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Application for Oecologia Highlighted Student Paper: 19 

Determining the temporal resolution of climatic variables when identifying their impact on 20 

wild population abundance is a rising concern. Our work proposes a way free of most 21 

assumptions for doing it. 22 



Abstract 23 

Climatic variables are often considered when studying environmental impacts on population 24 

dynamics of terrestrial species. However, the temporal resolution considered varies depending 25 

on studies, even among studies of the same taxa. Most studies interested in climatic impacts 26 

on populations tend to average climatic data across timeframes covering life cycle periods of 27 

the organism in question or longer, even though most climatic databases provide at least a 28 

monthly resolution. We explored the impact of climatic variables on lesser horseshoe bat 29 

(Rhinolophus hipposideros) demography based on count data collected at 94 maternity 30 

colonies from 2000 to 2014 in Britanny, France. Meteorological data were considered using 31 

different time resolutions (month, life cycle period and year) to investigate their adequacy. 32 

Model averaging was used to detect significant predictors for each temporal resolution. Our 33 

results show that the finest temporal resolution, e.g. month, was more informative than 34 

coarser ones. Precipitation predictors were particularly decisive, with a negative impact on 35 

colony sizes when rainfall occurred in October, and a positive impact for June precipitations. 36 

Fecundity was influenced by April weather. This highlights the strong impact of climatic 37 

conditions during crucial but short time periods on the population dynamics of bats. We 38 

demonstrate the importance of choosing an appropriate time resolution and suggest that 39 

analogous studies should consider fine-scale temporal resolution (e.g. month) to better grasp 40 

the relationship between population dynamics and climatic conditions. 41 
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Introduction 48 

Weather and climatic conditions have a great influence on the population dynamics of 49 

most species (Kingsolver 1989; Saether et al. 2004; Forrester and Wittmer 2013). Climatic 50 

factors directly impact organisms, especially in cases of extreme climatic events (Şekercioğlu 51 

et al. 2012; Leigh et al. 2015). They also affect species’ dynamics by altering their 52 

environment (Peterman and Semlitsch 2014; Akesson 2016; Hasan and Ansari 2016; Ceglar 53 

et al. 2016). Because of their great impact on species at the bottom of the food chain, weather 54 

conditions are also known to have a drastic impact on food availability (White 2008). For 55 

these reasons, the abundance and distributions of species are expected to be altered in the 56 

current context of global climate change (Thomas et al. 2004).  57 

In this context, understanding the impact of climatic factors on population dynamics 58 

and demography appears to be fundamental to interpret or predict long term population trends 59 

(McLean et al. 2016; Urban et al. 2016). This topic has been studied for many species, 60 

generally using long-term observed abundance or other population dynamics metrics based on 61 

count or capture data at one particular moment in the life cycle of the species. These data are 62 

then modelled as a function of weather, considering mainly temperature and rainfall, but 63 

sometimes including other variables (Bruggeman et al. 2015; Kerbiriou et al. 2015; Bleho et 64 

al. 2015; Kanno et al. 2016; Dugger et al. 2016). Obviously, variables included in the model 65 

directly depend on the considered species biology, but more surprisingly, the temporal 66 

resolution considered is also highly variable. The latter citations correspond to recent studies 67 

that deal with various taxa, and all of them have used climatic databases offering a monthly (if 68 

not daily) resolution. Monthly resolution involves a great number of climatic variables. In a 69 

few cases, the number of variables were reduced by pre-selecting months based on 70 

preliminary analysis (Parent et al. 2016) or on expert knowledge (Kerbiriou et al. 2015). Most 71 

studies have aggregated climatic data to correspond to climatic seasons (varying from two to 72 



six month periods) that are consistent with the life cycle of the species of interest (Bruggeman 73 

et al. 2015; Bleho et al. 2015; Ciuti et al. 2015; Kanno et al. 2016; Dugger et al. 2016; 74 

Masciocchi et al. 2016; Townsend et al. 2016). Occasionally, studies even considered these 75 

data by averaging them over a year (Nouvellet et al. 2013). Another option is to mix different 76 

time resolutions in the same models, such as in BIOCLIM derived models, which include 19 77 

variables that are aggregated on a yearly, seasonal or monthly (extreme month) basis and are 78 

now commonly used to predict species distributions (Barbet-Massin and Jetz 2014; Del Toro 79 

et al. 2015; Beltramino et al. 2015; Ray et al. 2016). The absence of clearly defined criteria to 80 

select the temporal resolution is problematic (van de Pol et al. 2016), particularly for 81 

population dynamic processes, because the temporal resolution considered when studying 82 

these processes can greatly affect the outcome of statistical or predictive models (Radchuk et 83 

al. 2014). 84 

Bat populations are particularly sensitive to climatic variations, and are recognized as 85 

valuable indicators of climate change (Jones et al. 2009). For example, in temperate regions, 86 

cold temperature will greatly reduce their food availability, e.g. the abundance and activity 87 

level of insect prey (Hoying and Kunz 1998; Ciechanowski et al. 2007). Inclement weather, 88 

including heavy rain, will also increase the energetic cost for flying and maintaining 89 

euthermia, and will reduce the efficiency of echolocation (Reiter 2004a; Burles et al. 2009). 90 

Furthermore, numerous studies have demonstrated the impact of climatic conditions on the 91 

activity, survival, and reproductive success of bats (Adams and Hayes 2008; Burles et al. 92 

2009; Schorcht et al. 2009; Frick et al. 2010; Adams 2010; Amorim et al. 2012; Lučan et al. 93 

2013; Amorim et al. 2015). Climate change during the last decades has already caused a shift 94 

in the distributional range of some bats (Uhrin et al. 2016; Wu 2016), a process that will 95 

probably be exacerbated during the next decades (Rebelo et al. 2010). 96 



Studies of bat population dynamics usually take into account weather as one of the 97 

fundamental explanatory variables. Those studies are mainly based on counts or captures 98 

made at one particular moment in the life cycle, such as during parturition or the hibernation 99 

period (Grindal et al. 1992; Zahn 1999; Hoyle et al. 2001; López-Roig and Serra-Cobo 2014; 100 

Kerbiriou et al. 2015). Climatic factors usually include rainfall and temperature, which can be 101 

the daily mean (Zahn 1999; Schorcht et al. 2009; Kerbiriou et al. 2015) or minimum 102 

temperature (Grindal et al. 1992; Hoyle et al. 2001; López-Roig and Serra-Cobo 2014). Some 103 

other variables, such as drought severity, winter severity or winter duration, can also be 104 

included, using different proxies (Schorcht et al. 2009; López-Roig and Serra-Cobo 2014; 105 

Amorim et al. 2015; Kerbiriou et al. 2015). Once again, the time resolution of these variables 106 

differs between studies, and climatic factors can be considered for specific months (Grindal et 107 

al. 1992; Zahn 1999; Kerbiriou et al. 2015), averaged over seasons consistent with the species 108 

biology (Schorcht et al. 2009; Frick et al. 2010; Adams 2010; López-Roig and Serra-Cobo 109 

2014), or averaged over even longer periods (Hoyle et al. 2001; Amorim et al. 2015). 110 

The lesser horseshoe bat (Rhinolophus hipposideros) is a small insectivorous bat of 111 

recognized conservation concern (Bontadina et al. 2000). This bat forages exclusively in 112 

woodlands, preferentially in dense areas (Bontadina et al. 2002; Reiter 2004b), and is already 113 

considered as a good indicator of biodiversity loss (Haysom et al. 2013). After the last 114 

glaciation, this species expanded its range from southern Europe to northern parts of Europe 115 

(Dool et al. 2013), into environments with colder and less stable climate (Bontadina et al. 116 

2000). In spring, females leave the underground sites used as hibernacula and gather in 117 

maternity roosts, which are generally in warmer places, like attics, and the parturition and 118 

rearing of offspring takes place during June and July. Mating then occurs principally between 119 

the end of September and the beginning of the hibernation period (Gaisler 1966). The life 120 

cycle and activity of R. hipposideros are particularly affected by weather conditions. This bat 121 



prefers higher temperature for its maternity roost than other attic dwelling species 122 

(Kayikcioglu and Zahn 2004). However, if available, they will switch to colder satellite roosts 123 

if temperatures become too high during summer. These observations suggest direct effects of 124 

weather on the thermoregulation and energy budget (Kayikcioglu and Zahn 2004; 125 

Seckerdieck et al. 2005). Inclement weather (i.e. cool and wet) before parturition generally 126 

delays birth and decreases the average size at birth and growth rate of the juveniles. These 127 

effects are explained by energetic costs, implying more torpor and a slowed metabolism for 128 

pregnant females, as well as by decreased food availability (Reiter 2004a). However, the 129 

global effect of weather conditions on the overall population dynamics of R. hipposideros, 130 

crucial information for understanding population trends, is not documented (Bontadina et al. 131 

2000). 132 

As climatic impact can greatly differ depending on the level of response considered 133 

(McLean et al. 2016), we investigated two proxies of the dynamics of R. hipposideros 134 

colonies: colony size, which is the result of the dynamics of colonies, and fecundity, one 135 

parameter that drives these dynamics. In order to understand the impact of climatic conditions 136 

on these parameters, we used count data from 94 colonies (Brittany, France) collected by 137 

local associations during fifteen years. These count data offer reliable estimates of colony size 138 

as confirmed by independent non-invasive Capture-Mark Recapture methods (Puechmaille 139 

and Petit 2007). Brittany populations are at the species range margin, and thus not at their 140 

optimal climatic conditions, a situation where population dynamics are likely to be strongly 141 

influenced by the weather (Thomas et al. 1994; Geber 2008; Bateman et al. 2011). 142 

Furthermore, this region is under a temperate climate greatly influenced by oceanic 143 

conditions, and the weather can be very variable during and between years (Lamy and 144 

Dubreuil 2010). Our study had two objectives: 1) investigating the temporal resolution at 145 

which climatic variables should be considered when assessing the population dynamics of a 146 



bat species at a regional scale and 2) improving our understanding of the climate impact on a 147 

species of great conservation concern. Because most climatic databases facilitate access to 148 

data with at least a monthly resolution, we considered a monthly resolution, a several months 149 

resolution (corresponding to life cycle periods that are suitable for R. hipposideros), a yearly 150 

resolution, and also mixed temporal resolutions that correspond to commonly used BIOCLIM 151 

variables to explain variability in colony size and fecundity in R. hipposideros. We 152 

hypothesized that finer temporal resolution would better grasp weather effects. 153 

Material and Methods 154 

Monitoring of colonies 155 

From 2000 to 2014, a total of 94 R. hipposideros maternity colonies were monitored in 156 

Brittany (Fig. 1). Not every colony was known in 2000, and, in some cases, monitoring was 157 

not possible due to unforeseen circumstances (blocked access to the bats or the person in 158 

charge of counting the bats). Thus, the number of monitored years per colony ranged from 3 159 

to 14 (7.73 on average). This monitoring consisted of one or two counts during late June or 160 

early July, that is, during the period when newborns are easily distinguished from adults in 161 

Brittany. When multiple counts were carried out in a given year, only the largest one was 162 

considered. Adults and juveniles were counted separately: for each year, the census size of the 163 

colony was estimated by the number of adults, and the fecundity by the number of juveniles 164 

divided by the number of adults. 165 

Colony size distribution is expected to correspond to a Poisson or a negative binomial 166 

distribution (O’Hara and Kotze 2010). Some colonies disappeared over the years, probably 167 

for reasons unrelated to the climatic variables considered: thus, we also considered zero-168 

inflated Poisson and zero-inflated negative binomial distributions (Zuur et al. 2009). We 169 

tested which of these four distributions corresponded to our demographic data by using the 170 



maximum likelihood method implemented in the R package fitdistrplus (Delignette-Muller 171 

and Dutang 2014). Fecundity was considered to follow a normal distribution. Generalized 172 

linear (count data) and linear (fecundity) mixed models together with Wald chi-square tests 173 

were used to test whether bat counts and fecundity varied between years. Colonies were 174 

considered as a random factor in the models, so as to not consider the impact of roost quality 175 

and environment. We then removed the random effects to plot the deviance residuals against 176 

the theoretical quantiles (QQ-plots) to check the assumptions of our models and detect 177 

possible outliers in the colonies. These tests, as well as the analyses described below, were 178 

carried out in R version 3.2.2 (R Development Core Team 2015).  179 

Climatic data 180 

Minimum temperature, mean temperature, and precipitation were recorded monthly at 181 

16 meteorological stations in Brittany (Météo-France data, https://publitheque.meteo.fr) since 182 

the beginning of the monitoring. Temperature directly influences the bats energy budget and 183 

their cost for homeothermy, but the most significant impact of temperature may also come 184 

from a decrease under particular thresholds: temperature low enough can induce torpor in bats 185 

or inhibit the flight of insects, needed for most bats foraging. Thus, both mean and minimum 186 

temperature have been considered in studies interested in the effect of climatic variables on 187 

bats (Reiter 2004a; Burles et al. 2009; López-Roig and Serra-Cobo 2014; Kerbiriou et al. 188 

2015), and we decided to consider both of them here. Temperature and especially 189 

precipitation exhibited a great variability during the counting period (Fig. S1). We performed 190 

an ordinary kriging to obtain these climatic data for each colony by using the package 191 

"gstats", function "krige" (Pebesma 2004). Brittany’s weather is spatially and temporally 192 

variable. We therefore performed a local kriging by taking into account only the three closest 193 

stations. Climatic information for each counting was then treated in three different ways. 194 

Firstly, each month of the previous life cycle (from August to July) was considered. These 195 



data are thereafter named "monthly data". Secondly, we averaged the climatic information 196 

over longer periods corresponding to the mating period (September-November), hibernation 197 

(December-February), the spring transition (March-May) and parturition (June-July) periods. 198 

From now on, this temporal resolution is called "life cycle data". Thirdly, we averaged 199 

climatic data over the previous year, and refer to this temporal resolution as the "yearly data". 200 

Finally, we considered 17 of the 19 bioclimatic variables (Table 3) by computing our dataset 201 

the same way as ANUCLIM (Xu and Hutchinson 2013) with the help of the R package 202 

climates (Van der Wal et al. 2014) and refer to these as BIOCLIM data. The variable bio7 203 

correspond to bio5 minus bio6, and caused linear combinations in our dataset: we thus 204 

excluded bio7, which is less informative than the two other variables, to avoid rank-deficiency 205 

in our models. The variables bio 2 and bio3 caused multiple correlations when in the same 206 

model ( ), and we discarded the less informative one, bio3. 207 

Explanatory variables were centred and scaled prior to model fitting. 208 

Model averaging 209 

Model averaging was performed to estimate the effect of climatic variables on colony 210 

size and fecundity. We created models explaining the variation in colony size (GLMM) and 211 

fecundity (LMM) depending on the climatic variables, by considering the different temporal 212 

resolutions. For monthly and life cycle data, models were computed separately for average 213 

temperatures, minimum temperatures, and precipitation. Two bioclimatic models were built 214 

considering separately temperature (BIOCLIM 1-11) and precipitation variables (BIOCLIM 215 

12-19) to ease comparison with other models. Colonies were considered as a random factor in 216 

the models, and there were no temporal autocorrelations in those models (as explored using 217 

models residuals via the "acf" R function). Correlations between fixed effects were checked. 218 

Only bio4 and bio11 as well as bio13 and bio15 were highly correlated (r>0.8).  219 



Full models were then used as bases in the glmulti R package to obtain every possible 220 

combination of explanatory variables (without interaction) and order them by AIC (Calcagno 221 

et al. 2010). Models including highly correlated variables (r>0.8) were discarded, and the 222 

package glmulti was then used to perform model averaging by calculating the Akaike weight 223 

of each model within 2∆AIC of the best model (Burnham and Anderson 2002). The model-224 

averaged regression coefficients of the predictors and their 95% confidence intervals (CI) 225 

were then calculated based on the cumulative weights of the models including the variable 226 

(Calcagno et al. 2010). Explanatory variables were then considered as having a meaningful 227 

positive or negative impact on the response variable if their 95% confidence interval did not 228 

include zero (Lankinen et al. 2016). The significance of yearly models, containing only one 229 

fixed effect (mean temperature, minimum temperature, or precipitation) and one random 230 

effect (colonies) were tested with Wald chi-square tests. 231 

Model averaging with all temperature and precipitation monthly variables considered 232 

together would require very high computing power and memory (more than 16 million 233 

models to be evaluated and compared), especially for the colony size data and its more 234 

elaborate distributions. Thus, we created the mixed models that incorporated only significant 235 

predictors from previous model averaging (with either the minimum or average temperature, 236 

depending of the AIC) and computed their AIC and R² (marginal and conditional - Nakagawa 237 

and Schielzeth 2013) to determine which kind of predictor and which temporal resolution best 238 

explained variations in colony size and fecundity of R. hipposideros colonies in Brittany. AIC 239 

was chosen over other criteria such as BIC because it is more appropriate for an exploratory 240 

analysis investigating which predictors could give the best description of a very complex 241 

system, whereas BIC is more performant in confirmatory analysis or hypothesis testing (Aho 242 

et al. 2014).  243 

Results 244 



Variation of colony size and fecundity over the years 245 

Colony size data had a better fit with the zero-inflated negative binomial distribution 246 

(AIC : 6323.29), followed by the negative binomial, the zero-inflated Poisson and the Poisson 247 

distribution (with AIC of 6326.31, 21167.65 and 22596.92, respectively). Thus, we performed 248 

GLMMs with the zero-inflated negative binomial distribution. Both colony size and fecundity 249 

varied over the years (Wald chi-square test; p = 0.002 and p < 0.001 respectively). 250 

Impact of climate 251 

Significant predictors were found for most monthly and life cycle models for both 252 

colony size (Table 1) and fecundity (Table 2). Annual climatic factors were never significant 253 

(Wald chi-square test; p>0.15 in all cases).  254 

Comparisons of predictor categories and time resolutions showed that the models with 255 

the lowest AIC were those including monthly significant predictors for both colony size and 256 

fecundity. Precipitation model was the best for colony size, whereas the minimum 257 

temperature model had a lower AIC for fecundity 258 

Colony size was positively influenced by precipitation in June and negatively 259 

impacted by October precipitation. Fecundity was positively impacted by the rain of October 260 

and negatively by precipitation during April. Monthly minimum temperature models had 261 

higher AIC than the corresponding monthly averaged temperature models for colony size, but 262 

lower in the case of fecundity. Nonetheless, they showed similar results regarding significant 263 

explanatory variables. Colony size was positively impacted by the temperature in May and 264 

November. Fecundity was positively influenced by the temperature during the months of 265 

April and July. 266 



The AIC of the life cycle models were always larger than the corresponding monthly 267 

models (> 7 ∆AIC). Model averaging on life cycle data was not able to give any significant 268 

predictor when considering the impact of average or minimum temperature on colony size. 269 

Only precipitation during parturition time was found to be significant for colony size at the 270 

life cycle temporal scale. When looking at fecundity, the minimum temperature during spring 271 

transition and precipitation during mating period were significant. Yearly models were the 272 

models with the highest AIC (Table 1 and 2), and did not outperform the null model in most 273 

cases (AIC : 5755.42 and -37.15 for the null model of respectively the colony size and the 274 

fecundity dataset.) 275 

There was no significant BIOCLIM predictor for colony size, but four variables were 276 

significant for fecundity (Table 3). Two factors positively affected fecundity: minimum 277 

temperature of the coldest month and precipitation of the wettest quarter. Annual precipitation 278 

and precipitation seasonality negatively impacted fecundity. The AIC of models built with 279 

these significant predictors were higher than those of monthly and life-cycle models. 280 

Models with significant temperature (minimum for fecundity and average for colony 281 

size) and precipitation predictors were computed for each temporal resolution, as well as a 282 

model containing every bioclimatic predictor which was significant for both colony size and 283 

fecundity. Once again, the models with the lowest AIC were the monthly models, and the 284 

models with the highest AIC were yearly models, whilst those with life cycle and bioclimatic 285 

models were intermediate. Marginal R² (Nakagawa and Schielzeth 2013) showed that the 286 

fixed effect of monthly models explained 0.9% and 5.3% of variability for colony size and 287 

fecundity, respectively, and ranking of marginal R² was congruent with the AIC ranking 288 

(Table 4).  289 

Discussion 290 



 Colony size and fecundity varied between years and between colonies. Exploring 291 

whether these variations could be explained by climatic factors, we showed that fine temporal 292 

resolution climatic models have superior explanatory power compared to temporally coarse 293 

ones. These models reveal that climatic variables impact R. hipposideros population dynamics 294 

at critical periods, with more precipitation having significant and opposite impacts depending 295 

on the time of year, and increased temperatures having a positive impact. 296 

Temporal resolution of weather impact 297 

Life cycle data correspond to meteorological data averaged over specific periods built 298 

upon the biology and life cycle of species. These averages are commonly used in studies 299 

interested in exploring climatic impacts on species demographic dynamics. For R. 300 

hipposideros, the periods were chosen according to bibliography and expert knowledge. 301 

Using AIC selection, we showed that abiotic factors calculated with monthly resolution better 302 

predicted the R. hipposideros colony size and fecundity in Brittany compared to the factors 303 

calculated with coarser resolution. These results can be explained by the great climate 304 

variability observed between months, especially for precipitation (Fig. S1). Our results also 305 

suggest that the same variable can have either positive or negative effects depending on the 306 

period of the year. This implies that in regions like Brittany, population dynamic processes 307 

are mainly dependent on critical periods which are shorter than life cycle periods. Those 308 

critical periods are supposedly highly dependent on the interaction between the species 309 

biology and the local climate.  310 

One could argue that comparisons of models using AIC tend to favour complex 311 

models (Link and Barker 2006). We however did not observe this when computing AIC for 312 

full models that included all variables (both non-significant and significant predictors, data 313 

not shown). The use of model averaging instead of other approaches such as stepwise AIC 314 



also allowed us to only consider significant predictors and limits bias towards over-complex 315 

models (Lukacs et al. 2010). Besides providing estimates and confidence intervals, model 316 

averaging also measures the importance of each variable, based on the AIC of the models 317 

where they were included, the so called "sum of weight". The sum of weight of each 318 

significant predictor in our study was superior to 0.95 (data not shown), further supporting the 319 

importance of these variables in explaining variations in colony size and fecundity in the 320 

lesser horseshoe bat (Giam and Olden 2016). 321 

Considering all the models which are at 2 ∆AIC from the best model is a common 322 

practice in model averaging, but it has been argued that even models below this threshold 323 

should be included in the analysis, and that being too stringent could exclude significant 324 

variables (Burnham et al. 2011). In the case of our results, monthly data gave still better 325 

predictors than life cycle data when we extended the threshold until 7 ∆AIC. However, it 326 

caused the disappearance of some significant variables instead of the appearance of new ones 327 

(see supplementary materials, Tables S1 and S2). Multicollinearity in the averaged models 328 

was suspected, but excluding all the models with Variance Inflation Factors higher than 2 did 329 

not change the results (data not shown). The disappearance of significant variables can be due 330 

to the fact that we considered every month or period of the year without any a priori, and thus 331 

probably included some non-relevant variables. Increasing the threshold to 7 ∆AIC led to the 332 

inclusion of poor models , which are known to impact the results and increase confidence 333 

intervals around effect sizes (Burnham and Anderson 2002). Indeed, models including 334 

significant predictors obtained with 2 ∆AIC had lower AIC than models including significant 335 

predictors obtained with 7 ∆AIC (compare Tables 1 to S1 and 2 to S2). Thus, we only 336 

considered the 2 ∆AIC results in the following discussion. 337 

Depending on climate variability, averaging weather variables over long periods could 338 

result in the concealment or misidentification of essential impacts on population dynamics. 339 



Comparisons between climate variables averaged yearly or over shorter periods already 340 

showed that short-term climatic conditions are better at characterising population dynamics 341 

(Gedir et al. 2015). This was also shown in mechanistic models, which in contrast with our 342 

correlative approach directly model the relationship between individual traits and the 343 

environment. Those models generally use finer temporal scale resolution than correlative 344 

models, and it has been shown that reducing the environmental data to a daily resolution 345 

permitted a better understanding of environmental impact (Kearney et al. 2012). Our results 346 

suggest that even periods of several-months which are consistent with the life cycle of the 347 

species, and which are commonly used in explanatory correlative studies, could be too long to 348 

really grasp the effect of climate on species. Likewise, the now widely used BIOCLIM 349 

variables (Barbet-Massin and Jetz 2014; Del Toro et al. 2015; Beltramino et al. 2015; Ray et 350 

al. 2016) were far less predictive than monthly variables, and did not result in better models 351 

than our life cycle variables. Interestingly though, BIOCLIM variables included variables that 352 

were not present in the other models, such as precipitation seasonality that appeared to 353 

significantly explain fecundity. 354 

Studies interested in the impact of climate on demographic parameters would therefore 355 

greatly benefit from considering explanatory variables with fine temporal resolution (e.g. 356 

monthly). One could argue that considering a short temporal resolution implies multiplying 357 

the number of variables used in those models. One solution could be to only consider a few 358 

months based on the species biology (Kerbiriou et al. 2015), but the best way might be to 359 

select the most relevant predictors by statistical means before performing other analyses 360 

(Parent et al. 2016; van de Pol et al. 2016). To this end, model averaging is an ideal tool for 361 

selecting significant predictors. A recently released R package, climwin, is also a well-362 

designed tool to address the question of temporal resolution. Though it allows a great 363 

flexibility to easily detect the best time window based on AIC comparisons, it is not well-364 



optimized for detecting multiple effect of the same variable (van de Pol et al. 2016). Our 365 

example demonstrates that situations may include multiple effects of the same variable, and 366 

we advocate the use of alternative and complementary tools to understand how species 367 

respond to environmental variation, which is one of the main challenges when the aim is to 368 

predict the future of biodiversity (Urban et al. 2016). 369 

Indeed, temporal resolution is also an important feature when predicting the impact of 370 

future climate change on species distribution, a topic which has received increasing interest in 371 

the scientific community. If global or regional climate change are generally considered on a 372 

yearly (or coarser temporal) basis when it comes to prediction (Turner et al. 1989), coarse 373 

temporal resolution will fail to grasp the heterogeneity of responses and could substantially 374 

alter the outcome of population viability predictions under temperature change scenarios 375 

(Radchuk et al. 2014). Reducing the temporal resolution for species distribution models is 376 

particularly important when dealing with microclimate (Kearney and Porter 2009). The future 377 

species distribution of European bats, including R. hipposideros, has been predicted in a 378 

recent study based on climate variables averaged over 30 years (Rebelo et al. 2010). This 379 

pooling is understandable given the number of species, and the prediction time span (2050 380 

and 2090), but the impact of temporal resolution on these models has not been, to our 381 

knowledge, deeply investigated. Despite the fact that the processes considered in this study 382 

are not directly related to range distribution, it would be interesting to test different temporal 383 

resolutions when conducting distribution modelling for species that experience highly 384 

variable climatic conditions like R. hipposideros. 385 

Impact of weather on R. hipposideros  386 

R. hipposideros colony size and fecundity significantly varied between years. Variances 387 

explained by the fixed effect of our models were low, especially for the colony size models, 388 



but the variance explained by the fecundity model was within the range of variance usually 389 

explained by most ecology models (Møller and Jennions 2002). In a study on a pipistrelle bat 390 

population, Kerbiriou et al. (2015) have shown that the variance of meaningful environmental 391 

variables (including climatic variables) could be drastically reduced (to 1%) because of 392 

intrinsic demographic trends. Additionally, although R. hipposideros is a rather sedentary 393 

species (Dool et al. 2016), we do not consider emigration or immigration which could 394 

influence the colony size besides the effect of climate . Thermal isolation of the 395 

roosts/hibernacula could also modify the impact of the ambient temperature during summer or 396 

winter. Even though we cannot predict which part of the environmental variance those 397 

variables explain (Sæther et al. 2000), our results nevertheless pinpoint mechanisms by which 398 

climatic factors play a role in the inter-annual variation of colony size and fecundity of R. 399 

hipposideros.  400 

  Precipitation was the climatic factor that best explained the variation in colony size. 401 

Rainfall directly impacts bats by increasing the energetic cost of flight and homeothermy and 402 

by making echolocation less efficient, but also indirectly by acting on insect abundance and 403 

hence on food availability (Grindal et al. 1992; Frick et al. 2010; Voigt et al. 2011). If a 404 

greater effect of the precipitation on bats compared to temperature has been observed in 405 

warmer climates (Hoyle et al. 2001; Frick et al. 2012), this was unexpected for European 406 

insectivorous bats (Rebelo et al. 2010). This could be explained by the greater variability of 407 

precipitation in Brittany (Fig. S1) that would have increased the support for this variable in 408 

our models (Frick et al. 2010).  409 

An interesting result is that depending on the month and the demographic variable considered, 410 

precipitation had a positive or a negative impact. If the ambiguous impact of rain on bats, 411 

depending on region and time, has already been reported (Frick et al. 2010; Lučan et al. 412 

2013), this study is to our knowledge, the first where precipitation is shown to have 413 



significant and opposite impacts on the same bat population depending on the time of the 414 

year. The impact of precipitation on the colony size was negative in October but positive in 415 

June. Precipitation impact on bat population dynamics differs depending on the timing of 416 

precipitation (Frick et al. 2010), either negatively by increasing the energy cost for foraging 417 

(Voigt et al. 2011) and decreasing the efficiency of echolocation (Griffin 1971), or positively 418 

by increasing insect abundance in dryer periods (Williams 1951). Opposite effects of the same 419 

factor, caused by spatial or temporal variability, has already been observed in a wide range of 420 

species (Spiller and Schoener 2008; Satterthwaite et al. 2012; Metz and Tielboerger 2016), 421 

but these results highlight the necessity to have the finest temporal resolution possible to 422 

enhance our understanding of the impact of climatic factors. Thus, it seems that precipitation 423 

impact can be highly variable in Brittany, with an overall negative effect except during 424 

summer, which is the driest period. The positive impact of rain during October on fecundity is 425 

more surprising given that it has the opposite effect on colony size. Opposite climate or 426 

environmental effects on survival and fecundity have already been observed in other species 427 

such as emperor penguins (Barbraud and Weimerskirch 2001), Eurasian oystercatchers (Van 428 

de Pol et al. 2010) or goshawks (Herfindal et al. 2015). Those results signal a complex pattern 429 

of co-variation that would need further investigation and a better understanding of the 430 

underlying mechanisms.  431 

Low temperatures can influence bat survival by directly increasing energetic cost for 432 

homeothermy, but also by reducing insect activity and so food availability (Reiter 2004a; 433 

Burles et al. 2009). The colony size in R. hipposideros was positively impacted by higher 434 

temperatures during the period when individuals return to their maternity roosts and 435 

hibernacula (May and November, respectively). We can thus hypothesize that the temperature 436 

of these months would strongly impact the bats’ energy budget for parturition and 437 

hibernation.  438 



Because the flight of most insects is inhibited under some threshold temperature 439 

(Taylor 1963), it is more impacted by minimum than average temperatures . A stronger 440 

influence of the minimum temperature than of average temperature on fecundity of R. 441 

hipposideros suggests that this process depends on food availability at some critical periods. 442 

April seems to be the key month regarding fecundity. Inclement weather, e.g. cold and rainy, 443 

during the early foetal stage, is known to cause abortion or resorption of embryos in bats 444 

(Grindal et al. 1992; Lučan et al. 2013) which could explain the observed negative impact of 445 

precipitation and the positive impact of minimum temperature in April on fecundity. The 446 

impact of temperature during July, the lactating period  in Brittany, is also not surprising, 447 

because a cold month is expected to reduce the survival rate of juveniles, diminishing 448 

reproductive success (Reiter 2004a; Burles et al. 2009).  449 

Results based on BIOCLIM variables gave a consistent pattern, with notably a positive 450 

impact of the higher minimum temperature and a negative impact of precipitation except for 451 

the wettest quarter (which would correspond approximately to autumn in Brittany). Even if 452 

the AIC of BIOCLIM models were higher than monthly models, there are two significant 453 

variables that could not be detected by our other models, which are temperature and 454 

precipitation seasonality, with a positive and negative impact respectively. Adding those 455 

variables to monthly models did not change the significant predictors (data not shown), but 456 

the impact of climate seasonality on bat fecundity deserves further investigation. 457 

Conclusion 458 

Considering the temporal resolution of weather variables allowed the detection of 459 

climate impact on a bat population of high conservation priority at a very fine resolution. 460 

Relaxing the assumption that the impact of weather variables is invariant during life cycle 461 

periods was here important to uncover the effects of climate on colony sizes and fecundity in 462 



the lesser horseshoe bat. Because most climate databases offer at least a monthly resolution, 463 

we suggest that analogous studies should consider fine temporal resolution for testing the 464 

impact of continuous abiotic variables such as those linked to weather. Although our approach 465 

was correlative, it enabled the identification of potential mechanisms by which climatic 466 

factors affect population dynamics. Obtaining this knowledge is a necessary step towards 467 

better forecasts of biodiversity responses under climate change. 468 



 469 
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Table 1: Colony size as a function of average temperature, minimum temperature and precipitation at different temporal resolutions. Monthly 715 

models consider each month from August to July preceding bat counts. Life cycle models consider mating, hibernation, spring transition and 716 

parturition period (August month was excluded). Yearly models only consider the climatic variable averaged over the year. NS : non-significant 717 

predictor after model averaging (monthly and life cycle models) or non-significant Wald chi-square test (yearly models); + : positive significant 718 

predictor; - : negative significant predictor. Model averaging was based on AIC (see text). Last rows display the AIC of the models only 719 

containing the significant predictors as fixed effects, and finally their corresponding rank. 720 

  Monthly models Life cycle models Yearly models 

  
Aver. 

Temp. 
Min. Temp. Precip. 

Aver. 

Temp. 
Min. Temp. Precip. 

Aver. 

Temp. 
Min. Temp. Precip. 

  August NS NS NS       

September NS NS NS 

October NS NS - Mating 

November + + NS 

NS NS NS 

December NS NS NS 

January NS NS NS Hibernation 

February NS NS NS 

NS NS NS 

March NS NS NS 

April NS NS NS 
Spring 

Transition 
May + + NS 

NS NS NS 

June NS NS + 
Parturition 

July NS NS NS 
NS NS + 

NS NS NS 

AIC - Significant predictor 5748.96 5749.26 5743.98 NA NA 5751.2 5757.36 5757.42 5757.36 

(Rank) (2) (3) (1)   (3) (5) (6) (5) 

 721 



Table 2: Fecundity as a function of average temperature, minimum temperature and precipitation at different temporal resolutions. Legend and 722 

format are identical to those of Table 1. 723 

 724 

 725 

 726 

  Monthly models Life cycle models Yearly models 

  
Aver. 

Temp. 
Min. Temp. Precip. 

Aver. 

Temp. 
Min. Temp. Precip. 

Aver. 

Temp. 
Min. Temp. Precip. 

 August NS NS NS       

September NS NS NS 

October NS NS + Mating 

November NS NS NS 

NS NS + 

December NS NS NS 

January NS NS NS Hibernation 

February NS NS NS 

NS NS NS 

March NS NS NS 

April + + - 
Spring 

Transition 
May NS NS NS 

NS + NS 

June NS NS NS 
Parturition 

July + + NS 
NS NS NS 

NS NS NS 

AIC - Significant predictor -55.24 -61.35 -57.55 NA -42.24 -47.25 -35.60 -38.34 -35.79 

(Rank) (3) (1) (2)  (5) (4) (8) (6) (7) 

 727 

 728 



Table 3: Impact of temperature and precipitation BIOCLIM variables on Rhinolophus hipposideros fecundity. Model averaging was performed 729 

on two models separating temperature and precipitation variables. BIOCLIM variables 3 and 7 were excluded from our analysis (see text). NS: 730 

non-significant predictor after model averaging; +: positive significant predictor; -: negative significant predictor. Last columns display the AIC 731 

of the models only containing the significant predictors as fixed effects. 732 

 

 
Variable Description 

Number 

(BIOCLIM) 
Significance Significant 

predictors 

Annual mean temperature 1 NS 

Mean diurnal range  2 NS 

Isothermality (2/7) 3   

Temperature seasonality 4 NS 

Maximum temperature of warmest month 5 NS 

Minimum temperature of coldest month 6 + 

Temperature annual range (5-6) 7   

Mean temperature of wettest quarter 8 NS 

Mean temperature of driest quarter 9 NS 

Mean temperature of the warmest quarter 10 NS 

T
e

m
p

e
ra

tu
re

 

Mean temperature of coldest quarter 11 NS  

-37.78 

Annual precipitation 12 - 

Precipitation of wettest month 13 NS 

Precipitation of driest month 14 NS 

Precipitation seasonality 15 - 

Precipitation of wettest quarter 16 + 

Precipitation of driest quarter 17 NS 

Precipitation of the warmest quarter 18 NS 

P
re

ci
p

it
a

ti
o

n
 

Precipitation of the coldest quarter 19 NS 

-43.30 



Table 4: AIC and ranks of models that included both minimum temperature and precipitation significant predictors for the different temporal 733 

resolutions of explanatory variables. 734 

 Fixed effects AIC (Rank) Marginal R² Conditional R² 

Month 
Minimum temperature : November & May 

Precipitation : October & June 

5746.74 (1) 0.009 0.669 

Life cycle 
Precipitation : Parturition 

 

5751.2 (2) 0.003 0.658 

Year 
Minimum temperature : Year 

Precipitation : Year 
5759.3 (3) <0.001 0.654 

C
e

n
su

s 
si

ze
 

BIOCLIM NA NA NA NA 

Month 
Minimum temperature : April & July 

Precipitation : October & April 
--65.14 (1) 0.053 0.177 

Life cycle 
Minimum temperature : Spring Transition 

Precipitation : Mating 
-51.79 (2) 0.027 0.154 

Year 
Minimum temperature : Year 

Precipitation : Year 
-36.48 (4) 0.006 0.123 Fe

cu
n

d
it

y 

BIOCLIM 
Temperature : 6 

Precipitation : 12,15 & 16 

-43.72 (3) 0.021 0.148 



Figure legends 735 

Figure 1: Map of the 94 colonies monitored in Brittany, France. 736 
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