N

N
N

HAL

open science

NeoEMF: A Multi-database Model Persistence
Framework for Very Large Models

Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann
Vernageau, Abel Gomez, Jordi Cabot

» To cite this version:

Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann Vernageau, et al.. NeoEMEF:
A Multi-database Model Persistence Framework for Very Large Models. Science of Computer Pro-
gramming, 2017, 10.1016/j.scic0.2017.08.002 .

hal-01589588

HAL Id: hal-01589588
https://hal.science/hal-01589588
Submitted on 18 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01589588
https://hal.archives-ouvertes.fr

NeoEMF: a Multi-database Model Persistence Framework
for Very Large Models

Gwendal Daniel®, Gerson Sunyé®, Amine Benelallam®, Massimo Tisi?, Yoann
Vernageau?, Abel Gémez®, Jordi Cabot®"

“AtlanMod Team - Inria, IMT Atlantique, LS2N - Nantes, France
b Universitat Oberta de Catalunya - Barcelona, Spain
¢ICREA - Barcelona, Spain

Abstract

The growing role of Model Driven Engineering (MDE) techniques in industry has em-
phasized scalability of existing model persistence solutions as a major issue. Specif-
ically, there is a need to store, query, and transform very large models in an efficient
way. Several persistence solutions based on relational and NoSQL databases have been
proposed to achieve scalability. However, they often rely on a single data store, which
suits a specific modeling activity, but may not be optimized for other use cases. This
paper presents NEOEMF, a tool that tackles this issue by providing a multi-database
model persistence framework. Tool website: http://www.neoemf .com

Keywords: Model Persistence, Scalability, Large Models

1. Introduction

With the progressive adoption of MDE techniques in industry [5], existing model
persistence solutions have to address scalability issues to store, query, and transform
large and complex models. Indeed, existing modeling frameworks were first designed
to handle simple modeling activities, and often relied on XMI-based serialization to
store models. While this format is a good fit for small models, it has shown clear
limitations when scaling to large ones [6].

To overcome these limitations, several persistence frameworks based on relational
and NoSQL databases have been proposed [2} [6]. They rely on a lazy-loading mech-
anism, which reduces memory consumption by loading only accessed objects. These
solutions have proven their efficiency but are generally tailored to a specific data-store
implementation, and integrating them into existing applications often implies to update
the code base.

Email addresses: gwendal.daniel@inria. fr (Gwendal Daniel),
gerson.sunye@inria. fr (Gerson Sunyé), amine.benelallam@inria.fr (Amine
Benelallam), massimo.tisi@inria. fr (Massimo Tisi), yoann.vernageau@inria. fr (Yoann
Vernageau), agomezllaQuoc.edu (Abel Gomez), jordi.cabot@icrea.cat (Jordi Cabot)

Preprint submitted to Elsevier August 1, 2017

http://www.neoemf.com

In this article we present NEOEMF, a scalable model persistence framework based
on a modular architecture enabling model storage into multiple data stores. NEOEMF
provides three new model-to-database mappings that complement existing persistence
solutions and enable to store models in graph, key-value, and column databases. The
framework provides two APIs, one strictly compatible with the Eclipse Modeling Frame-
work (EMF) API —which allows integrating NEOEMF into existing modeling tools
with a few changes on the code base— and an advanced API —which provides spe-
cific features complementing the standard EMF API to further improve scalability of
particular modeling scenarios—.

2. Problem and Background

Databases are a well-known solution to store and query large models. They are
used in current modeling frameworks, such as CDO [2] or Morsa [6], and have proven
their efficiency compared to state-of-the-art XMI serialization. However, existing tools
generally rely on a client-server architecture that provides an additional API that has to
be integrated in client code to access the model (e.g. to create the server, open a new
connection, commit changes, etc).

In these approaches, the choice of the datastore is totally independent of the ex-
pected model usage (for example complex querying, interactive editing, or complex
model-to-model transformation): the persistence layer offers generic scalability im-
provements, but it is not optimized for a specific scenario. For example, a graph-based
representation of a model can improve scalability by exploiting databases’ facilities
to handle complex relationships between elements, but will have poor execution time
performance in scenarios involving repeated atomic value accesses.

Our previous work on model persistence [3} 4] has shown that providing a well-
suited data store for a specific modeling scenario can dramatically improve perfor-
mance [7]. Based on this observation, we introduce a novel modeling framework based
on a multi-database architecture, each one providing optimized performances for spe-
cific modeling scenarios.

Currently, NEOEMF provides three implementations—map, graph, and column—
respectively optimized for fine-grained access, complex querying, and distributed model
transformations. Note that the extensible architecture of NEOEMF allows easily inte-
grating new backends. Furthermore, NEOEMF is, to our knowledge, the only model
persistence framework that provides a complete mapping to store models in Neo4j,
MapDB, and HBase, complementing other approaches based on relational [2] or doc-
ument databases [6].

3. Software Framework

This section presents the details of NEOEMF. We first introduce an overview of the
framework architecture and its integration in the modeling ecosystem, then we present
the main functionalities of the tool and provide some pointers to advanced usages.

3.1. Software Architecture

Figure|l|describes the integration of NEOEMF in the Eclipse-based EMF ecosys-
tem, the most popular modeling framework nowadays. Modelers typically access a

Q

XY ., Model-Based Tools |

) t - -~~~ Model Access AP/
“Standard”
v, | EMF |
O P . I ,,,,,,,, -~ Persistence API

— [Caohig]

******* Backend API

“Advanced” User
& Developer

Blueprints MapDB HBase/
ZooKeeper

Figure 1: NEOEMF Integration in EMF Ecosystem

model using Model-based Tools, which provide high-level modeling features such as a
graphical interface, interactive console, or query editor. These features internally rely
on EMF’s Model Access API to navigate models, perform CRUD operations, check
constraints, etc. At its core, EMF delegates the operations to a persistence manager
using its Persistence API, which is in charge of the (de)serialization of the model. The
NEOEMF core component is defined at this level, and can be registered as a persis-
tence manager for EMF, replacing, for instance, the default XMI persistence manager.
This design makes NEOEMF both transparent to the client-application and EMF itself,
that simply delegates the calls without taking care of the actual storage.

Once the NEOEMF core component has received the request of the modeling oper-
ation to perform, it forwards the operation to the appropriate database connector (Map,
Graph, or Column), which is in charge of handling the low-level representation of the
model. These connectors translate modeling operations into Backend API calls, store
the results, and reify database records into EMF EObjects when needed. NEOEMF
also embeds a set of default caching strategies that are used to improve performance of
client applications, and can be configured transparently at the EMF API level.

The package diagram shown in Figure[2]details how the NEOEMF core component
interacts with the NEOEMF/GRAPH database connector. Note that the same architec-
ture is used for the NEOEMF/MAP and NEOEMF/COLUMN connectors. A Persisten-
tResource is the NEOEMF implementation of the EMF Resource interface. It contains
a set of PersistentEObject (the NEOEMF implementation of EObject) and references
a PersistentStore that handles EMF API calls (add, get, set methods) and delegates
them to a PersistenceBackend which manipulates the underlying database. When a
new PersistentResource is created, it retrieves from a global PersistenceBackendFacto-
ryRegistry the PersistenceBackendFactory associated to its uri, and uses it to create the
PersistentStore and PersistenceBackend to use to store the model.

The NEOEMF/GRAPH component extends the core architecture at four levels:
it defines (i) a BlueprintsURI class that is used to create graph-based PersistentRe-
sources, (ii) a BlueprintsPersistenceBackend that extends PersistenceBackend by pro-
viding methods to manipulate graph databases (addVertex, addEdge, etc), (iii) a Blueprints-
Store that maps EMF API operations to the graph primitives provided by the BlueprintsPer-
sistenceBackend, and (iv) a dedicated BlueprintsPersistenceBackendFactory that cre-
ates instances of BlueprintsStore and BlueprintsPersistenceBackend from BlueprintsURIs.

NeoEMF Core NeoEMF/Graph
N registeredURIs
Per A Per: BlueprintsURI
FactoryRegistry - —_
registeredFactories + scheme : String
1
1 *
registry " B e
PersistenceBackendFactory BlueprintsPersistence
BackendFactory
PersistentResource
+ uri : PersistentURI createBackend(URI) : PersistenceBackend
createStore(URI) : PersistentStore
eObject(String path) : PersistentEObject T
getContents() : PersistentEObject[] |
i
creates | BlueprintsPersistence
Backend
contents store + close() <
1 + save() + addVertex(String label)
- + addEdge(Vertex v1, Vertex v2)
. PersistentStore + addPoperty(Vertex v, String k, Object val)
backend
Persistent dd(EObject o, EStructuralFeat: f, int idx, Object v) . bl !
EObject +a ject o, EStructuralFeature f, int idx, Object v. . ueprints
) Store | | get(EObject o, EStructuralFeature f, int idx) : Object BlueprintsStoreé | g, cieng
+ set(EObject o, EStructuralFeature f, int idx, Object v)
1 |+ remove(EObject o, EStructuralFeature f, int idx): Object
+ size(EObject o, EStructuralFeature feature): int

Figure 2: NEOEMF Backend Interface

Using this architecture, creating a graph-based PersistentResource only requires to as-
sociate BlueprintsURI and BlueprintsPersistenceBackendFactory in the Persistence-
BackendFactoryRegistry. The created graph-specific store and backend are transpar-
ently associated to the PersistentResource.

3.2. Software Functionalities

An important characteristic of NEOEMF is its compliance with the EMF API. All
classes/interfaces extending existing EMF ones strictly define all their methods, and
we put a special attention to ensure that calling a NEOEMF method produces the same
behavior (including possible side effects) as standard EMF API calls. As a result,
existing applications can easily integrate NEOEMF and benefit immediately from its
scalability improvements. Current code manipulating regular EMF EObjects does not
have to be modified, and will behave as expected.

Specifically, NEOEMF supports all typical EMF features including: (i) a dedicated
code generator that allows client applications to manipulate models using generated
java classes, (ii) support of Reflective/Dynamic EMF API, and (iii) a Resource API
implementation.

As other model solutions, NEOEMF achieves scalability using a lazy-loading mech-
anism, which loads into memory objects only when they are accessed. Lazy-loading
is defined at the core component: NEOEMF implementation of EObject consists of a
lightweight wrapper delegating all its method calls to an EStore, that directly manip-
ulates elements at the database level. Using this technique, NEOEMF benefits from
datastore optimizations (such as caches or indices), and only maintains a small amount
of elements in memory (the ones that have not been saved), reducing drastically the
memory consumption of modeling applications.

In addition to its compliance with the EMF API, NEOEMF provides specific utility
features to bypass EMF’s limitations, tune internal data stores, and configure caches.

4. Datastores

The previous features are available for a variety of databases supported by NEO-
EMPF. In this section we introduce the different available data stores, describing briefly
the model representation in these stores, their differences and the specific modeling
scenario they better address. Both standard and advanced features presented in the
previous section are implemented in all of them.

NEOEMF/MAP has been designed to provide fast access to atomic operations,
such as accessing a single element/attribute and navigating a single reference. This im-
plementation is optimized for EMF API-based accesses, which typically generate this
kind of atomic and fragmented calls on the model. NEOEMF/MAP embeds a key-value
store, which maintains a set of in-memory/on disk maps to speed up model element ac-
cesses. The benchmarks performed in previous work [4] shows that NEOEMF/MAP is
the most suitable solution to improve performance and scalability of EMF API-based
tools that need to access very large models on a single machine.

NEOEMF/GRAPH persists models in an embedded graph database that represents
model elements as vertices, attributes as vertex properties, and references as edges.
Metamodel elements are also persisted as vertices in the graph, and are linked to their
instances through the instance_of relationship. Using graphs to store models allows
NEOEMTF to benefit from the rich traversal features that graph databases usually pro-
vide, such as fast shortest-path computation, or efficient processing of complex naviga-
tion paths. For instance, these advanced query capabilities have been used to develop
the Mogwai tool [1]], that maps OCL expressions to graph navigation traversals.

NEOEMF/COLUMN has been designed to enable the development of distributed
MDE-based applications by relying on a distributed column-based datastore. In con-
trast with Map and Graph implementations, NEOEMF/COLUMN offers concurrent
read/write capabilities and guarantees ACID properties at model element level. It ex-
ploits the wide availability of distributed clusters in order to distribute intensive read-
/write workloads across datanodes.

5. Implementation and Empirical Results

NEOEMTF has been implemented as a set of open source Eclipse plugins distributed
under the EPL license. The NEOEMF website presents an overview of the key fea-
tures and current ongoing work. The source code repository and wiki are available on
GitHub (http://www.github.com/atlanmod/NeoEMF). NEOEMF has been
used as the persistence solution of the MONDO European project[8] and is used to
store large models automatically extracted from reverse engineering processes. Details
on dependencies and library versions are provided in Table[3]

In the following we present a result extracted from the NEOEMF benchmarks avail-
able on the project repository (see the wiki for more details and complete results).
Note that additional evaluations are also provided in our previous work [4} 3]]. We con-
sider four persistence solutions in our evaluation: NEOEMF/GRAPH, NEOEMF/MAP,
CDO, and the default XMI serialization mechanism of EMF. The executed query ac-
cesses the model using the standard EMF API, making them agnostic of which backend
they are running on.

http://www.github.com/atlanmod/NeoEMF

The executed query is extracted from a software modernization use case, and finds
in a model representing a Java program all the unused methods, that corresponds to
private methods that are not internally called. The query is executed over three models
of increasing sizes, containing respectively 6756, 80 665, and 1557 007 elements.

5.1. Results

Table|[T| presents the results of executing the presented query over the benchmarked
persistence frameworks. Note that execution time is measured in milliseconds, and
each table cell contains both the execution time in a large (8 GB) and a small (512 MB)
JVM configuration, in order to evaluate how the persistence frameworks handle highly-
constrained memory environments.

Model XMI CDO NEOEMF/GRAPH NEOEMF/MAP

setl 7 7 3212 2924 1942 2346 1425 1437
set2 46 42 12255 12169 | 10274 11652 7283 7177
set3 654 OOM | 171558 1160980 | 97782 1368399 | 114539 118498

Table 1: UnusedMethods Results in milliseconds (Large VM / Small VM)

5.2. Discussion

The analysis of the results show that both NEOEMF/GRAPH and NEOEMF/MAP
are interesting candidates to store and access large models in constrained memory en-
vironments. Both NEOEMF implementations perform better than CDO in a large JVM
context, and are able to handle set3 in a constrained memory environment while XMI-
based implementation crashes with an OutOfMemory error. However when the model
to query fits in memory, the XMI serialization outperforms all the existing solutions
in terms of execution time. This result is expected because XMI initially loads the
full model, allowing to compute the entire query in memory while lazy-loading ap-
proaches bring into memory elements when they are needed, and have to perform more
input/output operations to enable element unloading and improve memory consump-
tion.

In the presented results NEOEMF/MAP outperforms other scalable persistence
frameworks in terms of exectution time. In addition, the constrained memory envi-
ronment does not have a significant impact on the connector’s performance, enabling
very large model querying. This can be explained by the model to data-store mapping
used in NEOEMF/MAP that is optimized to access a single feature from a modeling el-
ement. Technically, the framework does not require any complex in-memory structure
to represent the model, and only keeps in memory one key-value pair representing the
element currently processed. This architecture allows removing elements from mem-
ory as soon as they have been processed, thus reducing the memory consumption.

NEOEMF/GRAPH also outperforms CDO when a large virtual machine is allo-
cated to the computation, but is less interesting in constrained memory environment.
This can be explained by the underlying model to graph mapping, which allows effi-
cient model navigations, while CDO’s relational schema requires multiple table join
operations to compute a complex navigation. However, the nature of the EMF API that

O 00NN AW —

performs low-level and fragmented queries implies a lot of database lookups to find a
node corresponding to a given element, which is typically costly in terms of memory
in graph databases, limiting NEOEMF/GRAPH benefits in highly constrained memory
environment.

6. Example

NEOEMF wiki provides a set of examples and resources for beginners and ad-
vanced users: a tutorial showing how to install and get started with NEOEMF, a ready
to use demonstration, code examples, database configuration snippets, and specific
backend configurations. An additional demonstration video is available online{ﬂ

As an example, Listing|l{shows how to create and manipulate a NEOEMF/GRAPH
Resource. First, we register the BlueprintsPersistenceBackendFactory that will be used
to create the database connection and persist the model (lines 1 and 2). This initial step
is specific to NEOEMF, but it is transparently done when running the application in an
Eclipse-based environment, thanks to the extension points mechanism. Then, we create
and initialize a ResourceSet using standard EMF methods (lines 4-6) and associate the
PersistentResourceFactory to the NEOEMF/GRAPH protocol. The ResourceSet is then
used to create a Resource using the BlueprintsURI helper to create a NEOEMF/GRAPH
compatible URI (lines 8-9). NEOEMF provides option builders to ease the definition
of backend-specific settings through the standard EMF option Map. In our example we
use the builder BlueprintsNeo4jOptionsBuilder to set the autocommit behavior to our
Resource (lines 10-11). Finally, we save the Resource to create the underlying database
with the provided options, and we manipulate it using standard EMF API calls (lines
12-14).

Listing 1: NEOEMF Resource Creation and Manipulation

PersistenceBackendFactoryRegistry . register (BlueprintsURI.SCHEME,
BlueprintsPersistenceBackendFactory . getInstance ());

ResourceSet rSet = new ResourceSetImpl ();
rSet. getResourceFactoryRegistry (). getProtocolToFactoryMap ()
.put(BlueprintsURI.SCHEME, PersistentResourceFactory.getlnstance ());

Resource resource = rSet.createResource (
BlueprintsURI. createFileURI (new File ("models/sample. graphdb”)))) {
Map<String , Object> options = BlueprintsNeo4jOptionsBuilder.newBuilder ()
.autocommit ().asMap ();
resource .save (options);

resource . getContents ().add (...); // Standard EMF calls

resource .save(options);

7. Conclusion

We have presented NeoEMF, a multi-datastore model persistence framework. It re-
lies on a lazy-loading capability that can be configured to load model elements individ-
ually or larger collections, allowing very large model navigation in a reduced amount

Ihttp://hdl.handle.net/20.500.12004/1/U/293557

http://hdl.handle.net/20.500.12004/1/U/293557

of memory, by loading elements when they are accessed. NeoEMF provides three
implementations that can be plugged transparently to provide an optimized solution
to different modeling use cases: atomic accesses through interactive editing, complex
query computation, and cloud-based model transformation.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Mogwai: a Framework to Handle
Complex Queries on Large Models. In Proc of the 10th RCIS Conference, pages
225-237. 1IEEE, 2016.

Eclipse Foundation. The CDO Model Repository (CDO), 2016.

Abel Gomez, Amine Benelallam, and Massimo Tisi. Decentralized Model Persis-
tence for Distributed Computing. In Proc. of the 3rd BigMDE Workshop, pages
42-51. CEUR-WS.org, 2015.

Abel Gémez, Gerson Sunyé, Massimo Tisi, and Jordi Cabot. Map-based Trans-
parent Persistence for Very Large Models. In Proc. of the 18th FASE Conference,
pages 19-34. Springer, 2015.

John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering
practices in industry: Social, organizational and managerial factors that lead to
success or failure. SCP, 89:144-161, 2014.

Javier Espinazo Pagén, Jestis Sdnchez Cuadrado, and Jestis Garcia Molina. A
repository for scalable model management. Software & Systems Modeling,
14(1):219-239, 2015.

Seyyed M Shah, Ran Wei, Dimitrios S Kolovos, Louis M Rose, Richard F Paige,
and Konstantinos Barmpis. A framework to benchmark NoSQL data stores for
large-scale model persistence. In Proc. of the 17th MoDELS Conference, pages
586-601. Springer, 2014.

The MONDO Project. Scalable Modelling and Model Management on the Cloud.
URL: http://www.mondo-project.org/, accessed Feb. 2017.

http://www.mondo-project.org/

Required Metadata

Current executable software version

Note that NEOEMF has been developped as a set of Eclipse plug-ins and is pro-
vided in a packaged update site available online https://atlanmod.github.
io/NeoEMF/releases/1.0.2/plugin/. A jar version of the tool is also avail-
able on Maven central for non-Eclipse platforms https://mvnrepository.com/
search?g=neoemf,

Nr. | (executable) Software meta- | Please fill in this column
data description

S1 | Current Software Version 1.0.2
S2 | Permanent link to executables | Eclipse =~ Update Site: https:
of this version //atlanmod.github.io/NeoEMF/

releases/1.0.2/plugin/
Maven Repository https://
mvnrepository.com/search?g=
neoemft

S3 | Legal Software License EPL (NeoEMF)

GPL (Neo4j convenience bundle)

S4 | Computing Platform / Operat- | Java 8-compatible platform

ing System Eclipse users: Eclipse Luna or later
S5 | Installation requirements & | Java 8
dependencies
S6 | If available, link to user man- | Website: www.neoemf .com
ual - if formally published in- | Tutorial: https://github.
clude a reference to the publi- | [com/atlanmod/NeoEMF /wiki/
cation in the reference list Get—-Started
S7 | Support email for questions neoemf@googlegroups.com

Table 2: Software metadata (optional)

https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://mvnrepository.com/search?q=neoemf
https://mvnrepository.com/search?q=neoemf
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://mvnrepository.com/search?q=neoemf
https://mvnrepository.com/search?q=neoemf
https://mvnrepository.com/search?q=neoemf
www.neoemf.com
https://github.com/atlanmod/NeoEMF/wiki/Get-Started
https://github.com/atlanmod/NeoEMF/wiki/Get-Started
https://github.com/atlanmod/NeoEMF/wiki/Get-Started
neoemf@googlegroups.com

Current code version

Nr. | Code metadata description | Please fill in this column
C1 | Current Code Version 1.0.2
C2 | Permanent link to code / | https://github.com/atlanmod/
repository used of this code | NeoEMF
version
C3 | Legal Code License EPL (NeoEMF)
GPL (Neo4j convenience bundle)
C4 | Code versioning system used | GIT
C5 | Software code languages, | Java, Eclipse, Neo4j 1.9.6, MapDB 3.0.2,
tools, and services used HBase 1.2.4
C6 | Compilation requirements, | Java, Maven
operating environments
C7 | If available Link to developer | https://atlanmod.github.io/
documentation / manual NeoEMF /releases/1.0.2/doc/
C8 | Support email for questions neoemf@googlegroups.com

Table 3: Software metadata (optional)

10

https://github.com/atlanmod/NeoEMF
https://github.com/atlanmod/NeoEMF
https://atlanmod.github.io/NeoEMF/releases/1.0.2/doc/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/doc/
neoemf@googlegroups.com

	Introduction
	Problem and Background
	Software Framework
	Software Architecture
	Software Functionalities

	Datastores
	Implementation and Empirical Results
	Results
	Discussion

	Example
	Conclusion

