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Introduction

Weather and climatic conditions have a great influence on the population dynamics of most species [START_REF] Kingsolver | Weather and the population dynamics of insects: integrating physiological and population ecology[END_REF][START_REF] Saether | Climate influences on avian population dynamics[END_REF][START_REF] Forrester | A review of the population dynamics of mule deer and black-tailed deer Odocoileus hemionus in North America[END_REF]. Climatic factors directly impact organisms, especially in cases of extreme climatic events [START_REF] Şekercioğlu | The effects of climate change on tropical birds[END_REF][START_REF] Leigh | Ecological effects of extreme climatic events on riverine ecosystems: insights from Australia[END_REF]. They also affect species' dynamics by altering their environment [START_REF] Peterman | Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics[END_REF][START_REF] Akesson | Flying with the winds: differential migration strategies in relation to winds in moth and songbirds[END_REF][START_REF] Hasan | Temperature-dependent development and demography of Zygogramma bicolorata (Coleoptera: Chrysomelidae) on Parthenium hysterophorus[END_REF][START_REF] Ceglar | Impact of meteorological drivers on regional interannual crop yield variability in France[END_REF]). Because of their great impact on species at the bottom of the food chain, weather conditions are also known to have a drastic impact on food availability [START_REF] White | The role of food, weather and climate in limiting the abundance of animals[END_REF]. For these reasons, the abundance and distributions of species are expected to be altered in the current context of global climate change [START_REF] Thomas | Extinction risk from climate change[END_REF].

In this context, understanding the impact of climatic factors on population dynamics and demography appears to be fundamental to interpret or predict long term population trends [START_REF] Mclean | Predicting when climate-driven phenotypic change affects population dynamics[END_REF][START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF]. This topic has been studied for many species, generally using long-term observed abundance or other population dynamics metrics based on count or capture data at one particular moment in the life cycle of the species. These data are then modelled as a function of weather, considering mainly temperature and rainfall, but sometimes including other variables [START_REF] Bruggeman | Dynamics of a recovering arctic bird population: the importance of climate, density dependence, and site quality[END_REF][START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF][START_REF] Bleho | Effects of weather and land management on the western prairie fringed-orchid (Platanthera praeclara) at the northern limit of its range in Manitoba, Canada[END_REF][START_REF] Kanno | Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics[END_REF][START_REF] Dugger | The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls[END_REF]. Obviously, variables included in the model directly depend on the considered species biology, but more surprisingly, the temporal resolution considered is also highly variable. The latter citations correspond to recent studies that deal with various taxa, and all of them have used climatic databases offering a monthly (if not daily) resolution. Monthly resolution involves a great number of climatic variables. In a few cases, the number of variables were reduced by pre-selecting months based on preliminary analysis [START_REF] Parent | Northern bobwhite abundance in relation to precipitation and landscape structure: Mapping Northern bobwhite[END_REF] or on expert knowledge [START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF]. Most studies have aggregated climatic data to correspond to climatic seasons (varying from two to six month periods) that are consistent with the life cycle of the species of interest [START_REF] Bruggeman | Dynamics of a recovering arctic bird population: the importance of climate, density dependence, and site quality[END_REF][START_REF] Bleho | Effects of weather and land management on the western prairie fringed-orchid (Platanthera praeclara) at the northern limit of its range in Manitoba, Canada[END_REF][START_REF] Ciuti | Predicting mule deer recruitment from climate oscillations for harvest management on the northern Great Plains: Predicting deer recruitment from climate indices[END_REF][START_REF] Kanno | Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics[END_REF][START_REF] Dugger | The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls[END_REF][START_REF] Masciocchi | Local dynamics of worker activity of the invasive Vespula germanica and V. vulgaris (Hymenoptera: Vespidae) wasps in Argentina: Activity fluctuations of Vespula spp. in Argentina[END_REF][START_REF] Townsend | The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird[END_REF]. Occasionally, studies even considered these data by averaging them over a year [START_REF] Nouvellet | A Multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the european badger (Meles meles)[END_REF]. Another option is to mix different time resolutions in the same models, such as in BIOCLIM derived models, which include 19 variables that are aggregated on a yearly, seasonal or monthly (extreme month) basis and are now commonly used to predict species distributions [START_REF] Barbet-Massin | A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling[END_REF][START_REF] Toro | Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests[END_REF][START_REF] Beltramino | Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna[END_REF][START_REF] Ray | Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socioeconomic factors[END_REF]. The absence of clearly defined criteria to select the temporal resolution is problematic (van de Pol et al. 2016), particularly for population dynamic processes, because the temporal resolution considered when studying these processes can greatly affect the outcome of statistical or predictive models [START_REF] Radchuk | Appropriate resolution in time and model structure for population viability analysis: Insights from a butterfly metapopulation[END_REF].

Bat populations are particularly sensitive to climatic variations, and are recognized as valuable indicators of climate change [START_REF] Jones | Carpe noctem: the importance of bats as bioindicators[END_REF]. For example, in temperate regions, cold temperature will greatly reduce their food availability, e.g. the abundance and activity level of insect prey [START_REF] Hoying | Variation in size at birth and post-natal growth in the insectivorous bat Pipistrellus subflavus (Chiroptera: Vespertilionidae)[END_REF][START_REF] Ciechanowski | Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter[END_REF]. Inclement weather, including heavy rain, will also increase the energetic cost for flying and maintaining euthermia, and will reduce the efficiency of echolocation (Reiter 2004a;[START_REF] Burles | Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest[END_REF].

Furthermore, numerous studies have demonstrated the impact of climatic conditions on the activity, survival, and reproductive success of bats [START_REF] Adams | Water availability and successful lactation by bats as related to climate change in arid regions of western North America[END_REF][START_REF] Burles | Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest[END_REF][START_REF] Schorcht | Variation of adult survival drives population dynamics in a migrating forest bat[END_REF][START_REF] Frick | Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus[END_REF][START_REF] Adams | Bat reproduction declines when conditions mimic climate change projections for western North America[END_REF][START_REF] Amorim | Factors influencing bat activity and mortality at a wind farm in the mediterranean Region[END_REF][START_REF] Lučan | Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat: Climate change and reproduction of a temperate bat[END_REF][START_REF] Amorim | Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis)[END_REF]. Climate change during the last decades has already caused a shift in the distributional range of some bats [START_REF] Uhrin | Status of Savi's pipistrelle Hypsugo savii (Chiroptera) and range expansion in Central and south-eastern Europe: a review[END_REF][START_REF] Wu | Detection and attribution of the effects of climate change on bat distributions over the last 50 years[END_REF], a process that will probably be exacerbated during the next decades [START_REF] Rebelo | Predicted impact of climate change on European bats in relation to their biogeographic patterns[END_REF]).

Studies of bat population dynamics usually take into account weather as one of the fundamental explanatory variables. Those studies are mainly based on counts or captures made at one particular moment in the life cycle, such as during parturition or the hibernation period [START_REF] Grindal | The influence of precipitation on reproduction by Myotis bats in British Columbia[END_REF][START_REF] Zahn | Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis[END_REF][START_REF] Hoyle | Mark-recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population[END_REF][START_REF] López-Roig | Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus)[END_REF][START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF]. Climatic factors usually include rainfall and temperature, which can be the daily mean [START_REF] Zahn | Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis[END_REF][START_REF] Schorcht | Variation of adult survival drives population dynamics in a migrating forest bat[END_REF][START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF] or minimum temperature [START_REF] Grindal | The influence of precipitation on reproduction by Myotis bats in British Columbia[END_REF][START_REF] Hoyle | Mark-recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population[END_REF][START_REF] López-Roig | Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus)[END_REF]. Some other variables, such as drought severity, winter severity or winter duration, can also be included, using different proxies [START_REF] Schorcht | Variation of adult survival drives population dynamics in a migrating forest bat[END_REF][START_REF] López-Roig | Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus)[END_REF][START_REF] Amorim | Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis)[END_REF][START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF]. Once again, the time resolution of these variables differs between studies, and climatic factors can be considered for specific months [START_REF] Grindal | The influence of precipitation on reproduction by Myotis bats in British Columbia[END_REF][START_REF] Zahn | Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis[END_REF][START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF], averaged over seasons consistent with the species biology [START_REF] Schorcht | Variation of adult survival drives population dynamics in a migrating forest bat[END_REF][START_REF] Frick | Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus[END_REF][START_REF] Adams | Bat reproduction declines when conditions mimic climate change projections for western North America[END_REF][START_REF] López-Roig | Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus)[END_REF], or averaged over even longer periods [START_REF] Hoyle | Mark-recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population[END_REF][START_REF] Amorim | Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis)[END_REF].

The lesser horseshoe bat (Rhinolophus hipposideros) is a small insectivorous bat of recognized conservation concern [START_REF] Bontadina | The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: present status and research recommendations[END_REF]. This bat forages exclusively in woodlands, preferentially in dense areas [START_REF] Bontadina | Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland[END_REF]Reiter 2004b), and is already considered as a good indicator of biodiversity loss [START_REF] Haysom | Climatic conditions cause complex patterns of covariation between demographic traits in a long-lived raptor[END_REF]. After the last glaciation, this species expanded its range from southern Europe to northern parts of Europe [START_REF] Dool | Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers[END_REF], into environments with colder and less stable climate [START_REF] Bontadina | The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: present status and research recommendations[END_REF]. In spring, females leave the underground sites used as hibernacula and gather in maternity roosts, which are generally in warmer places, like attics, and the parturition and rearing of offspring takes place during June and July. Mating then occurs principally between the end of September and the beginning of the hibernation period [START_REF] Gaisler | Reproduction in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros Bechstein, 1800)[END_REF]. The life cycle and activity of R. hipposideros are particularly affected by weather conditions. This bat prefers higher temperature for its maternity roost than other attic dwelling species [START_REF] Kayikcioglu | High temperatures and the use of satellite roosts in Rhinolophus hipposideros[END_REF]). However, if available, they will switch to colder satellite roosts if temperatures become too high during summer. These observations suggest direct effects of weather on the thermoregulation and energy budget [START_REF] Kayikcioglu | High temperatures and the use of satellite roosts in Rhinolophus hipposideros[END_REF][START_REF] Seckerdieck | Alternative use of two different roost types by a maternity colony of the lesser horseshoe bat (Rhinolophus hipposideros)[END_REF]. Inclement weather (i.e. cool and wet) before parturition generally delays birth and decreases the average size at birth and growth rate of the juveniles. These effects are explained by energetic costs, implying more torpor and a slowed metabolism for pregnant females, as well as by decreased food availability (Reiter 2004a). However, the global effect of weather conditions on the overall population dynamics of R. hipposideros, crucial information for understanding population trends, is not documented [START_REF] Bontadina | The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: present status and research recommendations[END_REF].

As climatic impact can greatly differ depending on the level of response considered [START_REF] Mclean | Predicting when climate-driven phenotypic change affects population dynamics[END_REF], we investigated two proxies of the dynamics of R. hipposideros colonies: colony size, which is the result of the dynamics of colonies, and fecundity, one parameter that drives these dynamics. In order to understand the impact of climatic conditions on these parameters, we used count data from 94 colonies (Brittany, France) collected by local associations during fifteen years. These count data offer reliable estimates of colony size as confirmed by independent non-invasive Capture-Mark Recapture methods [START_REF] Puechmaille | Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session: Non-invasive capture-markrecapture[END_REF]. Brittany populations are at the species range margin, and thus not at their optimal climatic conditions, a situation where population dynamics are likely to be strongly influenced by the weather [START_REF] Thomas | Increased fluctuations of butterfly populations towards the northern edges of species' ranges[END_REF][START_REF] Geber | To the edge: studies of species' range limits[END_REF][START_REF] Bateman | Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica)[END_REF].

Furthermore, this region is under a temperate climate greatly influenced by oceanic conditions, and the weather can be very variable during and between years [START_REF] Lamy | Impact des sécheresses en bretagne sur le bilan hydrique: modélisation à partir du climat d'années passées -23ème Colloque de l[END_REF]. Our study had two objectives: 1) investigating the temporal resolution at which climatic variables should be considered when assessing the population dynamics of a bat species at a regional scale and 2) improving our understanding of the climate impact on a species of great conservation concern. Because most climatic databases facilitate access to data with at least a monthly resolution, we considered a monthly resolution, a several months resolution (corresponding to life cycle periods that are suitable for R. hipposideros), a yearly resolution, and also mixed temporal resolutions that correspond to commonly used BIOCLIM variables to explain variability in colony size and fecundity in R. hipposideros. We hypothesized that finer temporal resolution would better grasp weather effects.

Material and Methods

Monitoring of colonies

From 2000 to 2014, a total of 94 R. hipposideros maternity colonies were monitored in Brittany (Fig. 1). Not every colony was known in 2000, and, in some cases, monitoring was not possible due to unforeseen circumstances (blocked access to the bats or the person in charge of counting the bats). Thus, the number of monitored years per colony ranged from 3 to 14 (7.73 on average). This monitoring consisted of one or two counts during late June or early July, that is, during the period when newborns are easily distinguished from adults in Brittany. When multiple counts were carried out in a given year, only the largest one was considered. Adults and juveniles were counted separately: for each year, the census size of the colony was estimated by the number of adults, and the fecundity by the number of juveniles divided by the number of adults.

Colony size distribution is expected to correspond to a Poisson or a negative binomial distribution (O'Hara and Kotze 2010). Some colonies disappeared over the years, probably for reasons unrelated to the climatic variables considered: thus, we also considered zeroinflated Poisson and zero-inflated negative binomial distributions [START_REF] Zuur | Zero-truncated and zero-inflated models for count data[END_REF]. We tested which of these four distributions corresponded to our demographic data by using the maximum likelihood method implemented in the R package fitdistrplus (Delignette-Muller and Dutang 2014). Fecundity was considered to follow a normal distribution. Generalized linear (count data) and linear (fecundity) mixed models together with Wald chi-square tests were used to test whether bat counts and fecundity varied between years. Colonies were considered as a random factor in the models, so as to not consider the impact of roost quality and environment. We then removed the random effects to plot the deviance residuals against the theoretical quantiles (QQ-plots) to check the assumptions of our models and detect possible outliers in the colonies. These tests, as well as the analyses described below, were carried out in R version 3.2.2 (R Development Core Team 2015).

Climatic data

Minimum temperature, mean temperature, and precipitation were recorded monthly at 16 meteorological stations in Brittany (Météo-France data, https://publitheque.meteo.fr) since the beginning of the monitoring. Temperature directly influences the bats energy budget and their cost for homeothermy, but the most significant impact of temperature may also come from a decrease under particular thresholds: temperature low enough can induce torpor in bats or inhibit the flight of insects, needed for most bats foraging. Thus, both mean and minimum temperature have been considered in studies interested in the effect of climatic variables on bats (Reiter 2004a;[START_REF] Burles | Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest[END_REF][START_REF] López-Roig | Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus)[END_REF][START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF], and we decided to consider both of them here. Temperature and especially precipitation exhibited a great variability during the counting period (Fig. S1). We performed an ordinary kriging to obtain these climatic data for each colony by using the package "gstats", function "krige" [START_REF] Pebesma | Multivariable geostatistics in S: the gstat package[END_REF]). Brittany's weather is spatially and temporally variable. We therefore performed a local kriging by taking into account only the three closest stations. Climatic information for each counting was then treated in three different ways.

Firstly, each month of the previous life cycle (from August to July) was considered. These data are thereafter named "monthly data". Secondly, we averaged the climatic information over longer periods corresponding to the mating period (September-November), hibernation (December-February), the spring transition (March-May) and parturition (June-July) periods.

From now on, this temporal resolution is called "life cycle data". Thirdly, we averaged climatic data over the previous year, and refer to this temporal resolution as the "yearly data".

Finally, we considered 17 of the 19 bioclimatic variables (Table 3) by computing our dataset the same way as ANUCLIM [START_REF] Xu | New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package[END_REF] with the help of the R package climates [START_REF] Van Der Wal | Climates: methods for working with weather & climate[END_REF]) and refer to these as BIOCLIM data. The variable bio7 correspond to bio5 minus bio6, and caused linear combinations in our dataset: we thus excluded bio7, which is less informative than the two other variables, to avoid rank-deficiency in our models. The variables bio 2 and bio3 caused multiple correlations when in the same model (

), and we discarded the less informative one, bio3.

Explanatory variables were centred and scaled prior to model fitting.

Model averaging

Model averaging was performed to estimate the effect of climatic variables on colony size and fecundity. We created models explaining the variation in colony size (GLMM) and fecundity (LMM) depending on the climatic variables, by considering the different temporal resolutions. For monthly and life cycle data, models were computed separately for average temperatures, minimum temperatures, and precipitation. Two bioclimatic models were built considering separately temperature (BIOCLIM 1-11) and precipitation variables (BIOCLIM 12-19) to ease comparison with other models. Colonies were considered as a random factor in the models, and there were no temporal autocorrelations in those models (as explored using models residuals via the "acf" R function). Correlations between fixed effects were checked.

Only bio4 and bio11 as well as bio13 and bio15 were highly correlated (r>0.8).

Full models were then used as bases in the glmulti R package to obtain every possible combination of explanatory variables (without interaction) and order them by AIC [START_REF] Calcagno | glmulti: an R package for easy automated model selection with (generalized) linear models[END_REF]. Models including highly correlated variables (r>0.8) were discarded, and the package glmulti was then used to perform model averaging by calculating the Akaike weight of each model within 2∆AIC of the best model [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]. The modelaveraged regression coefficients of the predictors and their 95% confidence intervals (CI)

were then calculated based on the cumulative weights of the models including the variable [START_REF] Calcagno | glmulti: an R package for easy automated model selection with (generalized) linear models[END_REF]). Explanatory variables were then considered as having a meaningful positive or negative impact on the response variable if their 95% confidence interval did not include zero (Lankinen et al. 2016). The significance of yearly models, containing only one fixed effect (mean temperature, minimum temperature, or precipitation) and one random effect (colonies) were tested with Wald chi-square tests.

Model averaging with all temperature and precipitation monthly variables considered together would require very high computing power and memory (more than 16 million models to be evaluated and compared), especially for the colony size data and its more elaborate distributions. Thus, we created the mixed models that incorporated only significant predictors from previous model averaging (with either the minimum or average temperature, depending of the AIC) and computed their AIC and R² (marginal and conditional -Nakagawa and Schielzeth 2013) to determine which kind of predictor and which temporal resolution best explained variations in colony size and fecundity of R. hipposideros colonies in Brittany. AIC was chosen over other criteria such as BIC because it is more appropriate for an exploratory analysis investigating which predictors could give the best description of a very complex system, whereas BIC is more performant in confirmatory analysis or hypothesis testing [START_REF] Aho | Model selection for ecologists: the worldviews of AIC and BIC[END_REF].

Results

Variation of colony size and fecundity over the years

Colony size data had a better fit with the zero-inflated negative binomial distribution (AIC : 6323.29), followed by the negative binomial, the zero-inflated Poisson and the Poisson distribution (with AIC of 6326.31, 21167.65 and 22596.92, respectively). Thus, we performed GLMMs with the zero-inflated negative binomial distribution. Both colony size and fecundity varied over the years (Wald chi-square test; p = 0.002 and p < 0.001 respectively).

Impact of climate

Significant predictors were found for most monthly and life cycle models for both colony size (Table 1) and fecundity (Table 2). Annual climatic factors were never significant (Wald chi-square test; p>0.15 in all cases).

Comparisons of predictor categories and time resolutions showed that the models with the lowest AIC were those including monthly significant predictors for both colony size and The AIC of the life cycle models were always larger than the corresponding monthly models (> 7 ∆AIC). Model averaging on life cycle data was not able to give any significant predictor when considering the impact of average or minimum temperature on colony size.

Only precipitation during parturition time was found to be significant for colony size at the life cycle temporal scale. When looking at fecundity, the minimum temperature during spring transition and precipitation during mating period were significant. Yearly models were the models with the highest AIC (Table 1 and2), and did not outperform the null model in most cases (AIC : 5755.42 and -37.15 for the null model of respectively the colony size and the fecundity dataset.)

There was no significant BIOCLIM predictor for colony size, but four variables were significant for fecundity (Table 3). Two factors positively affected fecundity: minimum temperature of the coldest month and precipitation of the wettest quarter. Annual precipitation and precipitation seasonality negatively impacted fecundity. The AIC of models built with these significant predictors were higher than those of monthly and life-cycle models.

Models with significant temperature (minimum for fecundity and average for colony size) and precipitation predictors were computed for each temporal resolution, as well as a model containing every bioclimatic predictor which was significant for both colony size and fecundity. Once again, the models with the lowest AIC were the monthly models, and the models with the highest AIC were yearly models, whilst those with life cycle and bioclimatic models were intermediate. Marginal R² [START_REF] Nakagawa | A general and simple method for obtaining R 2 from generalized linear mixed-effects models[END_REF] showed that the fixed effect of monthly models explained 0.9% and 5.3% of variability for colony size and fecundity, respectively, and ranking of marginal R² was congruent with the AIC ranking (Table 4).

Discussion

Colony size and fecundity varied between years and between colonies. Exploring whether these variations could be explained by climatic factors, we showed that fine temporal resolution climatic models have superior explanatory power compared to temporally coarse ones. These models reveal that climatic variables impact R. hipposideros population dynamics at critical periods, with more precipitation having significant and opposite impacts depending on the time of year, and increased temperatures having a positive impact.

Temporal resolution of weather impact

Life cycle data correspond to meteorological data averaged over specific periods built upon the biology and life cycle of species. These averages are commonly used in studies interested in exploring climatic impacts on species demographic dynamics. For R.

hipposideros, the periods were chosen according to bibliography and expert knowledge.

Using AIC selection, we showed that abiotic factors calculated with monthly resolution better predicted the R. hipposideros colony size and fecundity in Brittany compared to the factors calculated with coarser resolution. These results can be explained by the great climate variability observed between months, especially for precipitation (Fig. S1). Our results also suggest that the same variable can have either positive or negative effects depending on the period of the year. This implies that in regions like Brittany, population dynamic processes are mainly dependent on critical periods which are shorter than life cycle periods. Those critical periods are supposedly highly dependent on the interaction between the species biology and the local climate.

One could argue that comparisons of models using AIC tend to favour complex models [START_REF] Link | Model weights and the foundations of multimodel inference[END_REF]. We however did not observe this when computing AIC for full models that included all variables (both non-significant and significant predictors, data not shown). The use of model averaging instead of other approaches such as stepwise AIC also allowed us to only consider significant predictors and limits bias towards over-complex models [START_REF] Lukacs | Model selection bias and Freedman's paradox[END_REF]. Besides providing estimates and confidence intervals, model averaging also measures the importance of each variable, based on the AIC of the models where they were included, the so called "sum of weight". The sum of weight of each significant predictor in our study was superior to 0.95 (data not shown), further supporting the importance of these variables in explaining variations in colony size and fecundity in the lesser horseshoe bat [START_REF] Giam | Quantifying variable importance in a multimodel inference framework[END_REF].

Considering all the models which are at 2 ∆AIC from the best model is a common practice in model averaging, but it has been argued that even models below this threshold should be included in the analysis, and that being too stringent could exclude significant variables [START_REF] Burnham | AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons[END_REF]). In the case of our results, monthly data gave still better predictors than life cycle data when we extended the threshold until 7 ∆AIC. However, it caused the disappearance of some significant variables instead of the appearance of new ones (see supplementary materials, Tables S1 andS2). Multicollinearity in the averaged models was suspected, but excluding all the models with Variance Inflation Factors higher than 2 did not change the results (data not shown). The disappearance of significant variables can be due to the fact that we considered every month or period of the year without any a priori, and thus probably included some non-relevant variables. Increasing the threshold to 7 ∆AIC led to the inclusion of poor models , which are known to impact the results and increase confidence intervals around effect sizes [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]. Indeed, models including significant predictors obtained with 2 ∆AIC had lower AIC than models including significant predictors obtained with 7 ∆AIC (compare Tables 1 to S1 and2 to S2). Thus, we only considered the 2 ∆AIC results in the following discussion.

Depending on climate variability, averaging weather variables over long periods could result in the concealment or misidentification of essential impacts on population dynamics.

Comparisons between climate variables averaged yearly or over shorter periods already showed that short-term climatic conditions are better at characterising population dynamics [START_REF] Gedir | Effects of climate change on long-term population growth of pronghorn in an arid environment[END_REF]. This was also shown in mechanistic models, which in contrast with our correlative approach directly model the relationship between individual traits and the environment. Those models generally use finer temporal scale resolution than correlative models, and it has been shown that reducing the environmental data to a daily resolution permitted a better understanding of environmental impact [START_REF] Kearney | Biomechanics meets the ecological niche: the importance of temporal data resolution[END_REF]. Our results

suggest that even periods of several-months which are consistent with the life cycle of the species, and which are commonly used in explanatory correlative studies, could be too long to really grasp the effect of climate on species. Likewise, the now widely used BIOCLIM variables [START_REF] Barbet-Massin | A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling[END_REF][START_REF] Toro | Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests[END_REF][START_REF] Beltramino | Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna[END_REF][START_REF] Ray | Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socioeconomic factors[END_REF] were far less predictive than monthly variables, and did not result in better models than our life cycle variables. Interestingly though, BIOCLIM variables included variables that were not present in the other models, such as precipitation seasonality that appeared to significantly explain fecundity.

Studies interested in the impact of climate on demographic parameters would therefore greatly benefit from considering explanatory variables with fine temporal resolution (e.g. monthly). One could argue that considering a short temporal resolution implies multiplying the number of variables used in those models. One solution could be to only consider a few months based on the species biology [START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF], but the best way might be to select the most relevant predictors by statistical means before performing other analyses [START_REF] Parent | Northern bobwhite abundance in relation to precipitation and landscape structure: Mapping Northern bobwhite[END_REF][START_REF] Van De Pol | Identifying the best climatic predictors in ecology and evolution[END_REF]. To this end, model averaging is an ideal tool for selecting significant predictors. A recently released R package, climwin, is also a welldesigned tool to address the question of temporal resolution. Though it allows a great flexibility to easily detect the best time window based on AIC comparisons, it is not well-optimized for detecting multiple effect of the same variable (van de Pol et al. 2016). Our example demonstrates that situations may include multiple effects of the same variable, and we advocate the use of alternative and complementary tools to understand how species respond to environmental variation, which is one of the main challenges when the aim is to predict the future of biodiversity [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF].

Indeed, temporal resolution is also an important feature when predicting the impact of future climate change on species distribution, a topic which has received increasing interest in the scientific community. If global or regional climate change are generally considered on a yearly (or coarser temporal) basis when it comes to prediction [START_REF] Turner | Predicting across scales: theory development and testing[END_REF]), coarse temporal resolution will fail to grasp the heterogeneity of responses and could substantially alter the outcome of population viability predictions under temperature change scenarios [START_REF] Radchuk | Appropriate resolution in time and model structure for population viability analysis: Insights from a butterfly metapopulation[END_REF]. Reducing the temporal resolution for species distribution models is particularly important when dealing with microclimate [START_REF] Kearney | Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges[END_REF]. The future species distribution of European bats, including R. hipposideros, has been predicted in a recent study based on climate variables averaged over 30 years [START_REF] Rebelo | Predicted impact of climate change on European bats in relation to their biogeographic patterns[END_REF]). This pooling is understandable given the number of species, and the prediction time span (2050 and 2090), but the impact of temporal resolution on these models has not been, to our knowledge, deeply investigated. Despite the fact that the processes considered in this study are not directly related to range distribution, it would be interesting to test different temporal resolutions when conducting distribution modelling for species that experience highly variable climatic conditions like R. hipposideros.

Impact of weather on R. hipposideros

R. hipposideros colony size and fecundity significantly varied between years. Variances explained by the fixed effect of our models were low, especially for the colony size models, but the variance explained by the fecundity model was within the range of variance usually explained by most ecology models [START_REF] Møller | How much variance can be explained by ecologists and evolutionary biologists?[END_REF]. In a study on a pipistrelle bat population, [START_REF] Kerbiriou | Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum[END_REF] have shown that the variance of meaningful environmental variables (including climatic variables) could be drastically reduced (to 1%) because of intrinsic demographic trends. Additionally, although R. hipposideros is a rather sedentary species [START_REF] Dool | The effects of human-mediated habitat fragmentation on a sedentary woodland-associated species (Rhinolophus hipposideros) at its range margin[END_REF], we do not consider emigration or immigration which could influence the colony size besides the effect of climate . Thermal isolation of the roosts/hibernacula could also modify the impact of the ambient temperature during summer or winter. Even though we cannot predict which part of the environmental variance those variables explain [START_REF] Saether | Population dynamical consequences of climate change for a small temperate songbird[END_REF], our results nevertheless pinpoint mechanisms by which climatic factors play a role in the inter-annual variation of colony size and fecundity of R.

hipposideros.

Precipitation was the climatic factor that best explained the variation in colony size.

Rainfall directly impacts bats by increasing the energetic cost of flight and homeothermy and by making echolocation less efficient, but also indirectly by acting on insect abundance and hence on food availability [START_REF] Grindal | The influence of precipitation on reproduction by Myotis bats in British Columbia[END_REF][START_REF] Frick | Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus[END_REF][START_REF] Voigt | Rain increases the energy cost of bat flight[END_REF]. If a greater effect of the precipitation on bats compared to temperature has been observed in warmer climates [START_REF] Hoyle | Mark-recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population[END_REF][START_REF] Frick | Climate and weather impact timing of emergence of bats[END_REF], this was unexpected for European insectivorous bats [START_REF] Rebelo | Predicted impact of climate change on European bats in relation to their biogeographic patterns[END_REF]). This could be explained by the greater variability of precipitation in Brittany (Fig. S1) that would have increased the support for this variable in our models [START_REF] Frick | Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus[END_REF]).

An interesting result is that depending on the month and the demographic variable considered, precipitation had a positive or a negative impact. If the ambiguous impact of rain on bats, depending on region and time, has already been reported [START_REF] Frick | Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus[END_REF][START_REF] Lučan | Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat: Climate change and reproduction of a temperate bat[END_REF]), this study is to our knowledge, the first where precipitation is shown to have significant and opposite impacts on the same bat population depending on the time of the year. The impact of precipitation on the colony size was negative in October but positive in June. Precipitation impact on bat population dynamics differs depending on the timing of precipitation [START_REF] Frick | Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus[END_REF], either negatively by increasing the energy cost for foraging [START_REF] Voigt | Rain increases the energy cost of bat flight[END_REF]) and decreasing the efficiency of echolocation [START_REF] Griffin | The importance of atmospheric attenuation for the echolocation of bats (Chiroptera)[END_REF], or positively by increasing insect abundance in dryer periods [START_REF] Williams | Changes in insect populations in the field in relation to preceding weather conditions[END_REF]. Opposite effects of the same factor, caused by spatial or temporal variability, has already been observed in a wide range of species [START_REF] Spiller | Climatic control of trophic interaction strength: the effect of lizards on spiders[END_REF][START_REF] Satterthwaite | Linking climate variability, productivity and stress to demography in a long-lived seabird[END_REF][START_REF] Metz | Spatial and temporal aridity gradients provide poor proxies for plant-plant interactions under climate change: a large-scale experiment[END_REF], but these results highlight the necessity to have the finest temporal resolution possible to enhance our understanding of the impact of climatic factors. Thus, it seems that precipitation impact can be highly variable in Brittany, with an overall negative effect except during summer, which is the driest period. The positive impact of rain during October on fecundity is more surprising given that it has the opposite effect on colony size. Opposite climate or environmental effects on survival and fecundity have already been observed in other species such as emperor penguins [START_REF] Barbraud | Emperor penguins and climate change[END_REF], Eurasian oystercatchers (Van de [START_REF] Van De Pol | Effects of climate change and variability on population dynamics in a long-lived shorebird[END_REF] or goshawks (Herfindal et al. 2015). Those results signal a complex pattern of co-variation that would need further investigation and a better understanding of the underlying mechanisms.

Low temperatures can influence bat survival by directly increasing energetic cost for homeothermy, but also by reducing insect activity and so food availability (Reiter 2004a;[START_REF] Burles | Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest[END_REF]). The colony size in R. hipposideros was positively impacted by higher temperatures during the period when individuals return to their maternity roosts and hibernacula (May and November, respectively). We can thus hypothesize that the temperature of these months would strongly impact the bats' energy budget for parturition and hibernation.

Because the flight of most insects is inhibited under some threshold temperature [START_REF] Taylor | Analysis of the effect of temperature on insects in flight[END_REF], it is more impacted by minimum than average temperatures . A stronger influence of the minimum temperature than of average temperature on fecundity of R.

hipposideros suggests that this process depends on food availability at some critical periods.

April seems to be the key month regarding fecundity. Inclement weather, e.g. cold and rainy, during the early foetal stage, is known to cause abortion or resorption of embryos in bats [START_REF] Grindal | The influence of precipitation on reproduction by Myotis bats in British Columbia[END_REF][START_REF] Lučan | Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat: Climate change and reproduction of a temperate bat[END_REF]) which could explain the observed negative impact of precipitation and the positive impact of minimum temperature in April on fecundity. The impact of temperature during July, the lactating period in Brittany, is also not surprising, because a cold month is expected to reduce the survival rate of juveniles, diminishing reproductive success (Reiter 2004a;[START_REF] Burles | Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest[END_REF].

Results based on BIOCLIM variables gave a consistent pattern, with notably a positive impact of the higher minimum temperature and a negative impact of precipitation except for the wettest quarter (which would correspond approximately to autumn in Brittany). Even if the AIC of BIOCLIM models were higher than monthly models, there are two significant variables that could not be detected by our other models, which are temperature and precipitation seasonality, with a positive and negative impact respectively. Adding those variables to monthly models did not change the significant predictors (data not shown), but the impact of climate seasonality on bat fecundity deserves further investigation.

Conclusion

Considering the temporal resolution of weather variables allowed the detection of climate impact on a bat population of high conservation priority at a very fine resolution.

Relaxing the assumption that the impact of weather variables is invariant during life cycle periods was here important to uncover the effects of climate on colony sizes and fecundity in the lesser horseshoe bat. Because most climate databases offer at least a monthly resolution, we suggest that analogous studies should consider fine temporal resolution for testing the impact of continuous abiotic variables such as those linked to weather. Although our approach was correlative, it enabled the identification of potential mechanisms by which climatic factors affect population dynamics. Obtaining this knowledge is a necessary step towards better forecasts of biodiversity responses under climate change. 

  fecundity. Precipitation model was the best for colony size, whereas the minimum temperature model had a lower AIC for fecundity Colony size was positively influenced by precipitation in June and negatively impacted by October precipitation. Fecundity was positively impacted by the rain of October and negatively by precipitation during April. Monthly minimum temperature models had higher AIC than the corresponding monthly averaged temperature models for colony size, but lower in the case of fecundity. Nonetheless, they showed similar results regarding significant explanatory variables. Colony size was positively impacted by the temperature in May and November. Fecundity was positively influenced by the temperature during the months of April and July.

Table 1 :

 1 Colony size as a function of average temperature, minimum temperature and precipitation at different temporal resolutions. Monthly models consider each month from August to July preceding bat counts. Life cycle models consider mating, hibernation, spring transition and parturition period (August month was excluded). Yearly models only consider the climatic variable averaged over the year. NS : non-significant predictor after model averaging (monthly and life cycle models) or non-significant Wald chi-square test (yearly models); + : positive significant predictor; -: negative significant predictor. Model averaging was based on AIC (see text). Last rows display the AIC of the models only containing the significant predictors as fixed effects, and finally their corresponding rank.

				Monthly models			Life cycle models			Yearly models	
			Aver. Temp.	Min. Temp.	Precip.	Aver. Temp.	Min. Temp.	Precip.	Aver. Temp.	Min. Temp.	Precip.
		August	NS	NS	NS						
		September	NS	NS	NS						
	Mating	October	NS	NS	-	NS	NS	NS			
		November	+	+	NS						
		December	NS	NS	NS						
	Hibernation	January February	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS
	Spring Transition	March April May	NS NS +	NS NS +	NS NS NS	NS	NS	NS			
	Parturition	June July	NS NS	NS NS	+ NS	NS	NS	+			
	AIC -Significant predictor	5748.96	5749.26	5743.98	NA	NA	5751.2	5757.36	5757.42	5757.36
	(Rank)	(2)	(3)	(1)			(3)	(5)	(6)	(5)

Table 2 :

 2 Fecundity as a function of average temperature, minimum temperature and precipitation at different temporal resolutions. Legend and format are identical to those of Table1.

				Monthly models			Life cycle models			Yearly models	
			Aver. Temp.	Min. Temp.	Precip.	Aver. Temp.	Min. Temp.	Precip.	Aver. Temp.	Min. Temp.	Precip.
		August	NS	NS	NS						
	September	NS	NS	NS						
	Mating	October	NS	NS	+	NS	NS	+			
	November	NS	NS	NS						
	December	NS	NS	NS						
	Hibernation	January February	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS
	Spring Transition	March April May	NS + NS	NS + NS	NS -NS	NS	+	NS			
	Parturition	June July	NS +	NS +	NS NS	NS	NS	NS			
	AIC -Significant predictor	-55.24	-61.35	-57.55	NA	-42.24	-47.25	-35.60	-38.34	-35.79
	(Rank)		(3)	(1)	(2)		(5)	(4)	(8)	(6)	(7)

Table 3 :

 3 Impact of temperature and precipitation BIOCLIM variables on Rhinolophus hipposideros fecundity. Model averaging was performed on two models separating temperature and precipitation variables. BIOCLIM variables 3 and 7 were excluded from our analysis (see text). NS: non-significant predictor after model averaging; +: positive significant predictor; -: negative significant predictor. Last columns display the AIC of the models only containing the significant predictors as fixed effects.

		Variable Description	Number (BIOCLIM)	Significance Significant predictors
		Annual mean temperature	1	NS	
		Mean diurnal range	2	NS	
		Isothermality (2/7)	3		
	Temperature	Temperature seasonality Maximum temperature of warmest month Minimum temperature of coldest month Temperature annual range (5-6) Mean temperature of wettest quarter	4 5 6 7 8	NS NS + NS	-37.78
		Mean temperature of driest quarter	9	NS	
		Mean temperature of the warmest quarter	10	NS	
		Mean temperature of coldest quarter	11	NS	
		Annual precipitation	12	-	
		Precipitation of wettest month	13	NS	
	Precipitation	Precipitation of driest month Precipitation seasonality Precipitation of wettest quarter Precipitation of driest quarter	14 15 16 17	NS -+ NS	
		Precipitation of the warmest quarter	18	NS	
		Precipitation of the coldest quarter	19	NS