Heterogeneous \& Homogeneous \& Bio- \& Nano-
 CHEMCATCHEM
 CATALYSIS

Supporting Information

Ruthenium-Catalyzed C-H Bond Alkylation of Arylphosphine Oxides with Alkenes: A Straightforward Access to Bifunctional Phosphorous Ligands with a Pendent Carboxylate

Chang-Sheng Wang, Pierre H. Dixneuf, and Jean-François Soulé*[a]

Table of content:

1. GENERAL INFORMATION .. 2
2. GENERAL METHOD FOR THE PREPARATION OF STARTING MATERIALS: ARYL PHOSPHINE OXIDES
3. GENERAL PROCEDURES FOR RUTHENIUM-CATALYZED C-H BOND
FUNCTIONALIZATION OF ARYL PHOSPHINE OXIDES
.3
4. PRODUCT CHARACTERIZATIONS 3
5. REACTIVITY OF ARYLPHOSPHINE OXIDE VERSUS ARYL KETONE 13
6. NMR CHARTS 13
7. REFERENCES 45

1. General information

All reactions were carried out under argon atmosphere with standard Schlenk techniques. All reagents were obtained from commercial sources and used as supplied. 1,2-Dichloroethane was distilled over CaH_{2} and stored under molecular sieves and argon atmosphere. prior used. $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ was prepared from $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ according the literature. ${ }^{[1]}$ Technical grade petroleum ether (40-60) and ethyl acetate were used for column chromatography.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker GPX (300 , 400 or 500 MHz) spectrometer. Chemical shifts (δ) were reported in parts per million relative to residual chloroform (7.28 ppm for ${ }^{1} \mathrm{H} ; 77.23 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$), constants were reported in Hertz. ${ }^{1} \mathrm{H}$ NMR assignment abbreviations were the following: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz on the same spectrometer and reported in ppm.

GC-MS analyses were performed with a GCMS-QP2010S (Shimadzu) instrument with a GC2010 equipped with a 30 m capillary column (Supelco, SLBTM- 5ms, fused silica capillary column, $30 \mathrm{mx} 0.25 \mathrm{~mm} \times 0.25 \mathrm{~mm}$ film thickness), which was used with helium as the vector gas. The following GC conditions were used: initial temperature $80^{\circ} \mathrm{C}$ for 5 minutes, then rate $20^{\circ} \mathrm{C} / \mathrm{min}$ until $280^{\circ} \mathrm{C}$ and $280^{\circ} \mathrm{C}$ for 28 minutes.

HRMS were recorded on a Waters Q-Tof 2 mass spectrometer at the corresponding facilities of the CRMPO, Centre Régional de Mesures Physiques de l'Ouest, Université de Rennes 1.

Melting points were performed on a LEICA VMHB Kofler system.
2. General method for the preparation of starting materials: aryl phosphine oxides

In a dried 50 mL Schlenk tube with a magnetic stirrer, to a solution of phosphine derivative (10 mmol) in THF (20 mL), $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% aqueous solution, 12 mmol) was slowly added drop by drop over 10 minutes. Then, the mixture was stirred at room temperature during 30 minutes. After complete consumption of the phosphine derivative, which was evaluated by TLC, the THF was removed by evaporation to dryness. Then, the crude solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo to afford the desired phosphine oxide without further purification.
Triphenylphosphine oxide (1a), ${ }^{[2]}$ tri- p-tolylphosphine oxide (1b), ${ }^{[3]}$ tris(4methoxyphenyl)phosphine oxide (1c), ${ }^{[4]}$ tris(4-fluorophenyl)phosphine oxide (1d), ${ }^{[5]}$ benzyldiphenylphosphine oxide (1e), ${ }^{[6]}$ butyldiphenylphosphine oxide (1f), ${ }^{[7]}$ and methyl diphenylphosphinate $(\mathbf{I})^{[8]}$ were prepared according this procedure and NMR spectrum are identical to those reported in literature.

3. General procedures for ruthenium-catalyzed $\mathbf{C}-\mathbf{H}$ bond functionalization of aryl phosphine oxides

General Procedure A: Ruthenium-Catalyzed direct alkylation
In a dried 15 mL Schlenk tube with a magnetic stirrer, aryl-phosphine oxide (0.6 mmol), $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.015 \mathrm{mmol}, 9 \mathrm{mg}), \mathrm{AgSbF}_{6}(0.06 \mathrm{mmol}, 20 \mathrm{mg})$, solvent DCE $(3.0 \mathrm{~mL})$ were successively introduced into the Schlenk tube. Michal acceptor (0.3 mmol) and AcOH ($1.2 \mathrm{mmol}, 72 \mathrm{mg}$) were added dropwise into the Schlenk tube, then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ over 12 h . After cooling, the solvent was removed by evaporation to dryness, and the crude product was purified using flash column chromatography to afford the desired ortho-alkylated arylphosphine oxide. The yields are calculated based on the limiting reagent (i.e. Michal acceptor).

General Procedure B: Ruthenium-Catalyzed direct alkenylation
In a dried 15 mL Schlenk tube with a magnetic stirrer, aryl-phosphine oxide (0.6 mmol), $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.015 \mathrm{mmol}, 9 \mathrm{mg}), \mathrm{AgSbF}_{6}(0.06 \mathrm{mmol}, 20 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.3$ mmol, 60 mg), $\mathrm{NaHCO}_{3}(0.3 \mathrm{mmol}, 25 \mathrm{mg})$, solvent $\mathrm{DCE}(3.0 \mathrm{~mL})$ were successively introduced. Michal acceptor ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$) was added dropwise into the Schlenk tube, then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ over 12 h . After that the solvent was removed by evaporation to dryness, and the crude product was purified using flash column chromatography to afford the desired ortho-alkenylated arylphosphine oxide. The yields are calculated based on the limiting reagent (i.e. Michal acceptor).

4. Product characterizations

n-Butyl 3-(2-(diphenylphosphoryl) phenyl) propanoate (3aa): Following the general procedure \mathbf{A} using tri-phenylphosphine oxide ($0.6 \mathrm{mmol}, 166 \mathrm{mg}$) and n-butyl acrylate ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$), 3aa was isolated in 72% yield (88 mg) as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.60(\mathrm{dd}, J=7.4$ and $11.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{dd}, J=3.6$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7$. res $11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (dd, $J=$ 7.6 and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.0,146.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.4\right.$ $\mathrm{Hz}), 132.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=101.3 \mathrm{~Hz}\right), 132.3,132.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.9,131.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=105.2 \mathrm{~Hz}\right)$, $131.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.0 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.3 \mathrm{~Hz}\right), 125.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.0 \mathrm{~Hz}\right), 64.2,35.7,30.6$, 29.7 (d, $\left.J_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}\right), 19.1(\mathrm{~s}), 13.7(\mathrm{~s})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=31.4(\mathrm{~s})$.
MS (EI) $\mathrm{m} / \mathrm{z}(\%)=406\left([\mathrm{M}]^{+}, 36\right), 333$ (23), 305 (100), 290 (23), 201 (26).

ethyl acetate (1:2).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.50(\mathrm{dd}, J=8.0$ and $11.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 4 \mathrm{H})$, $7.14(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .2 .42(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.92$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.2,146.0,142.5,142.0,133.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=13.7 \mathrm{~Hz}\right)$, $131.9(\mathrm{~m}), 131.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=107.2 \mathrm{~Hz}\right), 129.3(\mathrm{~m}), 128.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=106.1 \mathrm{~Hz}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $12.0 \mathrm{~Hz}), 120.8,64.1,35.8,30.7,29.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}\right), 21.6,21.4,19.1,13.7$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=31.4(\mathrm{~s})$.
MS (EI) m/z (\%) = $448\left([\mathrm{M}]^{+}, 44\right), 375(16), 347$ (100), 332 (14), 229 (24), 163 (10), 91 (10).

using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.52(\mathrm{t}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~m}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $\left._{3}\right) \delta(\mathrm{ppm})=173.1,162.4,162.3,148.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=8.4 \mathrm{~Hz}\right), 135.7(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{P}}=14.1 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.6 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=112.3 \mathrm{~Hz}\right), 123.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=110.1 \mathrm{~Hz}\right)$, $116.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.9 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.9 \mathrm{~Hz}\right), 110.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=14.0 \mathrm{~Hz}\right), 64.2,55.3,55.2$, 35.6, 30.6, $29.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}\right.$), 19.1, 13.7.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=30.7(\mathrm{~s})$.
HRMS (ESI) Calcd for: $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{PNa}^{+}: 519.1912$; found: $519.19125[\mathrm{M}+\mathrm{Na}]^{+}$

n-Butyl 3-(2-(bis(4-fluorophenyl)phosphoryl)-5-fluorophenyl) propanoate (3da): Following the general procedure A using tris-(4fluorophenyl) phosphine oxide ($0.6 \mathrm{mmol}, 199 \mathrm{mg}$) and n-butyl acrylate ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$), 3da was isolated in 68% yield (94 mg) as colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.60(\mathrm{ddd}, J=5.5,8.7$ and $11.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{td}, J=$ 2.0 and $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{dt}, J=2.8$ and $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{ddd}, J=2.0$, 4.1 and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=172.5,165.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=254.4 \mathrm{~Hz}\right), 165.1\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $254.4 \mathrm{~Hz}), 149.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=9.5\right.$ and $\left.J_{\mathrm{C}, \mathrm{P}}=8.3, \mathrm{~Hz}\right), 134.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=8.8\right.$ and $\left.J_{\mathrm{C}, \mathrm{P}}=11.2 \mathrm{~Hz}\right)$, $135.94\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=8.9\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=14.6 \mathrm{~Hz}\right), 128.7\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=107.2\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=3.9 \mathrm{~Hz}\right), 126.6(\mathrm{dd}$, $J_{\mathrm{C}, \mathrm{P}}=107.2$ and $\left.J_{\mathrm{C}, \mathrm{F}}=3.9 \mathrm{~Hz}\right), 118.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=11.4\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=21.3 \mathrm{~Hz}\right), 116.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=13.3\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=21.4 \mathrm{~Hz}\right), 113.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=14.1\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=20.8 \mathrm{~Hz}\right), 64.4,35.2,30.6,29.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.6 \mathrm{~Hz}\right)$, 19.1, 13.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=-106.1(\mathrm{~s}),-106.3(\mathrm{~s})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=29.0(\mathrm{~s})$.
MS (EI) m/z (\%) = $460\left(\left[\mathrm{M}^{+}, 36\right), 387(25), 359(100), 344\right.$ (19), 245 (20), 237 (39), 167 (11), 77 (9) .

n-Butyl 3-(2-(benzyl(phenyl)phosphoryl)phenyl)propanoate (3ea): Following the general procedure \mathbf{A} using benzyldiphenylphosphine oxide ($0.6 \mathrm{mmol}, 175 \mathrm{mg}$) and n-butyl acrylate ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$), 3ea was isolated in 63% yield (79 mg) as a while solid, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
mp $118-120^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.68(\mathrm{dd}, J=7.9$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}$, $4 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{t}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{dt}, J=7.8$ and $15.9, \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.0,146.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.4 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=99.5\right.$ $\mathrm{Hz}), 132.2,131.6,131.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.3 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=4.2 \mathrm{~Hz}\right)$, $128.5,128.4,128.3,126.8,126.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.6 \mathrm{~Hz}\right), 64.1,38.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=67.0 \mathrm{~Hz}\right), 35.9,30.6$, $29.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.6 \mathrm{~Hz}\right), 19.1,13.7$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=30.5(\mathrm{~s})$.
MS (EI) m/z (\%) = $420\left([\mathrm{M}]^{+}, 19\right), 347$ (15) 319 (36), 273 (68), 227 (20), 133 (100), 91 (69).

n-Butyl 3-(2-(n-butyl(phenyl)phosphoryl)phenyl) propanoate (3fa): Following the general procedure \mathbf{A} using n-butyldiphenylphosphine oxide ($0.6 \mathrm{mmol}, 155 \mathrm{mg}$) and n-butyl acrylate $(0.3 \mathrm{mmol}, 38 \mathrm{mg})$, $\mathbf{3 f a}$ was isolated in 47% yield (54 mg) as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 3 \mathrm{H})$, $0.95-0.88(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=172.9,145.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.4 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=93.8\right.$ $\mathrm{Hz}), 132.0,131.5,131.4,131.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=8.7 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=8.5 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.7\right.$ $\mathrm{Hz}), 126.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.1 \mathrm{~Hz}\right), 64.2,35.8,30.1,29.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.6 \mathrm{~Hz}\right), 29.4,24.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=14.5\right.$ Hz), 23.4, 19.1, 13.7, 13.6.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm})=33.9(\mathrm{~s})$.
MS (EI) m/z (\%) = 386([M] $\left.{ }^{+}, 7\right), 357(15), 313(31), 285(80), 273(100), 257(20), 133$ (68), 125(23), 91(11).

n-Butyl 3-(2-(methoxy(phenyl)phosphoryl) phenyl) propanoate (3ga):
Following the general procedure A using methyl diphenylphosphinate (0.6 $\mathrm{mmol}, 139 \mathrm{mg}$) and butyl acrylate ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$), 3ga was isolated in 53% yield (57 mg) as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.86(\mathrm{dd}, J=7.7$ and $12.9,1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.6$ and $12.2,2 H), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dt}, J=7.2$ and $14.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=172.9,144.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.2 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.4\right.$ $\mathrm{Hz}), 132.6,132.2,131.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.5 \mathrm{~Hz}\right), 130.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.5 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=88.9 \mathrm{~Hz}\right)$, $128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=13.1 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.6 \mathrm{~Hz}\right), 64.3,51.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.9 \mathrm{~Hz}\right), 35.8,30.6,29.5$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=4.3 \mathrm{~Hz}\right), 19.1,13.7$.
${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm})=33.7(\mathrm{~s})$.
MS (EI) m/z (\%) = $360\left([\mathrm{M}]^{+}, 36\right), 287(32), 259(100), 227(31), 155(52), 149$ (35), 77 (32) .

n-Methyl 3-(2-(diphenylphosphoryl)phenyl)propanoate (3ab):
Following the general procedure \mathbf{A} using methyl triphenylphosphine oxide ($0.6 \mathrm{mmol}, 166 \mathrm{mg}$) and methyl acrylate ($0.3 \mathrm{mmol}, 26 \mathrm{mg}$), 3ab was isolated in 62% yield (68 mg) as a colorless oil, after purified using flash column chromatography with pentane -ethyl acetate (1:2).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.67-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42$ $(\mathrm{m}, 5 \mathrm{H}), 7.35(\mathrm{dd}, J=4.1$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=1.4,7.8$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.3,146.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $12.8 \mathrm{~Hz}), 133.5,132.5,132.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=98.1 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.8\right.$ $\mathrm{Hz}), 131.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=103.5 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.1 \mathrm{~Hz}\right), 125.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.8 \mathrm{~Hz}\right), 51.5,35.5$, $29.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.3 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm})=31.4(\mathrm{~s})$.
MS (EI) m/z (\%) = $364\left([\mathrm{M}]^{+}, 51\right), 333(20), 305$ (100), 290 (29), 201 (21), 149 (15), 77 (18).

Methyl 3-(2-(benzyl(phenyl)phosphoryl) phenyl) propanoate (3eb): Following the general procedure A using methyl benzyldiphenylphosphine oxide ($0.6 \mathrm{mmol}, 175 \mathrm{mg}$) and methyl acrylate $(0.3 \mathrm{mmol}, 26 \mathrm{mg})$, 3eb was isolated in 65% yield $(73 \mathrm{mg})$ as a white solid, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
mp $168-170{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.73-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dt}, J=15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44-2.33(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm})=173.3,146.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.6 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $98.4 \mathrm{~Hz}), 132.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=4.6 \mathrm{~Hz}\right), 131.3(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{P}}=6.2 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.5 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=95.3 \mathrm{~Hz}\right), 130.3(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.2 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz}\right), 126.0$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=11.2 \mathrm{~Hz}\right), 51.4,38.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=66.3 \mathrm{~Hz}\right), 35.6,29.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=30.7(\mathrm{~s})$.
MS (EI) m/z (\%) = $378\left([\mathrm{M}]^{+}, 21\right), 347(11), 319(38), 287(88), 227(27), 155(100), 149(32)$, 91 (84), 77 (20).

3-(2-(Diphenylphosphoryl)phenyl)acrylonitrile (3ac) and 3-(2(diphenylphosphoryl)phenyl) acrylonitrile (4ac): Following the general procedure A using methyl triphenylphosphine oxide ($0.6 \mathrm{mmol}, 166 \mathrm{mg}$) and acrylonitrile ($0.3 \mathrm{mmol}, 16 \mathrm{mg}$), 3ac/4ac were isolated in 24% yield $(24 \mathrm{mg})$ in 1:4 ratio as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (2:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{4 a c} \delta(\mathrm{ppm})=8.27(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.48(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.7$ and $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ of $\mathbf{4 a c} \delta(\mathrm{ppm})=148.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.7 \mathrm{~Hz}\right), 138.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $6.7 \mathrm{~Hz}), 133.87\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.5 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.5 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}\right.$ $=98.7 \mathrm{~Hz}), 132.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=105.2 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.3 \mathrm{~Hz}\right), 128.8$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=12.3 \mathrm{~Hz}\right), 127.41\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.2 \mathrm{~Hz}\right), 117.4,99.3$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{4 a c} \delta(\mathrm{ppm})=31.38(\mathrm{~s})$.
MS(EI) of $4 \mathrm{ac} \mathrm{m} / \mathrm{z}(\%)=329\left([\mathrm{M}]^{+}, 100\right), 301$ (13), 250 (21), 213 (13), 77 (25), 51 (18).

(E)-ethyl 2-(2-(diphenylphosphoryl)phenyl)-3-phenylacrylate (3ad): Following the general procedure \mathbf{A} using methyl triphenylphosphine oxide $(0.6 \mathrm{mmol}, 166 \mathrm{mg})$ and methyl 3-phenylpropiolate ($0.3 \mathrm{mmol}, 48 \mathrm{mg}$), 3ad was isolated in 67% yield (91 mg) as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.80-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=167.2,144.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.7 \mathrm{~Hz}\right), 143.6,135.9$, $134.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.5 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=105.2 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=97.8 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}\right.$ $=9.5 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.4 \mathrm{~Hz}\right), 131.5,131.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz}\right), 128.8,128.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.2\right.$ $\mathrm{Hz}), 128.0,127.5127 .1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.5 \mathrm{~Hz}\right), 105.0,60.6,13.5$.
${ }^{\mathbf{3}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=29.3(\mathrm{~s})$.
MS (EI) m/z (\%) = $452\left([\mathrm{M}]^{+}, 22\right), 405(7), 379$ (100), 253 (6), 189 (6), 77 (7).

3-(2-(Diphenylphosphoryl)phenyl)propanoic acid (5aa): n-Butyl 3-(2(diphenylphosphoryl)phenyl)propanoate (3aa) ($0.6 \mathrm{mmol}, 250 \mathrm{mg}$) and KOH $6.0 \mathrm{mmol}, 336 \mathrm{mg}$) were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(3: 3: 1)$ solvent mixture $(6 \mathrm{~mL})$ and stirred for 12 h at $60^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure and the residue was acidified with $\mathrm{HCl}(2 \mathrm{~N})$. The aqueous layer was extracted with EtOAc (3x20 mL) and the combined organic
layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to offer the desired product $\mathbf{5 a a}$ in 75% yield (185 mg) without further purification as a white solid.
mp $223-226^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.65-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{dd}, J$ $=4.1$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.6$ and $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=$ 6.7 and $9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=6.5$ and $9.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=174.1,146.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.7 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $13.6 \mathrm{~Hz}), 132.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}\right), 131.2(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{P}}=10.1 \mathrm{~Hz}\right), 130.5,129.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=103.1 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.4 \mathrm{~Hz}\right), 126.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=13.2\right.$ $\mathrm{Hz}), 38.3,31.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.4 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=35.5(\mathrm{~s})$.

3-(2-(Diphenylphosphino)phenyl)propanoic acid (6aa): In a dried 15 mL Schlenk tube flushed with argon 3-(2(diphenylphosphoryl)phenyl)propanoic acid (5aa) ($0.25 \mathrm{mmol}, 93 \mathrm{mg}$) was added to a solution of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(5 \mathrm{~mol} \%, 2 \mathrm{mg})$ in toluene $(1.5 \mathrm{~mL})$. The reaction mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$. Subsequently, $\mathrm{PhSiH}_{3}(1.0 \mathrm{mmol}, 108$ mg) was added, the Schlenk tube was flushed with argon, sealed and the reaction mixture was stirred for 24 h at 100°. After that the solvent was removed by evaporation to dryness, and the crude product was purified using flash column chromatography with pentane-ethyl acetate (1:1) to afford 6aa in 67% yield. (50 mg) as a colorless oil.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.40-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{td}, J=$ $7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=178.5,144.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=25.3 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $10.2 \mathrm{~Hz}), 135.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=13.1 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=19.7 \mathrm{~Hz}\right), 133.9,129.3,129.1(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 129.8,128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=6.9 \mathrm{~Hz}\right), 126.8,35.16\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.8 \mathrm{~Hz}\right), 29.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=21.7 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=-15.7(\mathrm{~s})$.
HRMS (ESI) Calcd for: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{P}^{+}: 335.1201$, found: $335.12009[\mathrm{M}+\mathrm{H}]^{+}$

3-(2-(Di-p-tolylphosphoryl)-5-methylphenyl)propanoic acid (6ba): Butyl 3-(2-(di-p-tolylphosphoryl)-5methylphenyl)propanoate (3ba) ($0.3 \mathrm{mmol}, 134 \mathrm{mg}$) and KOH (3.0 mmol, 336 mg) were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (3:3:1) solvent mixture (6 mL) and stirred for 12 h at $60^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure and the residue was acidified with $\mathrm{HCl}(2 \mathrm{~N})$. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Then, in a 15 mL Schlenk tube the crude mixture was
added to a solution of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(5 \mathrm{~mol} \%, 2.25 \mathrm{mg})$ in toluene (1.5 mL). The reaction mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$. Subsequently, PhSiH_{3} ($1.0 \mathrm{mmol}, 108 \mathrm{mg}$) was added, the Schlenk tube was flushed with argon, sealed and the reaction mixture was stirred for 24 h at $100^{\circ} \mathrm{C}$. After that the solvent was removed by evaporation to dryness, and the crude product was purified using flash column chromatography with pentane-ethyl acetate (1:1) to afford 6ba in 42% yield (47 mg) over two steps as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta(\mathrm{ppm})=7.18-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (m, 1H), $3.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=176.8,144.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=25.3 \mathrm{~Hz}\right), 139.1,138.6$, $133.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=19.4 \mathrm{~Hz}\right), 133.7\left(\mathrm{md}, J_{\mathrm{C}, \mathrm{P}}=100.1 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=10.5 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}\right.$ $=5.2 \mathrm{~Hz}), 129.58\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.6 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.2 \mathrm{~Hz}\right), 127.6,35.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.8 \mathrm{~Hz}\right)$, $29.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=21.0 \mathrm{~Hz}\right), 21.3,21.2$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=-18.32(\mathrm{~s})$.
HRMS (ESI) Calcd for: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}^{+}: 377.1592$; found: $377.16704[\mathrm{M}+\mathrm{H}]^{+}$

3-(2-(Bis(4-fluorophenyl)phosphino)-5-fluorophenyl)propanoic acid (6ca): Butyl 3-(2-(bis(4-fluorophenyl)phosphoryl)-5fluorophenyl) propanoate (3ca) ($0.3 \mathrm{mmol}, 138 \mathrm{mg}$) and KOH (3.0 mmol, 336 mg) were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (3:3:1) solvent mixture (6 mL) and stirred for 12 h at $60^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure and the residue was acidified with $\mathrm{HCl}(2 \mathrm{~N})$. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Then, in a 15 mL Schlenk tube the crude mixture was added to a solution of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(5 \mathrm{~mol} \%, 2.25 \mathrm{mg})$ in toluene $(1.5 \mathrm{~mL})$. The reaction mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$. Subsequently, $\mathrm{PhSiH}_{3}(1.0 \mathrm{mmol}, 108 \mathrm{mg})$ was added, the Schlenk tube was flushed with argon, sealed and the reaction mixture was stirred for 24 h at $100^{\circ} \mathrm{C}$. After that the solvent was removed by evaporation to dryness, and the crude product was purified using flash column chromatography with pentane-ethyl acetate (1:1) to afford 6ca in 63% yield (73 mg) over two steps as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.25-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.97(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~m}$, $2 \mathrm{H}), 3.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=178.2,163.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=249.6 \mathrm{~Hz}\right), 163.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $249.6 \mathrm{~Hz}), 147.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=7.4\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=27.4 \mathrm{~Hz}\right), 135.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=8.1\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=21.4 \mathrm{~Hz}\right)$, $135.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=8.4 \mathrm{~Hz}\right), 133.7\left(\mathrm{md}, J_{\mathrm{C}, \mathrm{P}}=98.7 \mathrm{~Hz}\right), 131.7\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=3.5\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=10.2 \mathrm{~Hz}\right)$, $131.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=3.1\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=9.6 \mathrm{~Hz}\right), 116.1\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=7.7\right.$ and $\left.J_{\mathrm{C}, \mathrm{F}}=21.1 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}\right.$ $=20.4 \mathrm{~Hz}), 34.74\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.9 \mathrm{~Hz}\right), 29.12\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=1.6\right.$ and $\left.J_{\mathrm{C}, \mathrm{P}}=22.0 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=-19.44(\mathrm{~s})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=-111.73(\mathrm{~s}),-111.74(\mathrm{~s})$.

(E) \boldsymbol{n}-Butyl 3-(2-(diphenylphosphoryl)phenyl)acrylate (4aa): Following the general procedure \mathbf{B} using tri-phenylphosphine oxide ($0.6 \mathrm{mmol}, 166 \mathrm{mg}$) and n-butyl acrylate ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$), 4aa was isolated in 48% yield (58 mg) as a white solid, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=8.24(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.58-$ $7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{ddd}, J=2.1,5.2$ and $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=166.0,142.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=6.0 \mathrm{~Hz}\right), 139.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.1\right.$ $\mathrm{Hz}), 133.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.3 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.3 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=104.3 \mathrm{~Hz}\right), 132.0,132.0$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=7.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.3 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.3 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.4 \mathrm{~Hz}\right)$, 121.3, 64.3, 30.6, 19.1, 13.7.
${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=30.3(\mathrm{~s})$.
MS (EI) m/z (\%) = $404\left([\mathrm{M}]^{+}, 24\right), 331(12), 303(100), 289(29), 271(19), 213(16), 165(14)$.

(E)-Ethyl 3-(2-(diphenylphosphoryl)phenyl)acrylate (4ae): Following the general procedure \mathbf{B} using tri-phenylphosphine oxide ($0.6 \mathrm{mmol}, 166 \mathrm{mg}$) and ethyl acrylate $(0.3 \mathrm{mmol}, 30 \mathrm{mg})$, 4ae in 42% yield $(47 \mathrm{mg})$ as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=8.24(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 5 \mathrm{H}), 7.58-$ $7.50(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=166.0,142.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.9 \mathrm{~Hz}\right), 139.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $7.1 \mathrm{~Hz}), 133.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.2 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.3 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=104.1 \mathrm{~Hz}\right), 132.0$, $131.9,128.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.3 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.1 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.3 \mathrm{~Hz}\right), 121.3,60.4$, 14.2.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm})=29.9(\mathrm{~s})$.
MS (EI) m/z (\%) = $376\left([\mathrm{M}]^{+}, 7\right), 331$ (4), 303 (100), 225 (11), 201 (10), 77 (32), 51 (19).

(E)-Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl)acrylate (4ba): Following the general procedure \mathbf{B} using tri-ptolylphosphine oxide ($0.6 \mathrm{mmol}, 192 \mathrm{mg}$) and n-butyl acrylate (0.3 $\mathrm{mmol}, 38 \mathrm{mg}$), 4ba was isolated in 38% yield (51 mg) as a colorless oil, after purified using flash column chromatography with pentaneethyl acetate (1:2).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=8.25(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 9 \mathrm{H}), 1.66-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=166.2,142.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}\right), 142.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $2.3 \mathrm{~Hz}), 142.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.6 \mathrm{~Hz}\right), 139.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.3 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=11.6 \mathrm{~Hz}\right), 132.0(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{P}}=10.0 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.7 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=101.5 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=12.5 \mathrm{~Hz}\right)$, $128.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=103.5 \mathrm{~Hz}\right)$, , $128.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=9.8 \mathrm{~Hz}\right), 120.9,64.2,30.7,21.6,21.6,19.1,13.8$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=30.3(\mathrm{~s})$.
HRMS (ESI) Calcd for: $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{PNa}^{+}$: 469.1909 ; found: $469.1913[\mathrm{M}+\mathrm{Na}]^{+}$.

(E)-Butyl

3-(2-(bis(4-fluorophenyl)phosphoryl)-5-
fluorophenyl)acrylate (4da): Following the general procedure B using tris(4-fluorophenyl)phosphine oxide ($0.6 \mathrm{mmol}, 199 \mathrm{mg}$) and n-butyl acrylate ($0.3 \mathrm{mmol}, 38 \mathrm{mg}$), 4da was isolated in 47% yield (64 mg) as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (1:2).
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=8.16(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.38$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=165.5,165.2\left(\mathrm{~d} J_{\mathrm{C}, \mathrm{F}}=255.8 \mathrm{~Hz}\right), 165.1\left(\mathrm{~d} J_{\mathrm{C}, \mathrm{F}}=\right.$ $255.8 \mathrm{~Hz}), 142.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}\right.$ and $\left.J_{\mathrm{C}, \mathrm{P}}=8.1 \mathrm{~Hz}\right), 140.9(\mathrm{~m}), 136.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}\right.$ and $\left.J_{\mathrm{C}, \mathrm{P}}=10.6 \mathrm{~Hz}\right), 134.4$ $\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=8.7\right.$ and $\left.J_{\mathrm{C}, \mathrm{P}}=11.0 \mathrm{~Hz}\right), 128.0\left(\mathrm{md}, J_{\mathrm{C}, \mathrm{P}}=107.9 \mathrm{~Hz}\right), 122.8,116.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=13.1\right.$, and $\left.J_{\mathrm{C}, \mathrm{F}}=21.4 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=13.2 \mathrm{~Hz}\right), 115.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{P}}=10.2\right.$, and $\left.J_{\mathrm{C}, \mathrm{F}}=22.4 \mathrm{~Hz}\right), 64.6$, 30.6, 19.1, 13.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm})=-105.62(\mathrm{~s}),-105.67(\mathrm{~s})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=27.7(\mathrm{~s})$.
MS (EI) m/z (\%) = $458\left([\mathrm{M}]^{+}, 7\right), 357(100), 261(11), 237(15), 214(12), 95(9), 77(6)$.

5. Reactivity of arylphosphine oxide versus aryl ketone

To gain more insight into the key factors which drive the chemoselectivity of the reaction between ortho-alkylation and ortho-alkenylation, we performed some additional experiments (Scheme S 1). under our conditions, the reaction between the aromatic ketone 7a and 2a gave only the ortho-alkenylated product 8aa in 62% yield, even in the presence of a large excess of acid (Scheme S1a). From an equimolar ratio of 1-(p-tolyl)ethan-1-one (7a) (2 equiv) and triphenylphosphine oxide (1a) (2 equiv) in the presence of n-butyl acrylate (1a) (1 equiv) as the coupling partner, we observed the formation of a mixture of 3aa and 8aa in a 1:4 ratio (Scheme S1b). These results suggest that the alkylation chemoselectivity did not only depend of the acid/basic media but it is also altering by the nature of the directing group.

Scheme S1. Control experiments

n-Butyl 3-(2-acetyl-5-methylphenyl)acrylate (8aa): Following the general procedure A using methyl 1-(p-tolyl)ethanone ($1.0 \mathrm{mmol}, 134 \mathrm{mg}$) and n butyl acrylate ($0.5 \mathrm{mmol}, 64 \mathrm{mg}$), 8aa was isolated in 62% yield $(80 \mathrm{mg})$ as a colorless oil, after purified using flash column chromatography with pentane-ethyl acetate (10:1).
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=8.11(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ $(\mathrm{s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=200.2,166.7,144.4,142.7,135.3,130.2$, $129.8,128.8,120.7,64.4,30.8,29.0,21.4,19.2,13.7$.
This compound is known and NMR spectrum are identical to those reported in literature. ${ }^{[9]}$

6. NMR Charts

${ }^{1}$ H NMR of Butyl 3-(2-(diphenylphosphoryl)phenyl)propanoate (3aa)

${ }^{31}$ P NMR of Butyl 3-(2-(diphenylphosphoryl)phenyl)propanoate (3aa) $\frac{7}{7}$

${ }^{13}$ C NMR of Butyl 3-(2-(diphenylphosphoryl)phenyl)propanoate(3aa)

${ }^{1}$ H NMR Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl) propanoate(3ba).

${ }^{31}$ P NMR Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl) propanoate(3ba)..

${ }^{13}$ C NMR Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl) propanoate(3ba)..

${ }^{1}$ H NMR Butyl 3-(2-(bis(4-methoxyphenyl) phosphoryl) -5-methoxy phenyl) propanoate (3ca).

${ }^{31}$ P NMR Butyl 3-(2-(bis(4-methoxyphenyl) phosphoryl) -5-methoxy phenyl) propanoate (3ca)

寿
$\stackrel{1}{1}$

${ }^{13}$ C NMR Butyl 3-(2-(bis(4-methoxyphenyl) phosphoryl) $-5-$ methoxy
phenyl) propanoate (3ca)

${ }^{1}$ H NMR of Butyl 3-(2-(bis(4-fluorophenyl) phosphoryl)-5
-fluorophenyl) propanoate (3da)

${ }^{19}$ F NMR of Butyl 3-(2-(bis(4-fluorophenyl) phosphoryl)-5
-fluorophenyl) propanoate (3da)

은

${ }^{31}$ P NMR of Butyl 3-(2-(bis(4-fluorophenyl) phosphoryl)-5
-fluorophenyl) propanoate (3da)
$\stackrel{5}{1}$

${ }^{13}$ C NMR of Butyl 3-(2-(bis(4-fluorophenyl) phosphoryl)-5
-fluorophenyl) propanoate (3da)

${ }^{1}$ H NMR of Butyl 3-(2-(benzyl(phenyl)phosphoryl) phenyl) propanoate (3ea)

${ }^{31}$ PNMR of Butyl 3-(2-(benzyl(phenyl)phosphoryl)phenyl) propanoate (3ea)

${ }^{13}$ CNMR of Butyl 3-(2-(benzyl(phenyl)phosphoryl)phenyl) propanoate (3ea)

${ }^{1}$ H NMR of Butyl 3-(2-(butyl(phenyl)phosphoryl) phenyl) propanoate (3fa)

${ }^{31}$ P NMR of Butyl 3-(2-(butyl(phenyl)phosphoryl)phenyl) propanoate (3fa)

$\frac{2}{1}$

${ }^{13}$ C NMR of Butyl 3-(2-(butyl (phenyl) phosphoryl) phenyl) propanoate (3fa)

${ }^{1}$ H NMR of Butyl 3-(2-(methoxy(phenyl) phosphoryl) phenyl) propanoate (3ga)

${ }^{31}$ P NMR of Butyl 3-(2-(methoxy(phenyl) phosphoryl) phenyl) propanoate (3ga)

${ }^{13}$ C NMR of Butyl 3-(2-(methoxy(phenyl) phosphoryl) phenyl) propanoate (3ga)

${ }^{1}$ H NMR of methyl 3-(2-(diphenylphosphoryl)phenyl)propanoate. (3ab)

${ }^{31}$ P NMR of methyl 3-(2-(diphenylphosphoryl)phenyl)propanoate. (3ab)
chang 3-197-1
${ }^{13}$ C NMR of methyl 3-(2-(diphenylphosphoryl)phenyl)propanoate. (3ab)

${ }^{1}$ H NMR of Methyl-3-(2-(benzyl(phenyl) phosphoryl) phenyl) propanoate (3eb).

${ }^{31}$ P NMR of Methyl-3-(2-(benzyl(phenyl)phosphoryl) phenyl) propanoate (3eb).

${ }^{13}$ C NMR of Methyl-3-(2-(benzyl(phenyl)phosphoryl) phenyl) propanoate (3eb).

${ }^{1}$ H NMR of 3-(2-(diphenylphosphoryl)phenyl)acrylonitrile (3ac/4ac).

${ }^{31}$ P NMR of 3-(2-(diphenylphosphoryl)phenyl)acrylonitrile (3ac/4ac).

$$
\underset{\sim}{\infty}
$$

${ }^{13}$ C NMR of 3-(2-(diphenylphosphoryl)phenyl)acrylonitrile (3ac/4ac).

${ }^{1} H$ NMR of (E)-ethyl 2-(2-(diphenylphosphoryl)phenyl)-3-phenylacrylate (3ad)

${ }^{31}$ P NMR of (E)-ethyl 2-(2-(diphenylphosphoryl)phenyl)-3-phenylacrylate (3ad)

${ }^{13}$ C NMR of (E)-ethyl 2-(2-(diphenylphosphoryl)phenyl)-3-phenylacrylate (3ad)

${ }^{1}$ H NMR of 3-(2-(diphenylphosphoryl) phenyl)propanoic acid (5aa)

${ }^{31}$ P NMR of 3-(2-(diphenylphosphoryl) phenyl) propanoic acid (5aa)

${ }^{13}$ C NMR of 3-(2-(diphenylphosphoryl)phenyl)propanoic acid (5aa)

${ }^{1}$ H NMR of 3-(2-(diphenylphosphino) phenyl) propanoic acid (6aa)

${ }^{31} \mathbf{P}$ NMR of 3-(2-(diphenylphosphino)phenyl)propanoic acid (6aa)

${ }^{13}$ C NMR of 3-(2-(diphenylphosphino) phenyl) propanoic acid (6aa)

${ }^{1}$ H NMR of 3-(2-(di-p-tolylphosphino)-5-methylphenyl)propanoic acid (6ba)

${ }^{31}$ P NMR of 3-(2-(di-p-tolylphosphino)-5-methylphenyl)propanoic acid (6ba)

${ }^{13}$ C NMR of 3-(2-(di-p-tolylphosphino)-5-methylphenyl)propanoic acid (6ba)

${ }^{1}$ H NMR of 3-(2-(bis(4-fluorophenyl)phosphino)-5-fluorophenyl)propanoic acid (6ca)

3-(2-(bis(4-fluorophenyl)phosphino)-5-fluorophenyl)propanoic acid (6ca)

3-(2-(bis(4-fluorophenyl)phosphino)-5-fluorophenyl)propanoic acid (6ca)

3-(2-(bis(4-fluorophenyl)phosphino)-5-fluorophenyl)propanoic acid (6ca)

${ }^{1}$ H NMR of Butyl 3-(2-(diphenylphosphoryl) phenyl) acrylate (4aa).

${ }^{31}$ P NMR of Butyl 3-(2-(diphenylphosphoryl)phenyl) acrylate (4aa).

${ }^{13}$ C NMR of Butyl 3-(2-(diphenylphosphoryl) phenyl) acrylate (4aa).

${ }^{1}$ H NMR of (E)-Ethyl 3-(2-(diphenylphosphoryl)phenyl)acrylate (4ae)

${ }^{31}$ P NMR of (E)-Ethyl 3-(2-(diphenylphosphoryl)phenyl)acrylate (4ae)

${ }^{13}$ C NMR of (E)-Ethyl 3-(2-(diphenylphosphoryl)phenyl)acrylate (4ae)

${ }^{1}$ H NMR of (E)-Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl)acrylate (4ba)

${ }^{31}$ P NMR of (E)-Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl)acrylate (4ba)

${ }^{13}$ C NMR of (E)-Butyl 3-(2-(di-p-tolylphosphoryl)-5-methylphenyl)acrylate (4ba)

${ }^{1}$ H NMR of (E)-butyl 3-(2-(bis(4-fluorophenyl)phosphoryl)-5-fluorophenyl)acrylate (4da)

${ }^{19}$ FNMR of (E)-butyl 3-(2-(bis(4-fluorophenyl)phosphoryl)-5-fluorophenyl)acrylate (4da)

${ }^{31}$ P NMR of (E)-butyl 3-(2-(bis(4-fluorophenyl)phosphoryl)-5-fluorophenyl)acrylate (4da)

${ }^{13}$ C NMR of (E)-butyl 3-(2-(bis(4-fluorophenyl)phosphoryl)-5-fluorophenyl)acrylate (4da)

${ }^{1}$ H NMR of Butyl 3-(2-acetyl-5-methylphenyl)acrylate (8aa)

${ }^{13}$ C NMR of Butyl 3-(2-acetyl-5-methylphenyl)acrylate (8aa)

7. References

[1] M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, S. Ittel, W. Nickerson, in Inorg. Synth., John Wiley \& Sons, Inc., 2007, pp. 74-78.
[2] R. Berrino, S. Cacchi, G. Fabrizi, A. Goggiamani, P. Stabile, Org. Biomol. Chem. 2010, 8, 4518-4520.
[3] F. Däbritz, A. Jäger, I. Bauer, Eur. J. Org. Chem. 2008, 2008, 5571-5576.
[4] N. Yamagiwa, J. Tian, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 3413-3422.
[5] R. M. Denton, J. An, B. Adeniran, A. J. Blake, W. Lewis, A. M. Poulton, J. Org. Chem. 2011, 76, 6749-6767.
[6] W. Dabkowski, A. Ozarek, S. Olejniczak, M. Cypryk, J. Chojnowski, J. Michalski, Chem. Eur. J. 2009, 15, 1747-1756.
[7] J. N. Ngwendson, C. M. Schultze, J. W. Bollinger, A. Banerjee, Can. J. Chem. 2008, 86, 668-675.
[8] W. Goldeman, T. K. Olszewski, B. Boduszek, W. Sawka-Dobrowolska, Tetrahedron 2006, 62, 4506-4518.
[9] K. Padala, M. Jeganmohan, Org. Lett. 2011, 13, 6144-6147.

