGE) and the linear model
applied on MPRAGE the difference was 0.02 mm for the
local model (–0.10 mm for the global model). The reproduc-
ibility was similar between PV models and sequences with
an average R2 of 0.799, 0.796, and 0.812 for the linear model

Figure 4.

Example of the images for varying slice inclination angles (panels a, b, c) for the physical phantom

using the MP2RAGE sequence. The corresponding signal profiles are plotted below for the vari-

ous inclination angles (panel d). In the graph, the points overlaid with a red box are signals com-

ing from PV voxels, reflecting the variety of PV coefficients obtained with this scanning scheme.

[Color figure can be viewed at wileyonlinelibrary.com]
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applied on MPRAGE, the linear model applied on
M2PRAGE and the Bloch model (MP2RAGE), respectively.

The p-value surfaces show a large number of vertices with
statistically significant differences between the linear and

Bloch PV models on MP2RAGE and between the linear

model applied on MP2RAGE and on MPRAGE throughout

the whole brain surface (Fig. 6, bottom). However, fewer
vertices had statistically significant differences between the

linear model applied on MPRAGE data and the Bloch PV

model (MP2RAGE data), and were localized in the temporal

lobe and bottom of the frontal lobe.
T1 values as measured by MP2RAGE shows variability

across the brain (Fig. 7). Using local tissue intensity means
instead of global tissue average allowed to take into

account this natural tissue variability resulting in differ-
ences of cortical thickness (Fig. 8).

DISCUSSION

Partial volume estimation using a linear mixed model
often used with MPRAGE is not valid for MP2RAGE acqui-
sition because the composite image introduces a quadratic
component. Instead, a Bloch-based PV model was proposed
to take into account this quadratic term. Using a linear PV
model on MP2RAGE results in the underestimation of corti-
cal thickness as reported by others [Fujimoto et al., 2014].
This error could be corrected in our experiments when using
the Bloch model on MP2RAGE data. There are two features
in using the proposed PV model: it is based on the Bloch
equations (it allows to model the sequence parameters) and
it is based on the S6

1 and S2 images prior to any non-linear
combination (the source of the thickness bias compared with
MPRAGE). This last feature allows correcting partial volume
estimation in MP2RAGE volumes. We demonstrated those

Figure 5.

PV coefficients in PV voxels at the interface of the gel layers.

The data were concatenated from every inclination angle of the

field of view. In blue, the scatter plots obtained for the linear

model and in green for the Bloch model. The scatter plots rep-

resent the estimated PV coefficients â versus the estimated geo-

metrical ground truth (ageometry) obtained with the optimal plane

position model. Top row: PV voxels belonging to the phantom

WM/CSF boundary. Bottom row: PV voxels belonging to the

phantom GM/WM boundary. For each boundary, the solutions

obtained for the linear and Bloch models were very close; how-

ever, the blue points (linear model) follow a quadratic function

of the ground truth PV coefficients while the green points

(Bloch model) follow a linear relationship with the ground truth

PV coefficients. [Color figure can be viewed at wileyonlineli-

brary.com]
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findings on (i) simulations, (ii) physical phantom, and in (iii)
a reproducibility study on six subjects. In addition, contrast
between white and gray matter is not constant across the
brain, and can be measured with MP2RAGE T1 map

variation. We suggest using partial volume models that
include local estimate of tissue intensity to take into account
this natural variation, rather than estimating a single inten-
sity mean for each tissue.

Our simulations suggest (Fig. 3) that the measured error
functions depend on the pair of tissues considered. These
functions vary with the magnetic field strength and they
vary unfavorably for the linear PV model when magnetic
field strength increases. The GM/CSF boundary at 3T has
relatively small errors when comparing to ground truth
(plain red line in Fig. 3) and would have limited impact
on CTE. The 7T simulations suggest that the errors are
more significant (blue lines, Fig. 3), resulting in a system-
atic underestimation of the GM volume. These errors
cumulated on both sides of the cortex may result in a con-
sistently underestimated cortex from MP2RAGE compared
with MPRAGE when using a classic linear PV model. The
achievable higher resolution at 7T would only partially
reduce the influence of these errors. However, investiga-
tion of those issues at 7T remains to be done.

The physical phantom experiment validated the simula-
tion results with a good fit between the expected error and
the measured error for the linear PV model at the WM/
CSF boundary. The experimental results for the GM/WM

Figure 6.

Cortical thickness results using a local intensity estimation from

three PV models and sequences compared (three columns of

panels). The histograms plots (upper panels) show the vertex-

wise cortical thickness difference distributions. The bottom row

of panels is meshes representing statistically significant cortical

thickness differences that are due to the models. The bias seen

in the left column using MPRAGE and MP2RAGE with the

standard linear model can be removed using our proposed

approach for MP2RAGE (middle column). A similar bias is seen

in the right column between the linear and our proposed “Bloch

model” using MP2RAGE, with a narrower error distribution

since no registration was necessary as the same image was used

(MP2RAGE) for both methods. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 7.

Distribution of estimated T1 values of cortical GM and neighboring

WM voxels at 3T for the whole population. The pictures in the

corners of the graph show the T1 WM and GM surface projection

for a representative subject. [Color figure can be viewed at

wileyonlinelibrary.com]
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boundary had a slight shift compared with our theoretical
model. We believe that the lower interface between the
gels was probably not ideally flat challenging our ideal
plane model. Gibbs oscillations visible in Figure 4 proba-
bly affected also our PV measurements.

Our findings explain the systematic measurements of a
thinner cortex reconstructed with MP2RAGE compared
with a cortex reconstructed with the reference multi-echo
MPRAGE (MEMPRAGE) scan reported in Fujimoto et al.
[2014]. The authors reported an average cortical thickness
difference of 0.12 mm between the cortical surfaces recon-
structed from MEMPRAGE scans and MP2RAGE. This dif-
ference is consistent with the one observed between the
linear and Bloch PV models in our cortical thickness meas-
urements (average 0.13 mm). Using a physical phantom,
the errors in PV estimation were consistent and only
slightly larger than the theoretical errors, probably due to
the errors in calculating a precise PV ground truth. How-
ever, a similar quadratic trend was observed, confirming
that the linear model is prone to PV errors at both interfa-
ces of the GM. Even though they can be low, they are
systematic and introduce a bias in the estimation, which
can be avoided by choosing the Bloch PV model for
MP2RAGE. Fujimoto et al. performed a vertex analysis
comparison of the reconstructed surfaces suggesting that

the MP2RAGE gray-white boundary was responsible for
most of the discrepancies between MEMPRAGE and
MP2RAGE. This analysis is consistent with our results
showing that the PVE bias with the linear model is larger
at the gray-white boundary than at the pial surface for a
magnetic field strength of 3T.

The cortical thickness results in Fujimoto et al. [2014]
were obtained with a surface-based approach step [Dale
et al., 1999] whereas our results come from a voxel-based
method. While the two approaches are different, they
share the same assumption that an intensity edge defines
the GM/WM boundary. This boundary is shifted when
using a linear model in the MP2RAGE image. This is con-
sistent with comparison between surface-based and voxel-
based approaches in population analysis. Acosta et al.
[2012] have reported a high correlation in cortical thick-
ness estimated with both voxel-based approach and the
surface-based approach obtained by Freesurfer. This
appears to be in agreement with results from Clarkson
et al. [2011] that for group-wise comparisons, surface and
voxel-based methods produce comparable results.

The linear PV model could be applied independently to
S6

1 , or to S2, but by doing so, the bias-free and high GM/
WM contrast features of the combined MP2RAGE image
would not be exploited. However, while T1 values are

Figure 8.

Average cortical thickness surfaces obtained from the six subjects using either the local or global

model and the various PV models are represented line-wise. [Color figure can be viewed at

wileyonlinelibrary.com]
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measured with MP2RAGE, the unknown proton density
values of the tissues have to be estimated, which is a limita-
tion of our approach. Our proposed Bloch model allows to
take into account the actual flip angle which could vary
from the desired flip angle with B1

1 inhomogeneities at high
field. This effect could be reduced if flip angle mapping
could be performed. We expect that the Bloch model would
benefit from the more recent MP3RAGE sequence [Rioux
et al., 2014] that allows both T1 and flip angle measurement.

We did not find any difference in reproducibility between
the models and sequences tested. This is likely due to our
careful experimental design to fairly compare the methods.
Using identical segmentation maps for both MPRAGE and
MP2RAGE (calculated on the average image) PV voxels
were labeled in the same way for all the images. The alterna-
tive method of independently segmenting images from each
sequence and model creates different PV labels, which in
our experiments produced different cortical thickness repro-
ducibility results that could not be fully attributed to the
chosen PV model (since the source of the errors could also
come from the different segmentations).

No bias field correction in a pre-processing step is required
before segmenting MP2RAGE scans since it is free of the RF
B1 inhomogeneity. However, close inspection of reconstructed
MP2RAGE and T1 volumes shows signal intensity variations
across the brain. MRI intensity variation across the brain is
present naturally as tissue microstructure and properties
affect each voxel’s magnetic and relaxation properties. This
was recognized and shown to be independent of the MRI sys-
tem and sequences [Salat et al., 2009]. In fact, not only GM, but
also the WM signal intensity varies across the brain due to dif-
ferent tissue properties (cf., Fig. 7), resulting in GM/WM con-
trast variation. Figure 2 illustrates the local variations of the
GM to WM signal ratio with MPRAGE and MP2RAGE
acquired on the same healthy subject. Figure 8 shows cortical
thickness differences between the PV models; it also shows
differences between global and local methods albeit more sub-
tle because of the color map used. Using local averages leads
to better estimation of PV for estimating cortical thickness in
MPRAGE [Rueda et al., 2010], and we expect this to be the
case for MP2RAGE as well as suggested by Figure 8. The low
frequency of the RF bias field overlaps the smooth intensity
variation of the tissue, and thus applying methods like N4,
which enforces constant tissue intensity across the brain,
results in a decrease of potentially useful information. How-
ever, as shown in Figure 2, tissue intensity can vary quickly
between areas and some of the natural tissue variation
remains even after N4 pre-processing of MPRAGE (Fig. 2 mid-
dle panel). Because MP2RAGE does not require bias field cor-
rection, the variation intensity of the tissues across the brain
are likely to be due solely to the natural intensity variation,
and are larger than in MPRAGE as computed by the grey to
white intensity ratio (Fig. 2). This makes MP2RAGE an ideal
candidate to investigate the utility of the intensity variation
across brain tissues as a biomarker of pathologies or ageing,
which will be the focus of our future work.

CONCLUSION

We investigated different PV models to estimate the
fractional tissue contents in brain MRI with the MP2RAGE
sequence. We showed that the well-established linear
model for PVE is prone to systematic errors because the
reconstructed MP2RAGE image U results from a non-
linear (quadratic) combination of two images. Instead, we
demonstrated and validated the use of a Bloch-based PV
model on phantom and actual 3T brain data. Furthermore,
tissue intensities vary across the brain, and the assumption
of a constant tissue mean intensity is not valid. We suggest
using a local estimate of tissue intensity. By using a for-
ward model based on the Bloch equations with local tissue
intensity estimate, similar cortical thickness estimation
could be achieved between MP2RAGE and the standard
linear method applied to MPRAGE. This suggests that
MP2RAGE when processed with a tailored PV model is an
excellent candidate for brain morphometry and should be
considered for future clinical studies. More studies are
however warranted to investigate its value in larger
cohorts and for biomarker computation in brain disorders.
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