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Abstract 

PbTe based materials are well known for their high performance thermoelectric properties. Here, a 

systematic study of thermoelectric transport properties of n-type Pb-deficit Pb0.98-xSbxTe alloys with carrier 

concentrations in the range of 10-19 cm-3 is presented from room temperature to 623 K. A maximum 

thermoelectric figure of merit (zT) of 0.81 was achieved at 623 K for 4 mol% Sb containing Pb-deficit 

composition, by the cumulative integration of enhanced power factor and significant reduction in thermal 

conductivity. The scattering of phonons at Pb vacancies, contributed to the reduction of lattice thermal 

conductivity, and thereby strikingly boosted the zT of the Pb-deficit samples when compared with the 

pristine Pb1-xSbxTe. 

Keywords: Thermoelectrics; Pb-deficit lead tellurides; Sb alloying; Low thermal conductivity; Improved 

figure of merit. 

Graphical Abstract  

 

1. Introduction 

For several decades, thermoelectric materials (TE) and devices have drawn increasing interest and 

attention due to their potential to convert waste heat into useful electricity. The efficiency of a TE material 
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is quantified by a dimensionless figure of merit, zT = S2σT/ where S, σ, T and  are Seebeck coefficient, 

electrical conductivity, temperature and total thermal conductivity (sum of the electronic part, e and the 

lattice part, latt) respectively. The fact that these transport properties are highly interrelated, presents a 

great challenge in attempting to enhancing zT. Advances in recent times show that it is feasible to enhance 

zT by a number of approaches [1–4]. One approach is solid solution alloying, which enables acoustic 

phonon scattering leading to a decreased latt [5–10]. 

Among several kinds of TE materials, PbTe has demonstrated a relatively high zT value (zT  1) at 

mid-temperature ranges and is one of the most studied material [11] with an array of alloying materials 

and strategies to optimize its carrier concentration [12,13], manipulate its band structure [14–19] and to 

achieve nanostructuring [6,20–26]. Our investigation of the thermoelectric properties of Pb0.98-xSbxTe 

system was motivated by a past study on the n-type self-deficit Pb0.96Sb0.02Te1-xSex bulk materials, where 

a strong reduction of latt and an enhanced zT was reported [27]. Improvising on that work, where the Sb 

content was kept fixed while the Se content was varied, herein we try to understand the effect of variation 

of Sb content on the thermoelectric properties of Se-free Pb0.98-xSbxTe solid solutions and to compare the 

performance of these Pb-deficit samples with that of previously reported [28] pristine Pb1-xSbxTe 

compositions. Though several works have been done in the past to exploit the thermoelectric 

phenomenon in PbTe based alloys, including Sb doped PbTe, not much information is available on the Sb 

doped, Pb deficient composition (Pb0.98Te). The choice of Sb was also motivated by the ab-initio 

calculations of the effect of Sb impurities on the electronic structure of PbTe, which pointed to the 

presence of resonance states at the bottom of the conduction band and a possible enhancement of the 

Seebeck coefficient for optimal Sb concentration [17].     

Herein, we report a significant improvement in the thermoelectric performance of Pb-deficit 

Pb0.98-xSbxTe samples, when compared to its pristine Pb1-xSbxTe composition. 

 

2. Materials and Methods 

The samples of Pb0.98-xSbxTe (x = 0.01 – 0.12) were synthesized by vacuum sealed-tube melting processing. 

The ampoules with appropriate stoichiometric amounts of high purity starting elements (Pb, Sb and Te) 

were sealed under a vacuum of 10-6 Torr, then placed in a rocking furnace and slowly heated up to 1223 

K over a period of 12 hours, then held at that temperature for 12 hours and slowly cooled down to room 

temperature over 24 hours. The obtained ingots were cut and polished to required shapes and dimensions 

for various thermoelectric measurements. Powder X-ray diffraction (PXRD) patterns were recorded at 

room temperature in the 2θ range 5-120° with step size of 0.026° and a scan per step of 400s using a 

PANalytical X’Pert Pro diffractometer (Cu K-L2,3 radiation, PIXcel 1D detector). The Hall measurements 

were carried on samples of dimensions 5x5x2 mm3 using a four-point probe setup (Van der Pauw 

method), where a fixed magnetic field of 0.112 T and DC current of 15 mA was applied.  The electrical 

conductivity and Seebeck coefficients were measured simultaneously from room temperature to 623 K 

on samples of dimension 10x2x2 mm3 using a commercial instrument (LSR-3, Linseis Inc.), in a He 

atmosphere. Temperature dependent thermal diffusivity, D, was measured on disc shaped samples of 

dimension 10 mm diameter x 2 mm thickness using the laser flash diffusivity method in a Netzsch LFA-

457. The heat capacity, Cp, was derived using the Dulong–Petit relation, Cp = 3R/M (R is the gas constant 

and M is the molar mass). The total thermal conductivity was obtained from the equation,  = DCp, where 



 

 

ρ is the density of the sample measured using Archimedes’ principle. The uncertainty in the results for the 

values of Hall measurement, electrical and thermal transport properties are 2%, 5% and 7% 

respectively and that for zT value is 12%. Error bars are not shown in the figures to increase the readability 

of the curves. Refer supporting information (ESI†) for microscopic analysis and details regarding the 

estimation of electronic and lattice contributions to thermal conductivity. 

 

3. Results and discussion 

Powder XRD patterns of all of the samples are presented in figure 1 (a). Sharp peaks indicate the 

polycrystalline nature of the phases. The main peaks could be indexed to a cubic PbTe phase. Sb2Te3 

secondary phase is observed at higher concentrations of the dopant (> 4 mol% Sb), indicating a low 

solubility limit for Sb in PbTe. Still the decrease of lattice parameter with Sb content, as shown in figure 1 

(b), suggests some substitution of smaller Sb3+ atoms (1.45 Å) for larger Pb2+ atoms (1.8 Å). The non-

linear evolution of the lattice parameter at higher Sb contents indicates that Sb is not fully substituted for 

Pb in the whole composition range, confirming its low solubility in PbTe. SEM-EDX analysis are in 

agreement with the XRD results (see ESI†). 

 

Figure 1. (a) PXRD patterns for Pb0.98-xSbxTe samples, (b) Lattice parameter as a function of Sb content. 

Table 1. Hall measurement results (at 300 K) of carrier concentration, n and mobility, µ for Pb0.98-xSbxTe 

samples 

Sample 
Notation 

Pb0.98-xSbxTe 
Value of x 

n  
(1019 cm-3) 

µ  
(cm2V-1s-1) 

PST-1 0.01 0.38 330.9 
PST-4 0.04 1.99 677.45 
PST-8 0.08 1.36 518.84 

PST-12 0.12 3.65 317.34 
 

The results from Hall measurements tabulating carrier concentration (n) and mobility (µ) are 

presented in Table 1. As the Hall voltage is negative in all these samples, electrons are the major charge 

carriers (n-type). The electrical transport properties of the different compositions are presented in figure 



 

 

2 (a) and (b). The negative Seebeck coefficients confirms the n-type charge carriers in the samples. The 

linear increase of the absolute Seebeck coefficient and the monotonic decrease in electrical conductivity 

with increasing temperature suggests degenerate semiconducting behavior for most of the samples [29–

31]. These tendencies, expected due to a slight loss of degeneracy at elevated temperatures [13], allow 

the assumption of single band conduction behavior for these samples within the values of carrier density 

and temperature ranges studied. The carrier density does not follow any specific trend, and such 

anomalous changes, which are difficult to explain have been reported for other such self-compensated 

compositions [32,33]. It must also be noted that the carrier densities for these Pb-deficit Pb0.98-xSbxTe 

compositions are almost one order of magnitude higher than undoped PbTe (n  1.11 x 10-18 cm-1) [13], 

due to the aliovalent donor doping of Sb3+ in the Pb2+ sub-lattices of PbTe. Interestingly, Sb is known to be 

an amphoteric dopant depending on its lattice position [34], which means that in Te-rich PbTe, Sb 

substitutes for Pb (donor) and in Pb-rich PbTe, Sb substitutes for Te (acceptor). Despite PST-12 having 

twice the n-values of PST-8, its carrier charge mobility is reduced by half and this cumulative effect is 

observed in fig. 2(a), where the σ of both these samples are almost the same. The S-value for these 

samples at room temperature are in the range of -50 to -200 µV/K, while at 623 K it reaches a maximum 

of -300 µV/K for PST-1 and -193 µV/K for PST-4. The Seebeck results are coherent (inverse proportionality) 

with the carrier densities obtained by Hall measurements. The thermoelectric power factor, P.F = S2σ, as 

shown in fig 2(c) reaches more than 1.7 x 10-3 W/mK2 at mid-temperature ranges for PST-4, which is on 

par with other PbTe based materials [12]. The power factor does not vary much beyond 500 K for PST-4 

and PST-12, whereas the power factor slumps continuously for PST-1 and PST-8, just like in LAST alloys 

[15].  The reduction in mobility with increasing Sb content can be attributed to the dopant scattering, 

arising due to solid solution alloying. PST-4 has an increased carrier mobility, possibly arising from its 

interesting microstructure (with lamellar growth domains and different grain sizes), as shown in ESI†. The 

transport properties of the constituent phases (PbTe and Sb2Te3) are tabulated in ESI†.   

The total thermal conductivity of the PST samples and its lattice contributions are presented in 

figure 2(d). At room temperature, the  value for the samples varies from 1.9 to 2.9 W/mK and the values 

drops to lower than 1.5 at 623 K. The lowest value of  is exhibited by PST-1 (1.1 W/mK), followed by PST-

4 (1.25 W/mK), which are lower than other well-known n-type PbTe based high performance materials ( 

< 1.5 w/mK) with the similar carrier concentration values [13]. This can be due to the increased disorder 

created by Sb doping in the self-deficit PbTe lattice, leading to a decreased lattice contribution. Moreover, 

as reported by Zhu et al [35]., there is also an increase of anharmonic coupling between heat carrying 

phonons, causing their mutual scattering with increasing temperature. For PST-4 and PST-12, an ultra-low 

latt of 0.8 W/mK was achieved at 623 K, competing well with state of the art TE materials ( < 1 W/mK). 

The aliovalent donor substitution of Sb3+ for Pb2+ is not balanced by the acceptor action of the vacancies 

formed in the PbTe sub-lattice [36], thus resulting in the lower thermal conductivity.  

A plot of the temperature dependent thermoelectric figure of merit, zT is presented in figure 2(e). 

In Pb-deficit compositions, the highest zT of 0.81 is achieved at 623 K for the 4 mol% Sb containing 

sample. Both of the 1 mol% and 12 mol% Sb containing samples exhibit zT of 0.6 at 623 K. The zT values 

of these self-deficit Pb0.98-xSbxTe compositions are much higher than the values for pristine Pb1-xSbxTe 

compositions reported by Dow et al., [28]. For instance, the 4 mol% Sb containing Pb-deficit sample with 

the nominal composition Pb0.94Sb0.04Te exhibits zT of 0.81 at 623 K. While it was reported that, for the 

same dopant concentration in pristine composition (Pb0.96Sb0.04Te), the zT obtained was only 0.3 at the 



 

 

same temperature [28]. In the case of pristine compositions, the highest value of zT obtained at 623 K was 

only 0.5 for Pb0.9Sb0.1Te, which then reaches to a maximum of 0.6 at 723 K.  

 

Figure 2. Temperature dependent transport properties – (a) Electrical conductivity, σ (b) Seebeck 

coefficient, S (c) Power Factor, P.F (d) Total thermal conductivity,   and Lattice thermal conductivity, latt 

in the insert (e) Figure of merit, zT. 



 

 

The better TE performance of Pb-deficit samples is due to their better electrical conductivity and 

lower thermal conductivity when compared to pristine Pb1-xSbxTe [28]. This reduction in  for self-deficient 

samples is expected to arise from phonon-scattering at the vacancies, which act as point-defects [37] and 

suppresses the lattice contribution by about 50%, when compared with pristine Pb1-xSbxTe [28]. A high 

temperature extrapolation of the linear temperature dependence zT plot of Pb-deficit composition 

containing 4 mol% Sb indicates a possible figure of merit of 1.3 at 850 K, making them a serious candidate 

for high temperature TE applications. 

 

4. Conclusion 

To summarize, high quality crystalline ingots of Pb0.98-xSbxTe were obtained by vacuum sealed-tube 

melting processing. Reduction in the lattice parameter confirmed the aliovalent donor substitution of Sb3+ 

for Pb2+ in PbTe, but the solubility limit was found to be minimum. These Sb-doped, Pb-deficit, n-type 

samples exhibited high carrier densities (10-19 cm-3). Sb alloying reduces the mobility of charge carriers 

due to dopant scattering and the thermal conductivities were significantly reduced due to the phonon 

scattering at the vacancies of these Pb-deficit samples. The combination of ultra-low latt of 0.8 W/mK 

and power factors in excess of 1.5 x 10-3 W/mK2 at around 600 K, for 4 mol% Sb alloying, markedly 

enhanced the zT from 0.3 in pristine samples to 0.81 in Pb-deficit samples.  
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