Cryogenic Photochemical Synthesis and Electronic Spectroscopy of Cyanotetracetylene
Urszula Szczepaniak, Robert Kolos, Marcin Gronowski, Michèle Chevalier, Jean-Claude Guillemin, Michal Turowski, Thomas Custer, Claudine Crépin

To cite this version:

HAL Id: hal-01617947
https://univ-rennes.hal.science/hal-01617947
Submitted on 24 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Cryogenic Photochemical Synthesis and Electronic Spectroscopy of Cyanotetracetylene

Urszula Szczepaniaka, b*, Robert Kołosb, Marcin Gronowskib, Michèle Chevaliera, Jean-Claude Guilleminc, Michał Turowskib†, Thomas Custerb, and Claudine Crépina

a Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France,

b Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland,

c Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France

* tel. +48 22 343 3353 ; e-mail : uszczepaniak@ichf.edu.pl, urszula.szczepaniak@u-psud.fr

Present addresses

† University of Colorado at Boulder, Department of Chemistry and Biochemistry, 215 UCB, Boulder, CO 80309-0215
ABSTRACT

HC₉N is a molecule of astrochemical interest. In this study, it was produced in cryogenic Ar and Kr matrices from UV-photolyzed diacetylene/cyanodiacylene mixtures. Its strong phosphorescence was discovered and served for the identification of the compound. Vibrationally-resolved phosphorescence excitation spectra gave insight into excited singlet electronic states. Two electronic systems were observed: around 26 000 – 34 000 cm⁻¹ and 35 000 – 50 000 cm⁻¹. Energies of the second excited singlet and the lowest triplet state were derived from analysis of these systems. Vibrational and electronic spectroscopic features were assigned with the assistance of density functional theory calculations. Some trends concerning the electronic spectroscopy of HC₂n+₁N family molecules are presented.
INTRODUCTION

Monocyanopolyynes (HC_{2n+1}N) constitute the most prominent homologous series of astrochemically-relevant molecules. They have been detected via microwave rotational transitions in many extraterrestrial sources up to \(n = 4 \). Cyanoacetylene, HC_3N, the smallest neutral molecule possessing both –C≡C– and –C≡N structural motifs, was first observed in a star-forming region Sagittarius (Sgr B2(N))\(^1\) and then in other Galactic\(^2\)-\(^4\) and extragalactic\(^5\) radio sources. It has also been detected in the atmosphere of Titan\(^6\),\(^7\) and in Hale-Bopp comet\(^8\).

Along with cyanoacetylene, longer members of the HC_{2n+1}N series (\(n = 2, 3 \)) have been found in several molecular clouds.\(^9\) HC_9N (cyanotetraacetylene, 1-cyano-octa-1,3,5,7-tetrayne or nona-2,4,6,8-tetraynenitrile) was first observed in 1978 at millimeter wavelengths in the dense interstellar cloud HCl-2.\(^10\) It has also been found in expanding circumstellar envelopes (IRC +10216\(^11\),\(^12\) and CRL 2688\(^12\)). As observations of the \(n = 5 \) species, HC_{11}N, in IRC +10216\(^13\) and in the Taurus Molecular Cloud\(^14\) have been challenged, first in IRC +10216\(^14\) and now in TMC-1,\(^15\) HC_{9}N is currently considered the longest member of the family to have been observed in space.

The astrochemical synthesis of monocyanopolyynes probably involves the reactions of CN• or C_{2n+1}N• radicals with polyynic hydrocarbons HC_{2n}H. Cherchneff \textit{et al.} proposed the following pathway for formation of monocyanopolyynes around IRC +10216: HC_2H + C_{2n+1}N• \rightarrow HC_{2n+3}N + H\(^16\),\(^17\). Loomis \textit{et al.}\(^15\) suggested that cyclization reactions are responsible for non-detection of \(n > 4 \) cyanopolyynes.

The astronomical detections of HC_{9}N were based on microwave spectroscopy combined with quantum chemical studies of molecular structure.\(^18\)-\(^21\) Density functional theory (B3LYP) investigations\(^22\) have suggested that HC_{2n+1}N compounds should be linear and polyynic (having alternating single and triple bonds) at least up to \(n = 8 \). Vichietti and Haiduke predicted IR spectra of long cyano-\(^23\) (HC_{2n}CN) and isocyanopolyynes\(^24\) (HC_{2n}NC) and suggest that the central triple bond stretching mode is the one producing the strongest band.
Gas-phase spectroscopic studies of HC$_9$N are limited to microwave measurements in which minute amounts of the substance are transiently formed in a discharge plasma using acetylene with acrylonitrile26 or dicyanoacetylene with cyanoacetylene26 as seed gases. These investigations allowed derivation of the molecular geometry. Independently, electronic absorption and NMR spectra of HC$_9$N in organic solvents have been reported$^{27-32}$. In particular, Wakabayashi et al.31 obtained HC$_{2n-1}$N ($n = 3-6$) by laser ablation of isotope-enriched (99% 13C) graphite in liquid acetonitrile followed by chromatographic purification. Very small amounts of the compound were then characterized by UV absorption and NMR spectroscopy. Isotopic experiments proved that the carbon atoms of HC$_9$N came both from graphite and solvent. The molecule has also appeared among the products of graphite bombardment with high energy H$_2$ and N$_2$ beams.33

In order to extend the spectroscopic characterization of cyanotetraacetylene, we aimed at synthesizing the molecule in noble gas matrices. Cryogenic photochemical syntheses of cyanopolyacetylenes have already been demonstrated for cyanodiacetylene (HC$_5$N)34,35 and cyanotriacetylene (HC$_7$N)36. Cyanodiacetylene appeared in solid Ar doped with HC$_3$N/C$_2$H$_2$ mixtures34 irradiated using a H$_2$ discharge lamp emitting in the far-UV. It was also seen in Ar, Kr, N$_2$, and pH$_2$ solids containing HC$_3$N alone and photolyzed at 193 nm using a laser.35 Cyanotriacetylene was detected in solid Ar doped with a mixture of either HC$_3$N and C$_4$H$_2$ (diacetylene) or HC$_3$N and C$_2$H$_2$, and photolyzed either by excimer laser radiation or an H$_2$ discharge lamp. The HC$_7$N molecule has also been produced by electric discharges in a mixture of HC$_3$N and Kr just prior to trapping on a cold window.37 In all of these cryogenic approaches, the cyanopolyacetylenes generated were found to emit strong phosphorescence which has proved to be the most sensitive spectroscopic indicator of their presence. Here we verified that a mixture of C$_4$H$_2$ and HC$_3$N precursors could couple to produce HC$_9$N during UV-assisted, low-temperature synthesis. The spectroscopic identification has been supported using density functional theory calculations of electronic and vibrational energy levels.
EXPERIMENT

The precursor molecules were prepared using the methods developed by Trolez & Guillemin38 (HC\textsubscript{5}N) and Khlifi \textit{et al.}39 (C\textsubscript{4}H\textsubscript{2}). HC\textsubscript{5}N was alternately exposed to vacuum at T<200 K and then warmed to remove CO\textsubscript{2} and other volatile impurities. This cycle was repeated until the rate of pressure rise during warming was negligible. C\textsubscript{4}H\textsubscript{2} was subjected to several freeze-pump-thaw cycles (T<200 K, with some loss of the product). Purification of both precursors was carried out directly before the experiments.

Noble gases (Kr 4.0 or Ar 6.0, Messer) were mixed with C\textsubscript{4}H\textsubscript{2} and HC\textsubscript{5}N at typical ratios of approx. 500:1:1 using standard manometric techniques. This mixture was subsequently trapped on a sapphire substrate window held at either 30 K (Kr) or at 22 K (Ar) as measured and regulated with a Scientific Instruments Inc. 9620-1 temperature controller. The closed-cycle helium refrigerator (Air Products \textit{Displex} DE202FF) was equipped with external CaF\textsubscript{2} windows. The typical amount of deposited gas was 6-8 mmol. Composition of the samples was verified with a Nicolet \textit{Nexus} 670/870 FTIR spectrometer with a maximal resolution of 0.125 cm-1 and equipped with a liquid nitrogen-cooled MCT detector. Spectra consisted of 256 or 1024 averaged interferograms. To induce the photochemical transformations of precursor molecules, cryogenic matrices were irradiated with a 193 nm ArF excimer laser (Coherent \textit{Compex Pro}), either during or after the sample deposition. The laser typically operated at a repetition rate of 10 Hz and the energy delivered to the sample surface did not exceed 5 mJ/cm2 per pulse. While argon is the most commonly used rare gas in matrix experiments, krypton matrices were preferred here, as they have already been shown to supply strong and well resolved spectra of embedded cyanopolyacetylenes.35,37 Thermal processing, \textit{i.e.} annealing, was accomplished by warming up to \textasciitilde30-40 K and then re-cooling (only for Kr). The lowest temperature reached for the cryogenic samples was 7 K.

The identification of photolysis products relied on selectively excited electronic luminescence. Two modes of measurement were employed. The first mode involved excitation at a fixed
wavelength followed by recording the resulting dispersed phosphorescence spectrum. This spectrum contains information on vibrational frequencies in the ground electronic state of light emitting products. The second mode gave access to vibrations in an excited singlet state, and relied on scanning the excitation wavelengths while recording the phosphorescence signal. A Continuum Surelite II + OPO Horizon laser system operating in the 192-400 nm range was used for the excitation. The pulse repetition rate of this laser system was 10 Hz. Phosphorescence was dispersed with a 0.6 m Jobin-Yvon grating monochromator and detected with a gated CCD camera (Andor iStar DH720) with a detection range of 380-800 nm and a resolution of approx. 0.04 nm. Time synchronization between laser pulses and detection of phosphorescence was provided by a home-made triggering device.

Phosphorescence decay time measurements were performed using a photomultiplier (Hamamatsu H3177-50 PMT) with a detection range of 200 – 850 nm connected to the monochromator. Parallel to the phosphorescence intensity measurements, the excitation laser intensity was monitored with a photodiode.

COMPUTATIONAL DETAILS

All quantum chemical calculations were carried out using density functional theory (DFT).40 Time-dependent methodologies41-43 were applied together with the B3PW91 functional of Perdew and Wang44-47 for all computations of singlet excited electronic states (B3PW91 differs from the better known B3LYP48 by the non-local correlation term). The B3LYP functional modified with the Coulomb-attenuating method (CAM-B3LYP)49 was applied in its conventional form to predict the energetic separation between the ground and the lowest triplet state. The Dunning-type basis set aug-cc-pVTZ50,51 was applied in all computations of this sort and supplied geometries for different electronic states, corresponding harmonic vibrational frequencies, and energies of transitions from the ground to excited electronic states.
To take into account the anharmonicity and inaccuracies of the applied theory, vibrational frequencies were scaled with the factor of 0.96, for ground state DFT as well as for excited state TD-DFT computations. For the ground state, IR absorption intensities and Raman activities were also predicted. Linearity of the structure in the excited singlet electronic states was verified by optimizations starting from the bent geometry at the CIS/aug-cc-pVDZ level and inspection of vibrational frequencies (checking for the degeneracy of bending modes and for the possible occurrence of imaginary frequencies) at both CIS and DFT levels.

Special attention was paid to the formally forbidden $\tilde{B}^1\Delta - \tilde{X}^1\Sigma^+$ system, where vibronic bands could be observed due to Herzberg–Teller coupling with a π-symmetry vibration. In order to identify that promoting mode, we have carried out a series of transition intensity (oscillator strength) calculations for the molecule distorted by each of the bendings. The vector representing the change was always parallel to a given normal coordinate and had a length of 0.1 Å. (Of note, when the movement along a bending normal coordinate of HC$_9$N is considered, shifts between the equilibrium ground state (\tilde{X}, v=0) geometry and any of the two \tilde{B}-state vibrational wavefunction $|\Psi_{v=1}\rangle$ maxima are on the order of 0.1 Å.) The Herzberg-Teller effect was assumed to be significant if the coupling to a given π-symmetry vibrational mode, simulated as outlined above, produced the oscillator strength of at least 0.0001.

The GAUSSIAN 09 (Rev. B. 01) program was used for all computations while Jmol, Gabedit, and Chemcraft were used for preparation of inputs and visualization of outputs. Additional computations were performed by DALTON 2.0 at the CC2/cc-pVDZ level in order to predict the dominant character of the transitions.

RESULTS AND DISCUSSION

Theoretical predictions

Theoretical predictions for the excited electronic states of HC$_9$N are listed in Table 1. In Figure 1, the corresponding molecular geometries are compared to that of the ground state. The DFT-
The derived ground-state structure matches the experimental one reasonably well and suggests that the computational level used is sufficient for this application. The interatomic distances in states \tilde{A}, \tilde{B} and \tilde{a}, differ by less than 0.7 pm and, compared to \tilde{X}, the geometry in these excited states corresponds to an elongation of triple bonds and shortening of the CC single bonds. The electronic structures of \tilde{A}, \tilde{B}, and \tilde{a}, together with that of the \tilde{E} state, come mainly from the HOMO-LUMO excitation. The \tilde{E} state geometry, however, slightly differs from those of the three other HOMO-LUMO states, especially in the middle of the chain, where there is a less pronounced length alternation of consecutive carbon-carbon bonds. The lowest-energy fully allowed electronic excitation is $\tilde{E}^1\Sigma^+ - \tilde{X}^1\Sigma^+$. Orbitally forbidden $\tilde{B}^1\Delta - \tilde{X}^1\Sigma^+$ transitions may however also be quite important (as shown for HC$_3$N$^{63-65}$ and HC$_5$N66), gaining sizable intensity via Herzberg–Teller vibronic coupling.

Table 1. Energy (eV) and Oscillator Strength for Transitions Involving the Ground ($X^1\Sigma^+$) and Excited Electronic States of HC$_9$N Derived at the B3PW91/aug-cc-pVTZ Level of Theory. Wavelengths (nm) Corresponding to the Transitions are Given in Parentheses.

<table>
<thead>
<tr>
<th>State a</th>
<th>Dominant orbital excitation</th>
<th>Vertical transition energy (λ)</th>
<th>f b</th>
<th>0-0 transition energy (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^1\Sigma^+$</td>
<td>5π→1π*</td>
<td>2.84 (437)</td>
<td>0</td>
<td>2.39 (519)</td>
</tr>
<tr>
<td>$\tilde{B}^1\Delta$</td>
<td>5π→1π*</td>
<td>2.93 (423)</td>
<td>0</td>
<td>2.52 (492)</td>
</tr>
<tr>
<td>$\tilde{C}^1\Sigma^+$</td>
<td>4π→1π*</td>
<td>4.38 (283)</td>
<td>0</td>
<td>4.10 (302)</td>
</tr>
<tr>
<td>$\tilde{D}^1\Delta$</td>
<td>4π→1π*</td>
<td>4.53 (274)</td>
<td>0</td>
<td>4.27 (290)</td>
</tr>
<tr>
<td>$\tilde{E}^1\Sigma^+$</td>
<td>5π→1π*</td>
<td>5.06 (245)</td>
<td>2.8</td>
<td>4.88 (254)</td>
</tr>
<tr>
<td>$\tilde{F}^1\Sigma^+$</td>
<td>5π→2π*</td>
<td>5.30 (234)</td>
<td>0</td>
<td>4.98 (249)</td>
</tr>
<tr>
<td>$\tilde{G}^1\Delta$</td>
<td>5π→2π*</td>
<td>5.32 (233)</td>
<td>0</td>
<td>5.00 (248)</td>
</tr>
<tr>
<td>$\tilde{H}^1\Sigma^+$</td>
<td>4π→1π*, 5π→2π*</td>
<td>5.40 (230)</td>
<td>1.7</td>
<td>5.11 (243)</td>
</tr>
<tr>
<td>$\tilde{a}^1\Sigma^+$</td>
<td>5π→1π*</td>
<td>-</td>
<td>-</td>
<td>2.16 (574)</td>
</tr>
</tbody>
</table>

a Ground state electronic configuration: [core] (1σ)2 (2σ)2 (3σ)2 (4σ)2 (5σ)2 (6σ)2 (7σ)2 (8σ)2 (9σ)2 (10σ)2 (11σ)2 (12σ)4 (13σ)4 (14σ)4 (15σ)4 (16σ)4 (17σ)4 (18σ)4 (19σ)4 (20σ)4 (21σ)4 (22σ)4 (23σ)4 (24σ)4 (25σ)4 (26σ)4 (27σ)4 (28σ)4 (29σ)4 (30σ)4 (31σ)4 (32σ)4 (33σ)4 (34σ)4 (35σ)4 (36σ)4 (37σ)4 (38σ)4 (39σ)4 (40σ)4 (41σ)4 (42σ)4 (43σ)4 (44σ)4 (45σ)4 (46σ)4 (47σ)4 (48σ)4 (49σ)4 (50σ)4 (51σ)4 (52σ)4 (53σ)4 (54σ)4 (55σ)4 (56σ)4 (57σ)4 (58σ)4 (59σ)4 (60σ)4

b Value of zero indicates $f < 5 \cdot 10^{-5}$.

ACS Paragon Plus Environment
Figure 1. HC$_3$N geometry in its ground and excited electronic states as derived at the B3PW91/aug-cc-pVTZ level of theory. Interatomic distances in pm. Values listed for the excited electronic states are relative, calculated with respect to \tilde{X}. Also given are the ground-state experimental distances* together with their respective CCSD(T) predictions. The states \tilde{a}, \tilde{B}, and \tilde{E} were experimentally observed in this work (entries listed in bold).

Vibrational frequencies characterizing \tilde{X}, \tilde{B}, and \tilde{E} states are listed in Table 2, together with \tilde{X}-state IR absorption intensities and Raman scattering activities. Predictions obtained for the remaining singlet excited states of Tab. 1 and Fig. 1 can be found in Tab. S1 of the Supporting Information. Table 2 provides also a short description of vibrational modes (see Tab. S2 of the Supporting Information for the graphical representations). The corresponding modes closely resemble one another in these three electronic states with the exception of modes in the 2000-2200 cm$^{-1}$ range where the vibrations represent diverse mixtures of C≡C and C≡N stretches.

<table>
<thead>
<tr>
<th>State</th>
<th>\tilde{X}</th>
<th>\tilde{A}</th>
<th>\tilde{C}</th>
<th>\tilde{D}</th>
<th>\tilde{E}</th>
<th>\tilde{F}</th>
<th>\tilde{G}</th>
<th>\tilde{H}</th>
<th>\tilde{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{X}</td>
</tr>
<tr>
<td>\tilde{A}</td>
<td>\tilde{A}</td>
<td>\tilde{B}</td>
<td>\tilde{C}</td>
<td>\tilde{D}</td>
<td>\tilde{E}</td>
<td>\tilde{F}</td>
<td>\tilde{G}</td>
<td>\tilde{H}</td>
<td>\tilde{I}</td>
</tr>
<tr>
<td>\tilde{C}</td>
</tr>
<tr>
<td>\tilde{D}</td>
</tr>
<tr>
<td>\tilde{E}</td>
</tr>
<tr>
<td>\tilde{F}</td>
</tr>
<tr>
<td>\tilde{G}</td>
</tr>
<tr>
<td>\tilde{H}</td>
</tr>
<tr>
<td>\tilde{I}</td>
</tr>
</tbody>
</table>
Table 2. Harmonic Vibrational Frequencies (in cm$^{-1}$; Scaling Factor 0.96) for the Ground and Two Excited
Electronic States of HC$_9$N, as Derived at the B3PW91/aug-cc-pVTZ Level of Theory. IR Intensity and Raman
Activity Units are km/mol and Å4/amu, Respectively.

<table>
<thead>
<tr>
<th>Mode</th>
<th>\bar{X}</th>
<th>\bar{B}</th>
<th>\bar{E}</th>
<th>Short description a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq.</td>
<td>IR intensity/ Raman activity</td>
<td>Freq.</td>
<td>Freq.</td>
</tr>
<tr>
<td>σ symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_1</td>
<td>3324</td>
<td>193/12</td>
<td>3318</td>
<td>3298</td>
</tr>
<tr>
<td>ν_2</td>
<td>2250</td>
<td>109/1922</td>
<td>2098</td>
<td>2150</td>
</tr>
<tr>
<td>ν_3</td>
<td>2201</td>
<td>1.5/473</td>
<td>2059</td>
<td>2059</td>
</tr>
<tr>
<td>ν_4</td>
<td>2146</td>
<td>291/32763</td>
<td>2000</td>
<td>2033</td>
</tr>
<tr>
<td>ν_5</td>
<td>2122</td>
<td>8.2/3523</td>
<td>1900</td>
<td>1956</td>
</tr>
<tr>
<td>ν_6</td>
<td>2037</td>
<td>0.1/1511</td>
<td>1848</td>
<td>1893</td>
</tr>
<tr>
<td>ν_7</td>
<td>1369</td>
<td>0.5/0.3</td>
<td>1479</td>
<td>1346</td>
</tr>
<tr>
<td>ν_8</td>
<td>1074</td>
<td>0.5/38</td>
<td>1106</td>
<td>1071</td>
</tr>
<tr>
<td>ν_9</td>
<td>736</td>
<td>3.9/1.5</td>
<td>741</td>
<td>730</td>
</tr>
<tr>
<td>π symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_{10}</td>
<td>376</td>
<td>0.3/1.6</td>
<td>386</td>
<td>374</td>
</tr>
<tr>
<td>ν_{11}</td>
<td>764</td>
<td>0.1/39</td>
<td>754</td>
<td>712</td>
</tr>
<tr>
<td>ν_{12}</td>
<td>640</td>
<td>40/13</td>
<td>559</td>
<td>562</td>
</tr>
<tr>
<td>ν_{13}</td>
<td>578</td>
<td>0.5/0.0</td>
<td>547</td>
<td>519</td>
</tr>
<tr>
<td>ν_{14}</td>
<td>511</td>
<td>4.2/12</td>
<td>486</td>
<td>458</td>
</tr>
<tr>
<td>ν_{15}</td>
<td>451</td>
<td>0.1/0.9</td>
<td>432</td>
<td>419</td>
</tr>
<tr>
<td>ν_{16}</td>
<td>301</td>
<td>4.0/0.0</td>
<td>309</td>
<td>253</td>
</tr>
<tr>
<td>ν_{17}</td>
<td>198</td>
<td>0.1/1.1</td>
<td>191</td>
<td>147</td>
</tr>
<tr>
<td>ν_{18}</td>
<td>107</td>
<td>4.4/1.2</td>
<td>105</td>
<td>88</td>
</tr>
</tbody>
</table>

a v - stretching; δ - bending.
Detection of HC$_9$N

Since both C$_4$H$_2$ and HC$_3$N precursors are strong phosphorescence emitters66,67 with long vibronic progressions in the UV-visible range, it was important to have reliable predictions concerning the electronic spectroscopy of HC$_9$N, in order to unambiguously distinguish the product from its precursors.

In the homologous series of polyynes, UV absorption wavelengths have been shown to change almost linearly with the size of the chain.68,69 This can be simplistically rationalized by considering a classical particle-in-a-box model, where a valence electron (a ‘particle’) is delocalized in a system (‘box’) of conjugated bonds.68 Prior to the present study, phosphorescence of HC$_7$N,36 HC$_5$N,35 and C$_3$N$^-$ anion70 has been observed (HC$_5$N, isoelectronic with C$_3$N$^-$, does not phosphoresce), and the wavelengths of the corresponding vibrationless $\tilde{a} - \tilde{X}$ emission origins were found to be linearly correlated with the length of the carbon-nitrogen chain.36 Extrapolation of this empirical trend places the origin of HC$_9$N phosphorescence near 588 nm or 2.11 eV. CAM-B3LYP calculations (Table 1) predict a value of 574 nm or 2.16 eV (Figure 2).
Figure 2. Phosphorescence origin wavelength as a function of carbon chain length for HC_{2n+1}N molecules. Circles mark the experimental values for Kr matrices (HC_3N does not phosphoresce; value observed for the isoelectronic C_3N^- anion is entered for $n=1$ as an open square). Crosses correspond to CAM-B3LYP/aug-cc-pVTZ predictions. Experimental data for HC_5N and HC_7N come from Refs. 37,66.

While our CCD camera and spectrograph were well suited to record the anticipated HC_9N phosphorescence, we did not rely on exciting this emission with the ArF excimer laser (193 nm) employed for the photolysis. Instead, selective excitation of a sample previously subjected to extensive 193 nm irradiation was performed using a less powerful, tunable OPO operating in the expected region of $\tilde{E} - \tilde{X}$ transitions (around 250 nm). The corresponding dispersed phosphorescence spectra showed a 578 nm band which was the origin of a vibronic progression and whose excitation spectrum exhibited strong bands between 240 and 260 nm (as shown later). Once the emission and excitation wavelengths of HC_9N phosphorescence were determined, it was possible to follow the photochemical reaction kinetics in a fresh Kr/C$_4$H$_2$/HC$_5$N sample. For these measurements, the intensity of the 578 nm emission induced via OPO excitation (273.7 nm) was monitored over the course of 193 nm excimer laser irradiation. Time delays on the
order of a few to tens of ms between the OPO, excimer laser, and signal acquisition were fixed to avoid, as much as possible, any perturbation of the collected spectrum by the phosphorescence of precursors excited at 193 nm. The time evolution of the resulting signal is depicted in Figure 3. No signal could be seen for an unphotolyzed sample showing that the emission certainly came from a photoproduct. The growth rate of this species decreased with irradiation time.

![Figure 3](image)

Figure 3. Time evolution of HC₉N formation, as monitored by intensity of phosphorescence (excited at 273.7 nm and measured at 578 nm) emitted from an irradiated (193 nm) Kr/C₄H₂/HC₅N (1000/1/1) matrix. Solid line added for better visibility of the trend.

Phosphorescence and vibrational modes of the ground state

The luminescence presented in Figure 4 was emitted from UV-photolyzed Kr/C₄H₂/HC₅N matrices. The first intense band at 17 300 cm⁻¹ (578 nm, 2.14 eV) is the origin of the $\tilde{a} - \tilde{X}$ transition of HC₉N and almost matches the theoretical prediction. This band is clearly correlated to those around 15 150 and 13 000 cm⁻¹; all three groups of spectral features share a common phosphorescence excitation spectrum. Two vibronic bands, separated from the 0-0 transition by 2143 cm⁻¹ and 2170 cm⁻¹, can be distinguished in the spectrum and are indicative of excitation of triple bond stretching vibrations. The former can be assigned to mode ν_4 of HC₉N (cf. predicted \tilde{X}-state frequencies listed in Table 2). This mode corresponds to the in-phase stretching of the
three central C≡C bonds (see Table S2). Mode ν₄ is likely to play the key role in phosphorescence transitions, as it deforms the molecule (alternately shrinking and elongating the consecutive bonds along the chain) in a similar fashion as predicted for electronic transitions between states \tilde{X} and \tilde{a} (Fig. 1). Stretching modes having similar characteristics also shaped the main vibronic progressions in low-temperature phosphorescence of HC₅N,⁵⁵,⁶⁶ and HC₇N.⁶⁶,⁶⁷ These modes also had the highest Raman activity in ground electronic states of the said cyanopolyynes. This is also true for the Raman activity of ν₄ in the ground electronic state of HC₉N (Table 2). The spacing of 2170 cm⁻¹ is unlikely to be associated with ν₃. There is a poor match with the predicted ν₃ value of 2201 cm⁻¹ and atomic displacements involved in the vibration (Table 2 and Table S2) are qualitatively different from those of ν₄. We propose assignment of this spacing to 2ν₈ (harmonic prediction: 2·1074 cm⁻¹). Mode ν₈ is C-C stretching, resembling gerade symmetry. A similar vibronic spacing, produced by a C-C stretching overtone (2ν₃), was observed for HC₅N.⁶⁶ Assignments of several vibronic bands of HC₅N in Kr and in Ar hosts are proposed in Table 3. A π-symmetry mode, possibly ν₁₄, was observed only in Ar (497 cm⁻¹ with respect to the vibrationless origin); an alike bending-mode vibronic band of HC₅N phosphorescence was intense in Ar and weak in Kr.⁶⁶
Figure 4. HC$_3$N-dominated phosphorescence of photolyzed (193 nm) Kr/C$_4$H$_2$/HC$_3$N (1000/1/1) (upper) and Ar/C$_4$H$_2$/HC$_3$N (1000/1/1) (lower) matrices excited at 36 540 cm$^{-1}$ (273.7 nm) and 41 440 cm$^{-1}$ (241.3 nm), respectively. Bands marked with ‘+’ belong to additional photolysis products (as determined with the analysis of phosphorescence excitation spectra). The asterisked band is interpreted as being due to a secondary matrix site. Bands marked with ‘x’ are assigned to C$_{10}$N$_2$ phosphorescence (to be reported separately).

Table 3. Wavenumbers (in cm$^{-1}$) of Electronic Emission Bands Assigned to HC$_3$N Phosphorescence in Solid Ar and Kr.

<table>
<thead>
<tr>
<th>Ar</th>
<th>Kr</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>Relativea</td>
<td>Absolute</td>
</tr>
<tr>
<td>17379</td>
<td>0</td>
<td>17300</td>
</tr>
<tr>
<td>16881</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>15231</td>
<td>2148</td>
<td>15157</td>
</tr>
<tr>
<td>15205</td>
<td>2174</td>
<td>15130</td>
</tr>
<tr>
<td>14740</td>
<td>2639</td>
<td></td>
</tr>
<tr>
<td>13038</td>
<td>4262</td>
<td></td>
</tr>
<tr>
<td>13018</td>
<td>4282</td>
<td></td>
</tr>
</tbody>
</table>
No IR absorption attributable to HC₉N could be measured. This is not surprising, considering that earlier, analogous experiments aimed at synthesizing longer chains from HC₃N + C₂H₂ or from HC₅N + C₂H₂ led to fairly weak IR bands for HC₇N, and bands near the limit of HC₇N detection, respectively. Furthermore, the yield of (poly)acetylene+cyano(poly)acetylene reactions in rigid matrices is likely decreasing with the increasing size of a cyanopolyacetylenic product.

The phosphorescence decay time in solid krypton, 3.9 ± 0.1 ms (0-0 band), was for HC₉N smaller than for other members of the HC₂r+1N homologous series including HC₅N (40 ms) and HC₇N (8.2 ms). The increased number of internal degrees of freedom presumably promotes non-radiative relaxation channels, decreasing the triplet state lifetime. As chains get longer, the phosphorescence lifetime can be expected to decrease further.

Singlet excited electronic states

The excitation spectrum of HC₉N phosphorescence revealed two distinct electronic systems, in 26 000 – 34 000 cm⁻¹ and 35 000 – 50 000 cm⁻¹ regions.

The first (Figure 5), characterized by a series of bands spaced by ~2100 cm⁻¹, was assigned to \(\tilde{B} \ \Delta - \tilde{X} \ \Sigma^+ \) transitions, based on very similar patterns already observed in UV absorption and/or phosphorescence excitation spectra for the smaller molecules of the series: HC₃N, HC₅N, and HC₇N. Geometry changes implied by \(\tilde{B} - \tilde{X} \) and \(\tilde{a} - \tilde{X} \) excitations are mutually similar (see Figure 1), therefore both systems are expected to feature alike vibronic patterns. One of possible choices for the mode responsible for the vibronic \(\tilde{B} - \tilde{X} \) progression is \(\nu_3 \), because the corresponding vibrational motions of atoms in the \(\tilde{B} \) state (see Table S2 for visualization) resemble those of \(\nu_4 \) in the ground electronic state (\(\nu_4 \) already mentioned as prominently appearing in \(\tilde{a} - \tilde{X} \) phosphorescence). While we cannot exclude the above possibility, we prefer to
assign the $B - \tilde{X}$ progression to the stretching mode ν_2, for which the predicted B-state frequency better matches the observed vibronic spacing (see Table 2).

![Excitation spectrum](image)

Figure 5. $B^1 \Delta - \tilde{X}^1 \Sigma^+$ system detected in the phosphorescence excitation spectrum of HC$_n$N, coming from a previously photolyzed (193 nm) Kr/C$_4$H$_2$/HC$_6$N (1000/1/1) matrix. Detection centered at the most intense phosphorescence band (17300 cm$^{-1}$, 2.14 eV). Wavelength-dependent laser intensity variations might distort the phosphorescence intensity pattern.

No band corresponding to the $B - \tilde{X}$ origin is expected to appear in the spectrum, since the transitions of this orbital symmetry-forbidden system require coupling to a π-symmetry vibrational mode. In the analysis of respective analogous $B - \tilde{X}$ transitions, such π-symmetry modes were identified as ν_5 for HC$_3$N,$^{63-65}$ ν_8 for HC$_5$N,66 and ν_{10} and/or ν_{12} for HC$_7$N.72 Looking at the common features of the above vibrations, one can find that: (i) these are the chain bendings of the highest energy, sharing specific, qualitatively similar molecular distortion patterns, and (ii) their ground and excited state frequencies are very different. Moreover, in the case of Ar matrix-isolated HC$_5$N, the ν_8 mode stands out in the phosphorescence spectrum.66 For HC$_9$N, it was in principle possible to assign the observed vibronic features assuming the participation of either ν_{11}, ν_{12}, or ν_{14} (predicted B-state wavenumbers: 754 cm$^{-1}$, 559 cm$^{-1}$ and
oscillator strength values were derived for \tilde{B}-state molecular geometry slightly distorted along respective normal bending coordinates (see Computational Details). A noticeable oscillator strength has appeared only for the geometry distorted along the coordinate of mode ν_{11}. This coarse computational simulation of the Herzberg-Teller coupling suggests that the $\tilde{B} \rightarrow \tilde{X}$ absorption may gain probability via excitation of the ν_{11} mode in the upper electronic state. The corresponding assignment is given in Figure 5 and Table 4 using the theoretical values of Table 2 for vibrational frequencies. Assuming that ν_{11} is the promoting mode, the origin of $\tilde{B} \rightarrow \tilde{X}$ can be expected approximately 750 cm$^{-1}$ below the first detectable band of the ν_2 progression (26 530 cm$^{-1}$), namely at ~25 780 cm$^{-1}$ (388 nm). However, DFT calculations (Table 1) locate the vibrationless $\tilde{B} \rightarrow \tilde{X}$ origin much lower, at 492 nm (20 330 cm$^{-1}$). As taken into account in Figure 5 and Table 4, this implies the presence of at least one additional, less energetic element of the ν_2 progression and a possible placement of the system origin around 23 700 cm$^{-1}$ (corresponding to 422 nm, which is out of the detection range limited here to $\lambda < 400$ nm).

Table 4. Vibronic Bands in the $\tilde{B} \ ^1\Delta \rightarrow \tilde{X} \ ^1\Sigma^+$ Electronic System of HCN in Solid Krypton, Revealed by the Phosphorescence Excitation Spectrum.

<table>
<thead>
<tr>
<th>Frequency (cm$^{-1}$)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>Relativea</td>
</tr>
<tr>
<td>26533</td>
<td>0</td>
</tr>
<tr>
<td>26925</td>
<td>392</td>
</tr>
<tr>
<td>27150</td>
<td>617</td>
</tr>
<tr>
<td>28165</td>
<td>1632</td>
</tr>
<tr>
<td>28274</td>
<td>1741</td>
</tr>
<tr>
<td>28546</td>
<td>2013</td>
</tr>
<tr>
<td>28623</td>
<td>2090</td>
</tr>
<tr>
<td>28719</td>
<td>96</td>
</tr>
</tbody>
</table>

* a Relative to the 26 530 cm$^{-1}$ band.
The systematic bathochromic shift of $\tilde{B} - \tilde{X}$ spectra with increasing the HC$_{2n+1}$N chain length is shown in Figure 6. While singlet-triplet energy splittings are well predicted by DFT (Figure 2), $\tilde{B} - \tilde{X}$ excitation energies are sizably underestimated (note that the ordinate axis in Figure 6 corresponds to wavelength). It is still true after accounting for a gas-to-matrix shift on the order
of 5 nm. Accidentally, our DFT-derived vertical transition energies match the experimental $\tilde{B} - \tilde{X}$ origin values. As exemplified e.g. by a recent study73 for atoms, TD-B3PW91/aug-cc-pVTZ excitation energies tend, on average, to be underestimated by a few percent. For the series of molecules investigated here, this TD-DFT error happens to have a similar size as the difference between vertical and vibrationless transitions. The plot adds credibility to the analysis of the HC$_9$N phosphorescence excitation spectrum presented above, and in particular to the ensuing derivation of the $\tilde{B} - \tilde{X}$ origin (at ~422 nm, represented by a black dot for $n=4$). Indeed, had our assignment of $2^1\Sigma^+_1$ been incorrect, the first band of the progression would have had to be assigned to $2^3\Sigma^+_1$, placing the system origin at ~465 nm. The red dot, depicting that latter possibility in Figure 6, spoils a trend set by lower n values.

Figure 6. Dependence of the $\tilde{B}-\tilde{X}$ system origin wavelength on the carbon chain size (n), for HC$_{2n+1}$N molecules. Data based on Kr-matrix measurements, with the exception of $n = 1$ measured in solid Ar (expected Kr-to-Ar wavelength shift is on the order of 0.5 nm). Theoretical predictions carried out at the TD-B3PW91/aug-cc-pVTZ level of theory. Red dot assumes misassignment of the first element of the progression (see text).

The second series consists of intense bands in the 35 000 – 50 000 cm$^{-1}$ range of the HC$_9$N phosphorescence excitation spectrum and coincides with the spectral region of fully allowed E
$^{1}\Sigma^{+} - \tilde{X}^{1}\Sigma^{+}$ and $\tilde{H}^{1}\Sigma^{+} - \tilde{X}^{1}\Sigma^{+}$ systems. These features can be compared (see Figure 7) to those of HC$_9$N observed in UV absorption spectra following the laser ablation of graphite in acetonitrile31 or to the ones found in a similar, though less detailed, UV absorption spectrum (not presented here) of a solution produced after immersion of a carbon arc in liquid ammonia.30 The DFT-computed $\tilde{E} - \tilde{X}$ vertical excitation energy of 5.06 eV (40 820 cm$^{-1}$) reasonably corresponds to the maximal signal in Figure 7. The theoretically predicted vertical transitions of several electronic systems marked in Figure 7 point to a high density of states in the spectral window. This impedes reliable identification of individual bands. The complexity of the spectrum is presumably due to a mixing of vibronic transitions involving various electronic states. The lowest-energy band in this region, at 34 600 cm$^{-1}$ (4.29 eV), is weak and strongly red-shifted with respect to the predicted $\tilde{E} - \tilde{X}$ origin (4.88 eV). Noteworthy, a substantial blue shift was observed between experimental and theoretical $\tilde{B} - \tilde{X}$ transitions (Figure 5). The 34 600 cm$^{-1}$ band may therefore belong to the $\tilde{D}^{1}\Delta - \tilde{X}^{1}\Sigma^{+}$ system, similar in nature to $\tilde{B}^{1}\Delta - \tilde{X}^{1}\Sigma^{+}$ transitions, partly allowed owing to Herzberg–Teller vibronic coupling. Band progressions starting at 34 600 cm$^{-1}$ can be followed up to around 42 000 cm$^{-1}$. The vibronic spacings of approx. 1950 cm$^{-1}$ could correspond to \tilde{D}-state C≡C stretchings. Two examples of such progressions are marked in Figure 7 (lower energy part). A very narrow band observed at 39 610 cm$^{-1}$ (4.91 eV) is possibly the origin of $\tilde{E}^{1}\Sigma^{+} - \tilde{X}^{1}\Sigma^{+}$ system (which would make a good agreement with the theoretical prediction of Table 1). There are no evident candidates for other $\tilde{E} - \tilde{X}$ transitions. However, the pattern of intense bands in Figure 7 resembles the one obtained in the excitation spectrum of HC$_7$N37 around the first fully allowed electronic transition. Figure S1 of the Supporting Information provides a direct comparison of HC$_7$N and HC$_9$N observed in our experiments. It suggests that other bands of $\tilde{E} - \tilde{X}$ are present in this spectrum, contributing to the most intense features. Apart from the excitations to \tilde{D} and \tilde{E}, the states \tilde{G} or \tilde{H} may also be considered. The proposed assignment of progressions in Figure 7 points to 41 970 cm$^{-1}$ (5.20 eV) as the origin of the allowed $\tilde{H}^{1}\Sigma^{+} - \tilde{X}^{1}\Sigma^{+}$ system (implying a
slight blue shift from the theoretical value of Table 1). Just as in the case of $D - \tilde{X}$ or $B - \tilde{X}$, the vibronic progressions of $\tilde{G} - \tilde{X}$ and $\tilde{H} - \tilde{X}$ should involve a specific triple bond stretching mode of the upper electronic state. A very tentative interpretation of the main bands discussed here is presented in Table 5.

Figure 7. A fragment of the HC$_9$N phosphorescence excitation spectrum (detection centered at 17300 cm$^{-1}$), measured for a previously photolyzed (193 nm) Kr/C$_2$H$_2$/HC$_5$N (1000/1/1) sample, compared to the room-temperature absorption spectrum of HC$_9$N in acetonitrile (dotted; Wakabayashi et al.31). Wavelength-dependent laser intensity variations might distort the phosphorescence intensity pattern. Theoretically predicted energies of \tilde{X}-originating vertical electronic excitations (data of Table 1) are indicated by top bars (bold ones for the fully allowed transitions). Also marked are the tentatively discerned vibronic progressions (see Table 5).

Couplings between nearly isoenergetic vibronic levels of adjacent electronic states can occur. These may have a sensitive dependence on the chemical environment. Interaction with solvent can lead to the broadening of spectral lines as can differences in temperature at which the spectrum was taken. Although not pictured here, the excitation spectrum of HC$_9$N in solid Ar
exhibited, when compared to that registered for solid Kr, non-uniform, matrix-related spectral shifts, as might be expected for a mixture of bands originating in various electronic systems. Low S/N ratio in measurement of the Ar matrices did not allow for any vibronic patterns to be reliably discerned. Further studies in varied cryogenic matrices will help in proposing further spectral assignments and in verifying those of Table 5.

Table 5. Vibronic Bands TentativelyAttributed to Excited Singlet States in the HC₉N Phosphorescence Excitation Spectrum of Figure 7.

<table>
<thead>
<tr>
<th>ν (cm$^{-1}$)</th>
<th>Provisional assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 598</td>
<td>D (main progression)</td>
</tr>
<tr>
<td>34 706</td>
<td>D</td>
</tr>
<tr>
<td>35 288</td>
<td>D (secondary progression)</td>
</tr>
<tr>
<td>36 554</td>
<td>D (main progression)</td>
</tr>
<tr>
<td>36 647</td>
<td>D</td>
</tr>
<tr>
<td>37 201</td>
<td>D (secondary progression)</td>
</tr>
<tr>
<td>38 358</td>
<td>D (main progression)</td>
</tr>
<tr>
<td>38 449</td>
<td>D</td>
</tr>
<tr>
<td>39 085</td>
<td>E</td>
</tr>
<tr>
<td>39 605</td>
<td>E</td>
</tr>
<tr>
<td>40 252</td>
<td>D (main progression)</td>
</tr>
<tr>
<td>40 986</td>
<td>D (secondary progression)</td>
</tr>
<tr>
<td>41 070</td>
<td>G / E</td>
</tr>
<tr>
<td>41 973</td>
<td>H / E</td>
</tr>
<tr>
<td>42 148</td>
<td>D (main progression)</td>
</tr>
<tr>
<td>43 189</td>
<td>G</td>
</tr>
<tr>
<td>43 921</td>
<td>H</td>
</tr>
<tr>
<td>45 247</td>
<td>G</td>
</tr>
<tr>
<td>45 729</td>
<td>H</td>
</tr>
<tr>
<td>47 201</td>
<td>G</td>
</tr>
</tbody>
</table>
Chain growth mechanism

For a bimolecular photochemical reaction between C₄H₂ and HC₅N (or between any other closed-shell precursors) to occur in a cryogenic matrix, at least one of these molecules must first undergo dissociation or electronic excitation. Following such an event, the excited molecule(s) or radical(s) may come into contact with a reaction partner. As mobility of large molecules is greatly hindered in cryogenic matrices, the reactants should be in the same or adjacent matrix sites for the process to proceed with any probability. Having reactants in the same matrix site may imply the existence of an intermolecular complex prior to excitation/dissociation. If reaction partners are in neighboring sites, some small fraction may already be appropriately oriented for reaction while others must undergo reorientation such that appropriate contact with a partner can be made. Reorientation energy may come from exothermicity of the preceding reactions or from local heating supplied by the photolysing radiation. This leaves a number of possible reaction mechanisms to be explored, some of which can be ruled out.

Dissociation of the cyanide containing species was previously suggested as being responsible for the formation of HC₇N in cryogenic matrices³⁶ (reactions 1-3). This mechanism is consistent with that proposed by Cherchneff et al. for the formation of long chains in the ISM.¹⁶,¹⁷

\[
HC_{2n+1}N + h\nu \rightarrow H^\cdot + C_{2n+1}N^\cdot, \quad (1)
\]

\[
C_3N^\cdot + HC_4H \rightarrow HC_7N + H^\cdot, \quad (2)
\]

\[
C_3N^\cdot + HC_2H \rightarrow HC_7N + H^\cdot. \quad (3)
\]

Dissociation of acetylene or diacetylene to form C₂H⁺ or C₄H⁺ radicals was deemed less significant on the basis of the higher acidity of HC₅N or cyanide containing polyynes in general. Abstraction of the acetylene proton by the cyanide containing radical was ruled out on the basis
of isotopic substitution experiments, although this process would not lead to formation of a longer chain.\(^3^6\)

It is reasonable to expect that formation of HC\(_9\)N proceeds in a similar fashion starting with (1) and followed by (4) below:

\[
C_2N' + HC_4H \rightarrow HC_9N + H'. \quad (4)
\]

The same products may arise following the formation of \(^1C_4H \):

\[
HC_5N + ^1C_4H \rightarrow HC_9N + H'. \quad (5)
\]

Each of these mechanisms entails the absorption of a single photon by a C\(_4\)H\(_2\)/HC\(_5\)N pair. The two precursors should be in close contact or, possibly, occupy neighboring matrix cages.

Just to be complete, one should also consider several other possibilities. The first is a mechanism involving the recombination of radicals:

\[
HC_4^* + C_5N' \rightarrow HC_9N. \quad (6)
\]

Another might be reactions within existing intermolecular complexes where the reactants are hydrogen bonded in a linear arrangement. Such complexes have been used to explain formation of HC\(_5\)N from matrix-isolated cyanoacetylene:\(^3^5\)

\[
HC_3N \cdots HC_3N + h\nu \rightarrow HC_5N + CN' + H' \quad (7)
\]

A scheme similar to (7) involving the intermolecular complex HC\(_3\)N\(\cdots \)HC\(_2\)H and leading to HC\(_3\)N has also been suggested for the UV-irradiated acetylene/cyanoacetylene mixture in a cryogenic matrix.\(^3^4\)

\[
HC_3N \cdots HC_2H + h\nu \rightarrow HC_3N + H_2 \quad (8)
\]

The equivalent of reactions (7) or (8) can also be envisioned to lead to formation of HC\(_9\)N:

\[
HC_3N \cdots HC_5N + h\nu \rightarrow HC_9N + CN' + H' \quad (9)
\]
HC₅N⋅HC₄H + hν → HC₉N + H₂ \hspace{1cm} (10)

The importance of precursors bound in a complex is rather unlikely for syntheses of chains longer than HC₅N. Experiments leading to formation of HC₇N showed no IR spectroscopic traces of such complexes, regardless of whether HC₃N+C₄H₂ or HC₅N+C₂H₂ mixtures were used. The same is true for the present experiment using HC₅N and C₄H₂. In addition, experiments using HC₅N as a sole precursor did not result in the appearance of HC₉N (this argument, however, should be treated with caution, given that conditions were not optimized for the detection of HC₉N).

Reaction (6) would conclude an overall two-photon process (one photon for each radical to form). The generated radicals need to be in close physical proximity to one another for chain elongation to occur. Such a process was observed in the case of NC₆N (dicyanodiacetylene) formation from HC₃N, where the production rate increased with irradiation time during the initial stages of the photolysis. This increase demonstrates that C₃N’ radicals first needed to be created in sufficient concentration (i.e. sufficiently close to one another) before they could begin to recombine. Our measurements (Figure 2) show that the HC₉N production rate decreases with irradiation time suggesting that the radical recombination mechanism (6) does not occur to any great extent.

One last processes that has not yet been discussed involves precursor molecules excited to a high electronic level, rather than dissociating into a free radical. If such excitation is occurring, it could not be distinguished from a radical path with the presently reported experiments.

CONCLUSIONS

UV-driven synthesis of HC₉N in a solid rare gas matrix, via coupling of HC₅N and C₄H₂, does occur. The targeted molecule, obtained here in amounts too small for producing measurable IR absorption signals, could be detected due to its strong phosphorescence, observed here for the first time. Experimentally derived spectroscopic characteristics are in a good accordance with
theoretical predictions. Phosphorescence excitation spectra gave insight to excited singlet
electronic states, unattainable with standard UV absorption measurements. The forbidden $^1B^1\Delta -
^1X^1\Sigma^+$ system (rendered detectable due to coupling with a π–symmetry vibration) is well
understood, while the analysis of fully allowed $^1E^1\Sigma^+ - ^1X^1\Sigma^+$ and $^1H^1\Sigma^+ - ^1X^1\Sigma^+$ transitions,
entangled with forbidden transitions, requires further studies.

The described results are in agreement with previous reports on photochemical generation of
similar but smaller molecules$^{34–36}$ in inert cryogenic matrices and suggest the validity of the
adopted approach for the synthesis and spectral studies of even longer unsaturated carbon-
nitrogen chains. In particular, the spectral origin of phosphorescence of a linear HC$_{11}$N can be
safely predicted. The cryogenic environment proved soft enough to adapt its structure during the
synthesis of an approximately 1.2 nm long HC$_9$N molecule from precursors themselves too large
to occupy single trapping sites (approx. 0.4 nm wide) of the fcc-type krypton lattice. It would be
interesting to go a step further and find out whether it is possible to synthesize HC$_{11}$N within a
similar scheme.

Apart from HC$_9$N, we have observed other luminescing products in the described experiments,
such as C$_{10}$N$_2$ (to be described separately), some of which remain unassigned. Further
spectroscopic work on matrix isolated HC$_{2n+1}$N species may lead to the detection of their isomers
(in particular: isonitriles) and, as pointed out by the referee of this paper, possibly also to new
insertion compounds HRgC$_{2n+1}$N, where Rg stands for Kr or Xe atoms.$^{74-75}$

SUPPORTING INFORMATION

Calculated IR frequencies and intensities in accessible electronic states; visualization of
vibrational modes in selected electronic states; phosphorescence excitation spectra of HC$_7$N and
HC$_9$N.

ACKNOWLEDGMENT
This work was financially supported by the Polish National Science Centre, project no. 2011/03/B/ST4/02763, French-Polish scientific cooperation programs Partenariat Hubert-Curien Polonium (2012-2013) and PICS (2014-2016). U.S. is a beneficiary of the French Government scholarship Bourse Eiffel, managed by Campus France, and of the project “Scholarships for PhD students of Podlaskie Voivodeship”. The project is co-financed by European Social Fund, Polish Government and Podlaskie Voivodeship. J.-C.G. thanks the Centre National d’Etudes Spatiales (CNES) and the French program Physique et Chimie du Milieu Interstellaire (PCMI) funded by the Conseil National de la Recherche Scientifique (CNRS) and CNES for financial support. Thanks are also due to Prof. Tomonari Wakabayashi for sharing his data on electronic absorption of HC$_9$N.

REFERENCE LIST

(18) Woon, D. E.; Herbst, E. Quantum Chemical Predictions of the Properties of Known and

(19) Botschwina, P.; Horn, M. Accurate Equilibrium Structure and Electric Dipole Moment of
HC$_9$N: Predictions on the Basis of Large-Scale Coupled Cluster Calculations. *J. Mol.

(20) Thaddeus, P.; McCarthy, M. C. Carbon Chains and Rings in the Laboratory and in Space.

(21) Boyd, R. J.; Jones, W. E.; Ling, K. W. Geometries, Energies and Polarities of

(22) Qi, J. Y.; Chen, M. D.; Wu, W.; Zhang, Q. E.; Au, C. T. Parity Alternation of Interstellar

(23) Vichietti, R. M.; Haiduke, R. L. A. The Infrared Fundamental Intensities of Some

(24) Vichietti, R. M.; Haiduke, R. L. A Theoretical Systematic Study of a Series of

(25) Iida, M.; Ohshima, Y.; Endo, Y. Laboratory Detection of HC$_9$N Using a Fourier

(26) McCarthy, M. C.; Levine, E. S.; Apponi, A. J.; Thaddeus, P. Experimental Structures of
the Carbon Chains HC$_7$N, HC$_9$N, and HC$_{11}$N by Isotopic Substitution. *J. Mol. Spectrosc.
2000*, *203* (1), 75–81.

(59) *Dalton, a Molecular Electronic Structure Program*, Release 2.0 (2005), See http://www.kjemi.uio.no/software/dalton/dalton.html; C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, et al..

(65) Kołos, R. *Carbon-Nitrogen Chain Molecules in the Laboratory and in Interstellar Medium*; Institute of Physical Chemistry of the Polish Academy of Sciences: Warsaw, 2003.

Phosphorescence origin wavelength as a function of carbon chain length for HC2n+1N molecules. Circles mark the experimental values for Kr matrices (HC3N does not phosphoresce; value observed for the isoelectronic C3N– anion70 is entered for n=1 as an open square). Crosses correspond to CAM-B3LYP/aug-cc-pVTZ predictions. Experimental data for HCSN and HC7N come from Refs. 37,66.