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Abstract 21 

Obesity and its related disorders have been associated to the presence in the blood of gut bacteria-22 

derived lipopolysaccharides (LPS). However, the factors underlying this low-grade elevation in 23 

plasma LPS, so-called metabolic endotoxemia, are not fully elucidated. We aimed to investigate the 24 

effects of Western diet (WD) feeding on intestinal and hepatic LPS handling mechanisms in a rat 25 

model of diet-induced obesity (DIO).  Rats were fed either a standard chow diet (C) or a Western Diet 26 

(WD, 45% fat) for 6 weeks. They were either fed ad libitum or pair-fed to match the caloric intake of 27 

Crats for the first week then fed ad libitum for the remaining 5 weeks. Six-week WD feeding led to a 28 

mild obese phenotype with increased adiposity and elevated serum LPS-binding protein (LBP) levels 29 

relative to C rats, irrespective of initial energy intake. Serum LPS was not different between dietary 30 

groups but exhibited strong variability. Disrupted ileal mucus secretion and decreased ileal Reg3-γ and 31 

-β gene expression along with high ileal permeability to LPS were observed in WD compared to C-fed 32 

rats. Ileal and caecal intestinal alkaline phosphatase (IAP) activity as well as Verrucomicrobia and 33 

Bifidobacterium caecal levels were increased in WD-fed rats compared to C-fed rats. WD 34 

consumption did not impact mRNA levels of LPS-handling hepatic enzymes. Correlation analysis 35 

revealed that ileal passage of LPS, IAP activity, Proteobacteria levels and hepatic aoah gene 36 

expression correlated with serum LPS and LBP, suggesting that ileal mucosal defense impairment 37 

induced by WD feeding contribute to metabolic endotoxemia. 38 

  39 



  Introduction 40 

Obesity-associated metabolic disorders (type 2 diabetes, cardiovascular diseases and non-alcoholic 41 

fatty liver disease) are clearly related to chronic low-grade inflammation observed in obesity (28, 32). 42 

Although this obesity-associated low-grade inflammation is widely accepted, its etiology was not 43 

completely understood until Cani et al hypothesized that component from the gut microbiota, 44 

lipopolysaccharides (LPS), could be inflammatory triggering factors (12). Often referred to as 45 

endotoxins, LPS are constituents of the cell wall of Gram-negative bacteria present in the gut 46 

microbiota (14, 21). One of their components, the lipid A, is a pathogen associated molecular pattern 47 

(14, 21) recognized by host Toll-Like receptor 4 (TLR4). Binding of lipid A to TLR4 initiates 48 

signaling cascades resulting in the production of pro-inflammatory cytokines including Interleukine-1-49 

β (IL-1β) or Tumor Necrosis Factor-α (TNF-α) (61). In the systemic circulation, LPS is transported by 50 

the LPS-binding protein (LBP), an acute phase protein exhibiting a high affinity to the lipid A moiety 51 

(63). In a series of experiments on genetically obese or diet-induced obese (DIO) mice, Cani et al 52 

described a condition of chronically elevated plasma LPS levels 5 times lower than during sepsis but 53 

significantly greater than in lean mice termed “metabolic endotoxemia” (12, 13). They demonstrated 54 

that experimental metabolic endotoxemia, performed with subcutaneous infusions of LPS in mice, 55 

induces obesity and metabolic disorders i.e. inflammation, weight gain and hepatic steatosis, similar to 56 

Western diet (WD) feeding (12). The relationship between metabolic endotoxemia and obesity-57 

associated metabolic disorders has been confirmed in multiples animal and human studies (5, 11, 16, 58 

17, 27, 34, 43, 48, 53, 55, 56, 75, 80). Some studies failed to show an increase in plasma LPS in obese 59 

animals (37), which might be due to initial microbiota composition (56). Moreover, because plasma 60 

levels of LPS are fluctuant due to circadian rhythm and LPS concentrations difficult to measure due to 61 

technical constraints (10), the use of plasma LBP as a long-term marker of hepatic LPS exposure and 62 

therefore of metabolic endotoxemia is now widely recognized.  63 

 64 



The gut microbiota is the major source of LPS, with a rough estimation of 1 g of LPS within the gut 65 

(25). In healthy conditions, multiple mechanisms occur at the intestinal level to keep LPS within the 66 

gut lumen and avoid its presence into the systemic circulation. Numerous proteins e.g. mucus, 67 

antimicrobial peptides (AMPs) or intestinal enzymes like intestinal alkaline phosphatase (IAP) are 68 

secreted by epithelial cells into the lumen, ensuring primary line of defense against noxious stimulus, 69 

including LPS (7, 25). In the small intestine, it is admitted that LPS mainly crosses the enterocytes 70 

through the chylomicrons pathway after a lipid-rich meal (42). Conversely, in the large intestine or 71 

during inter-prandial periods in the small intestine, the precise mechanisms by which LPS crosses 72 

epithelial cells are unknown (25). Finally, if LPS crosses the intestine and spreads into the portal vein, 73 

the liver is endowed with major detoxification processes through specific enzymes 74 

(acyloxyaclyhydroxylase and alkaline phosphatase) or scavenger-receptor-mediated excretion into the 75 

bile (25). 76 

There are conflicting results regarding how the intestine adapts to western diet feeding, resulting in 77 

metabolic endotoxemia. Changes in microbiota composition with lower diversity have been observed 78 

(27); yet no consensus on the bacterial composition of WD-fed animals that could result in increased 79 

quantity of lumen LPS has emerged so far. The impact of WD feeding on mucosal secreted factors 80 

(mucus, AMPs, IAP) mechanisms is also controversial with either protective or deleterious effects on 81 

mucosal barrier function (1, 5, 6, 27, 74). Furthermore, metabolic endotoxemia has been largely 82 

associated with increased gut permeability. It has even been hypothesized to be the main cause of 83 

elevated endotoxemia observed in DIO, based on parallel increase in in vivo permeability to 84 

fluorescently-tagged small molecules and plasma LPS level (13, 17, 31, 52, 66). Yet, no study so far 85 

has used tagged-LPS to investigate which portion(s) of the gut is/are more permeable to LPS in 86 

conditions of metabolic endotoxemia. Likewise, WD feeding impacts on hepatic mechanisms of LPS 87 

detoxification or disposal are currently overlooked. Therefore our primarily aim was to describe the 88 

changes in intestinal (ileum and caecum) and hepatic LPS handling mechanisms in a rat model of 89 

metabolic endotoxemia induced by 6 weeks of WD feeding. Because rodents switched to a WD 90 

display a transient phase of overconsumption of calories during the first days of feeding (27, 77, 78), 91 



we included a group of pair-fed animals fed the WD but with similar caloric intake than control 92 

animals the first days of feeding. Unexpectedly, some of these animals exhibited high variability in 93 

serum LPS levels and differences in intestinal physiology compared to ad-libitum-fed WD rats. 94 

Investigating the mechanisms by which these animals displayed such differences was beyond the 95 

scope of this study but we took advantage of this variability in the response of WD feeding to explore 96 

which mechanisms and in which section of the intestine could best explain the increased serum LBP 97 

and/or LPS observed in DIO.   98 

  99 



Material and method  100 

Animals 101 

All experiments were performed in accordance with the European Union Guidelines for Animal Care 102 

and Use under file #APAFIS#903-2015061809202358V3. Male Wistar Rats (8-9 week old; 380 ± 25 103 

g; Janvier Labs, Le Genest-Saint-Isle, France) were housed individually with a 12-h light/dark cycle 104 

and maintained at 22°C ± 2°C. They had free access to water and standard chow (Special Diets 105 

Services, Rat and Mouse N°3 Breeding, Witham, UK) during a 1-week acclimatization period prior to 106 

the diet intervention.  107 

After acclimatization, rats were split into 4 weight-matched groups. Two groups of 6 rats were 108 

provided ad libitum access to either the standard chow diet (Cal) or a Western Diet (WDal) (D12451, 109 

Research Diets, New Brunswick, NJ, USA , fat 45% of total energy, 11% gm cellulose, 3.73 kcal/g) 110 

for 6 weeks. Because WD and chow fed rats consume different amounts of calories per day during the 111 

first week, a WD-pair fed (WDpf) group was included as a control (n=12) to ensure that the observed 112 

effects were not due to greater energy intake. For the pair-feeding procedure, each WDpf animal was 113 

weight-paired with one Cal rat. The caloric intake of each Cal rats was measured daily. WDpf animals 114 

were given the quantity of diet calculated to equal the amount of calories ingested by their paired Cal. 115 

One third of the daily ration was given at 8am and the remaining two third at 8pm.Since this pair-116 

feeding procedure alters the natural feeding pattern, we added a fourth group of rats (Cpf, n=6). These 117 

latter were fed a standard chow at the same caloric level than their weight-paired Cal rat and with the 118 

same feeding pattern than WDpf rats.  Cpf and WDpf rats were pair-fed during the first week 119 

exclusively and fed ad libitum with their respective diets for 5 weeks. Body weight and food intake 120 

were measured daily the first week and twice a week for the remaining dietary intervention.  121 

 122 

Serum and tissue collection 123 

After 6 weeks on respective diets and after an overnight fast and 2-hr refeed, rats were euthanized by 124 

cardiac puncture under deep anesthesia induced by CO2 asphyxia. Blood was collected by cardiac 125 

puncture and serum was obtained after centrifugation (4°C; 10 000 RPM, 15 min) and frozen at -80°C. 126 



Fat pads (mesenteric, epididymal and retroperitoneal) weight was measured and adiposity was 127 

calculated as the sum of fat pad weights / body weight * 100.  Luminal contents, tissue sections and 128 

mucosa scrapping from ileum and caecum were flash frozen in liquid nitrogen and stored at -80°C. 129 

Segments of ileum and caecum were collected and stored in cold DMEM (Thermofisher Scientific, 130 

Waltham, MA USA) for Ussing chambers measurements. Liver were flash frozen in liquid nitrogen 131 

and stored at -80°C. For histological measurement, sections of mesenteric fat, liver, ileum and colon 132 

were fixed in 4% formaldehyde for 24h and stored in 70% ethanol for further analysis. 133 

 134 

Ex vivo permeability 135 

Intestinal tissues were opened along the mesenteric border and mounted in Ussing chamber 136 

(Physiologic Instrument, San Diego, USA). The chamber opening exposed 0.5 cm2 of tissue surface 137 

area to 2.5 mL of circulating oxygenated Krebs-glucose (10mM) and Krebs-mannitol (10mM) buffers 138 

at 37°C on the serosal and luminal sides, respectively. Tissues were short-circuited and Conductance 139 

(G) was determined at baseline as an indicator of paracellular ion flux and expressed as mS.cm². The 140 

transcellular and LPS permeabilities were determined as the flux of horseradish peroxidase (HRP 141 

Type II, Sigma-Aldrich, Saint-Quentin Fallavier, France) and FITC-LPS (Lipopolysaccharide from 142 

Escherichia coli 0111:B4, Sigma-Aldrich), respectively. FITC-LPS (40µg/ml) and HRP (200µg/ml) 143 

were added into the mucosal chamber at t0. Two hundred microliters samples were collected at 30-min 144 

intervals during 120 minutes from the serosal chambers and replaced with Krebs-glucose to maintain a 145 

constant volume within chambers. Concentration of FITC-LPS was measured by fluorimetry 146 

(fluorimeter LB940 Mithras; Berthold Technologies, Thoiry, France), whereas concentration of HRP 147 

was determined using spectrophotometry (Multiskan spectrum; Thermo Labsystem, Midland, Canada) 148 

after enzymatic reaction using o-dianisidine as substrate (Sigma-Aldrich). Mucosal-to serosal fluxes 149 

were then calculated and expressed as nanograms per square centimeter per hour.  150 

 151 

Serum analyses 152 

Lipopolysaccharide-binding protein levels were measured in serum samples via ELISA kit according 153 

to manufacturer’s recommendations (Biometec, Greifswald, Germany). Serum aspartate 154 



aminotransferase activity (ASAT) and alanine aminotransferase activity (ALAT) measurements were 155 

performed on a Roche/Hitachi system using adapted kits (Cobas analyzer, Roche Diagnostic, Meylan, 156 

France) and kindly performed by Dr Nicolas Collet from Pontchaillou Rennes CHU, Biochemistry 157 

Laboratory.  158 

Serum endotoxemia was determined using the LAL assay in kinetic chromogenic conditions 159 

(Associate of Cape Cod) as previously described (44).   160 

 161 

Histology 162 

Mesenteric fat samples and liver were embedded in paraffin and cut in 10μm and 3µm sections 163 

respectively. Sections were then stained with hematoxylin and eosin. Mesenteric fat sections were 164 

examined under a light microscope (Nikon DS-Ri2) and images were taken at 100x magnification 165 

using NIS-Elements software. The area of adipocytes was measured with ImageJ 1.50i digital imaging 166 

processing software. Images from liver sections were randomly taken at 20x magnification under a 167 

light microscope (Nikon DS-Ri2). Image analysis using dedicated software (NIS-Elements AR3.0 168 

software, Nikon Instruments) was performed to automatically detect lipid droplets and quantify their 169 

surface.  170 

Ileum and colon samples were embedded in paraffin and cut in 5-µm sections. Both sections were then 171 

stained with periodic acid-Schiff-alcian blue (PAS/AB) and examined under a light microscope 172 

(Nikon ECLIPSE E400; Nikon Instrument) equipped with image analysis software. Villi length, crypt 173 

depth and goblet cell (GC) number were measured and counted in 20 well-oriented crypt-villus units. 174 

Presence of mucus in the lumen was scored visually from 0 to 2, 0 being no staining of mucus in the 175 

lumen and 2 large staining of mucus in the lumen. All the measurements were performed blinded for 176 

dietary group.  177 

 178 

Triglycerides liver analysis 179 

Liver lipids were extracted from 100 mg of liver tissue by the Folch method using chloroform and 180 

methanol. Triglycerides contents were then determined by colorimetric method according to 181 

manufacturer’s recommendations (Triglyceride Quantification Assay Kit, Abcam, Cambridge, UK). 182 



 183 

Tissue RNA extraction and quantitative RT-PCR 184 

Total RNA from ileal, caecal and liver samples was extracted via the Trizol method (15596-018; 185 

Thermofischer Scientific) and quantified using a spectrophotometer (Denovix, Wilmington, DE, 186 

USA). 2μg RNA was converted to cDNA using a High Capacity Complementary DNA Reverse 187 

Transcription Kit (Applied Biosystems, Foster City, CA, USA) following manufacturer’s protocol. 188 

Real-Time PCR was performed with the StepOnePlus real-time PCR machine using SyberGreen 189 

master mix (Fischer Scientific) for detection. Primers for selected genes (Table 1) were designed using 190 

Integrated DNA Technologies Primer Quest. HPRT-1, GAPDH and Actin were used as housekeeping 191 

genes, using their mean Ct.   192 

 193 

Microbial DNA extraction and quantitative RT-PCR 194 

Total DNA was extracted from caecal luminal contents using the ZR Fecal DNA MiniPrep kit (Zymo 195 

Research, Irvine, CA, USA). Then, DNA was quantified using a spectrophotometer (Denovix). Real-196 

Time PCR was performed with the StepOnePlus real-time PCR machine using SyberGreen master mix 197 

for detection. Primers for selected 16S genes specific to each phylum are recapitulated in Table 1. 198 

Universal 16S rRNA was used to normalize data. 199 

 200 

Statistical analysis 201 

Statistical analysis was performed on Graphpad Prism software (v5, San Diego, CA, USA) and data 202 

are expressed as means ± SEM. Data were analyzed using two-ways ANOVA testing diet, feeding 203 

pattern and diet X feeding pattern, with Bonferroni post hoc tests. For body weight and food intake 204 

analysis, diet, feeding pattern, time, diet X feeding pattern effects were analyzed by ANOVA using R 205 

software. P<0.05 was considered significant. Correlation analysis between data was performed using 206 

Graphpad Prism. 207 

 208 

 209 



Results 210 

Six weeks WD feeding results in mild obese phenotype, irrespective of initial caloric intake 211 

WDal rats had a greater energy intake during the first week of the dietary intervention (Fig 1A) while, 212 

as designed, WDpf rats had comparable energy intake than Cal rats thus avoiding the WD-induced 213 

first week hyperphagia (Fig 1A). From week 2 to 6, C animals ate slightly more calories than WD rats 214 

(diet effect P=0.049, Fig 1B).  215 

Western diet-fed rats exhibited greater weight gain (diet P=0.004) compared to C rats, irrespective of 216 

the first week energy intake (Fig 1C). They exhibited marked adiposity with a 1.5-fold greater 217 

adiposity index compared to C animals, irrespective of initial food intake (diet P<0.0001, Fig 1D). 218 

This enhanced adiposity was due to elevated mesenteric, retroperitoneal and epididymal fat pad 219 

weights (data not shown).  Six weeks of WD increased mesenteric fat adipocyte average surface (diet 220 

P = 0.011, Fig 1D).  221 

Hepatic steatosis was evaluated by quantification of lipid droplet surface on histological slides and 222 

quantification of liver triglyceride content. Serum levels of ALAT and ASAT were used to evaluate 223 

hepatic function. WD rats exhibited increased presence of lipid droplets, mainly macro-vesicular as 224 

observed visually (P=0.039, Fig 1F). This was confirmed in WD rats by greater liver triglycerides 225 

content than C rats (diet P <0.0001, Fig 1G). ASAT serum levels were increased in WD-fed rats (diet 226 

P=0.022, Fig 1H).  ALAT concentrations were not influenced by diet (Fig 1I).  227 

DIO is characterized by chronic low grade inflammation likely originating from the intestine and 228 

spreading to other tissues (20). Therefore, we measured mRNA levels of the pro-inflammatory 229 

cytokine IL1-β in the ileum, caecum and liver. Six-week WD consumption significantly increased il-230 

1β mRNA level in the caecum, but not in the ileum (Table 2). Hepatic il-1β mRNA levels were not 231 

different between WD and C fed rats.  232 

 233 

Six weeks WD feeding induces metabolic endotoxemia  234 

Endotoxemia evaluated by serum LPS was not significantly different between dietary groups (Fig 2A). 235 

Yet, WDpf animals displayed high heterogeneity in serum LPS with values ranging from 0.02 to 25.85 236 



EU/mL.We measured serum LBP concentration, the main LPS circulating transporter considered as 237 

marker of hepatic exposure to LPS and thus metabolic endotoxemia. WD-fed rats exhibited a 3.3-fold 238 

increase (diet P=0.003, Fig 2B) in LBP serum concentration relative to C rats, irrespective of initial 239 

energy intake. This increased exposure of the liver to LPS was confirmed by greater hepatic lbp 240 

mRNA level in WD-fed animals compared to C rats (diet, P=0.006, Fig 2C) and significant correlation 241 

between lbp mRNA level and serum LBP concentration (r=0.742 and P<0.0001, Fig 2D).  242 

 243 

Six week WD feeding modifies microbiota composition 244 

Obesity is associated with alteration in intestinal bacterial composition that might result in increased 245 

LPS-bearing Gram negative bacteria abundance in the lumen. We therefore seek to evaluate the level 246 

of the major phyla present in the caecum. Levels of Bacteroidetes (Fig 3A), Firmicutes (Fig 3B) and 247 

Proteobacteria (Fig 3C) in caecal content were not altered by 6-week WD consumption, irrespective of 248 

the initial energy intake. However, WD fed rat exhibited significantly greater Verrucomicrobia levels 249 

in the caecum (+237%, diet P=0.004, Fig 3D), irrespective of the initial energy intake. Due to 250 

technical problems, we were not able to amplify Actinobacteria phylum and we used the genus 251 

Bifidobacterium as a representative of this phylum. Bifidobacteria levels were increased by 760% in 252 

WD animals (diet P=0.001, Fig 3E), irrespective of the initial energy intake.  253 

 254 

Six week WF feeding profoundly affects  ileal barrier function 255 

Mucus secreted by GC is the first line of defense of the intestinal mucosa, limiting the presence of 256 

noxious molecules such as LPS on the apical side of epithelial cells. We therefore evaluated the 257 

number of GC in ileal and large intestinal mucosa using PAS/AB staining that colors mucins. In the 258 

ileum, the number of GC per villus or per crypt was reduced in WD rats (diet P<0.001, Fig 4A-B) with 259 

a tendency for a more pronounced reduction in WDpf rats (WDal vs WDpf P=0.07 in villi and 260 

P=0.056 in crypts). Since villi length, but not crypt depth, was decreased in WD-fed rats, irrespective 261 

of initial energy intake (data not shown), we calculated a number of GC / µm of villus or crypt to 262 

ensure that the reduction in GC number observed was not due to reduced villi size. In both villi and 263 



crypts, the number of GC/µm was reduced by WD feeding (diet P<0.001, Fig 4C-D), with more 264 

pronounced effect in WDpf rats (Fig 4C-D).  265 

PAS/AB staining also revealed large quantity of mucus in the ileal lumen of WD-fed rats (Fig 4E) that 266 

was quantified by scoring the presence (highest score) or absence (lowest score) of this luminal 267 

mucus. WD-fed rats exhibited a significantly greater score (diet P<0.0001, Fig 4F) than C rats, 268 

indicative of large amount of unorganized mucus in the lumen. WDpf rats had an even greater 269 

presence of mucus in the lumen compared to WDal (Fig 4F).  270 

In the large intestine, no significant difference in colonic number of GC was observed between WD 271 

and C fed animals (data not shown). No mucus secretion in the lumen was noticed.  272 

 273 

IAP is a brush border enzyme that dephosphorylates LPS, thus limiting its endotoxin activity. 274 

Ingestion of WD diet, irrespective of initial hyperphagia, dramatically increased IAP activity in both 275 

ileum and caecum (diet effect P=0.008 and P<0.0001, respectively, Table 3).  276 

Ileal mucosa is also endowed with anti-microbial peptides (AMPs) secreted mainly by Paneth cells 277 

into the lumen, including regenerating family member (Reg)3-β specifically targeting Gram-negative 278 

bacteria (70). WD-fed rats exhibited a 3.3-fold decrease in ileal reg3-β expression after 6 weeks of diet 279 

compared to C rats (diet P=0.009, Table 3). We also measured the ileal gene expression of non-LPS 280 

specific AMPs: Reg3-γ, defensin 1 (DEFA-1), lysozyme C (LYZC) and group IIA phospholipase A2 281 

(PLA2). Similarly to reg3-β, reg3-γ mRNA level was decreased in WD-fed rats relative to C rats (diet 282 

effect P=0.003). On the opposite, lyzc, defa-1 and pla-2 gene expressions were not influenced by the 283 

diet (Table 3).  .  284 

 285 

Intestinal passage of LPS was evaluated ex vivo in both ileum and caecum using Ussing chambers. 286 

Irrespective of initial energy intake, WD consumption induced a 1.5-fold  increase in ileal LPS flux in 287 

WD-fed rats compared to C rats (diet P=0.027, Fig 5A). LPS flux across the caecum of WDal rats was 288 

not different from that of C rats (Fig 5B). However, WDpf rats exhibited a 2.2-fold  increase in caecal 289 

LPS flux compared to WDal rats (Fig 5B). Paracellular and transcellular permeability measured by 290 

conductance and HRP flux, respectively, were also increased in the ileum of WD rats compared to C 291 



ones, irrespective of the initial energy intake (diet P=0.04 and diet P=0.02, respectively, Fig 5 C-E). 292 

No differences were observed in caecal paracellular and transcellular permeability between WD and C 293 

animals (Fig 5 D-F)  294 

 Intestinal barrier function was also assessed by measuring the gene expression of several tight 295 

junction proteins (ZO-1, Claudin-1 and-2, occludin) and of MLCK, involved in myosin light chain 296 

phosphorylation and tight junction opening. Occludin mRNA level was 1.5-fold lower (diet P=0.003, 297 

Table 4) and that of claudin-2 tended to be also lower (diet, P=0.07, Table 4) in the caecum of WD 298 

rats compared to C ones. Diet did not impact the expression of the other tight junction proteins and 299 

MLCK in the caecum or in the ileum (Table 3).  300 

 301 

Hepatic LPS detoxification protein and enzymes  302 

Hepatic gene expression of the two majors enzymes involved in liver LPS detoxification, AOAH and 303 

ALPL, was not influenced by diet, nor was that of SCARB-1, a scavenger receptor involved in LPS 304 

endocytosis from circulation into Kupffer cells (Table 5).  305 

 306 

Ileal barrier function parameters correlate with metabolic endotoxemia 307 

We next sought to investigate if ileal, caecal or hepatic parameters could explain LPS or LBP serum 308 

concentrations by correlating these different parameters. Serum LPS concentration correlated 309 

positively with ileal permeability parameters, including LPS and HRP fluxes across the ileum 310 

(P=0.003, Fig 6A-B and 0.013, Fig 6A respectively) but also ileal IAP activity (P=0.018, Fig6 A&C), 311 

Proteobacteria level (P=0.013, Fig 6A&D) and hepatic aoah mRNA levels (P=0.007, Fig 6A&E). 312 

Serum LBP concentration correlated positively with ileal barrier function parameters (LPS and HRP 313 

flux across ileal mucosa, P=0.0001, Fig6 A&F and 0.003, Fig6A, respectively and ileal conductance, 314 

P=0.004, Fig 6A, mucus secretion score in ileal lumen, P=0.01, Fig6 A&G), ileal and caecal IAP 315 

activity (P<0.0001 Fig 6A&H and 0.03, Fig 6A, respectively), Verrucomicrobia level (P=0.037, Fig 6 316 

A&I) and negatively with ileal GC number in villi and crypts (P=0.01, Fig 6A&J and 0.025, Fig 6A, 317 

respectively) and Firmicutes level (P=0.025, Fig 6A&K). 318 

  319 



Discussion  320 

Despite the numerous intestinal and hepatic mechanisms limiting the entry and dissemination of gut-321 

derived LPS into the systemic circulation, low, yet significant, amounts of LPS are found in the 322 

plasma of obese people, leading to low grade inflammation. We hypothesized that one or several of 323 

these mechanisms are impaired during DIO, resulting in elevated endotoxemia. In our model of mild 324 

obesity induced by 6 weeks of WD feeding, we observed disrupted ileal gut barrier function as 325 

demonstrated by reduced AMPs level, increased ileal IAP activity, altered mucus secretion and 326 

increased LPS flux across the ileum. The caecum barrier function was less altered, except in WDpf 327 

rats which exhibited increased passage of LPS. We also observed alteration of the gut microbiota with 328 

WD feeding but hepatic detoxification mechanisms were poorly affected at this stage of obesity. 329 

Correlation of all these data highlighted ileal defects as key drivers of metabolic endotoxemia.  330 

 331 

Western-diet feeding in our model resulted in a mild obesity phenotype with greater weight gain, 332 

adiposity and enlargement of adipocytes compared to C rats but few metabolic consequences since the 333 

liver was only slightly affected by the diet. Indeed, we observed increased accumulation of 334 

triglycerides and of lipid droplets in the liver without reaching the level of steatosis defined as >5% of 335 

liver tissue section. We also observed a slight increase (+25%) in serum ASAT but not in ALAT and 336 

no signs of hepatic inflammation as documented by similar IL-1β gene expression in C and WD rats. 337 

Altogether, this suggests only few hepatic disturbances at this stage of obesity. On the other hand, 338 

caecal il-1β mRNA level was increased in WD rats. High-fat diet-induced intestinal inflammation 339 

precedes and correlates with later obesity and insulin resistance in mice (20). This reinforces the fact 340 

that our model is a mild obesity model with only initial intestinal inflammation that has not spread to 341 

the rest of the body yet.  342 

Serum LPS concentration was not significantly increased in our WD-fed animals. However, they 343 

exhibited hepatic LPS exposure as demonstrated by increased hepatic lbp mRNA levels and serum 344 

LBP concentrations. LBP is an acute-phase protein synthesized in the liver in response to LPS (36). 345 

Considering that LPS has a short half-life and that LBP represents the innate immune response 346 



triggered by LPS, serum LBP concentration is an indirect way to evaluate circulating LPS and is now 347 

considered as a good marker of metabolic endotoxemia (5, 27, 41, 73). The reason why we were not 348 

able to observe increased serum LPS in WD-fed rats is unknown but might be related to the stage of 349 

mild obesity of our rats whereby the multiple factors usually neutralizing LPS are not yet 350 

overwhelmed by chronic exposure to LPS and still able to efficiently detoxify LPS.  351 

Because WD feeding in rodent is associated with caloric overconsumption during the first days of diet 352 

consumption (27, 77, 78), we included a group of pair-fed rats fed the WD without the initial 353 

hyperphagia, thus avoiding confounding factors. Previous studies reported that reducing WD calories 354 

intake attenuated but did not prevent the development of obesity and associated metabolic disorders 355 

(18, 58, 77, 78). Similarly, we demonstrated that weight gain, increased adiposity and hepatic 356 

parameters at week 6 were not dependent on initial energy intake. Despite the absence of significant 357 

difference in serum LPS between WD and C-fed rats it is noteworthy that the WDpf group presented a 358 

large variability in serum LPS levels. In rodents, it is usual to observe variability in response to WD 359 

feeding (46, 79). Elucidating why some of these animals exhibited such variability was beyond the 360 

scope of this study. Yet we noticed that WDpf rats exhibited elevated LPS flux across the caecum, in 361 

addition to the increased ileal LPS flux  and a more pronounced alteration GC and mucus physiology. 362 

The early hyperphagia seen in WD fed rats when they are switched from chow to WD is probably due 363 

to the increased palatability of the diet (69, 77). Recently, it was demonstrated that this early phase of 364 

hyperphagia is characterized by transient hepatic steatosis, inflammation and glucose intolerance that 365 

resolve before a second phase of metabolic disorders appears after prolonged WD consumption (45, 366 

76, 77). Unlike in the adipose tissue or the liver, one-week WD ad libitum consumption does not 367 

trigger intestinal damages or inflammation in the ileum or caecum of rodents (27, 31). On the contrary, 368 

eosinophil depletion has even been observed during the first few days of high-fat diet consumption in 369 

mice (31). Our WDpf rats exhibited increased caecal il-1β mRNA compared to WDal and C rats at 1 370 

week (personal communication), suggesting that hyperphagia is necessary to maintain gut homeostasis 371 

on the short term and that the natural early hyperphagia triggers signals that limit inflammation and 372 

gut barrier dysfunction also on the long-term. Yet, further research is needed to understand this early 373 

priming effect. 374 



 375 

Anti-microbial peptides and mucosal enzymes, secreted by Paneth cells and enterocytes protect against 376 

microbial attachment and invasion and participate to the regulation of the gut barrier function(8, 62). 377 

Enterocytes also secrete IAP, a gut mucosal protein that detoxifies LPS which is then unable to trigger 378 

TLR-induced inflammation (39). There is conflicting evidence regarding how the intestine adapts its 379 

mucosal defense i.e. AMPs secretion and IAP activity, to WD feeding. We showed that 6-week WD 380 

feeding led to the reduction of Reg-3β and γ ileal gene expression, yet, upregulated ileal and caecal 381 

IAP activities. Although DIO-induced reduction in AMPs secretion is widely accepted in the literature 382 

(19, 22, 23), the beneficial purpose of this decreased bacterial degradation capacity remains unclear 383 

since Reg3-γ deficient mice exhibit elevated inflammatory responses to commensal and enteric 384 

pathogen (47). Moreover, Reg3-γ promotes bacterial segregation (68); hence the decreased AMPs 385 

expression might lead to increased proportion of Gram-negative bacteria close to the enterocytes. On 386 

the other hand, the increased IAP activity in DIO which has also already been described (49, 64, 80) is 387 

probably intended to reduce toxic LPS activity within the gut wall. The beneficial effect of IAP on 388 

WD-induced endotoxemia has been revealed using mice deficient for IAP that exhibited greater 389 

endotoxemia and obesity compared to wild type animals after WD feeding (33). However, this 390 

upregulation might be specific to dietary intervention duration or intestinal section since opposite 391 

results have also been described with either longer or shorter duration of WD consumption (17, 30). 392 

Interestingly, increased IAP activity in the ileum and to a lesser extent in the caecum was one of the 393 

main factors correlating positively with serum LPS and LBP. This positive correlation seems counter-394 

intuitive as greater IAP activity should result in lower level of LPS in the mucosa, thus lower levels of 395 

serum LPS and LBP. However, it has been shown using a germ-free zebrafish model that bacterial 396 

LPS induce epithelial IAP gene expression and enzymatic activity in a MyD88-dependant manner (3). 397 

We can therefore hypothesize that the increased IAP activity in our model results from increased LPS 398 

luminal concentration, in line with increased LPS or LBP serum concentrations. 399 

 400 

Changes in the gut barrier function have been described in several animal models of obesity (13, 17, 401 

31, 66) and humans (26, 54, 72), yet with some discrepancies (55) and  has been suggested to be one 402 



of the cause of elevated endotoxemia. The controlled passage of antigen by the epithelium involves 403 

two routes across enterocytes and/or colonocytes depending on the size and charge of antigen. 404 

Paracellular permeability refers to the passage of small diameter molecules between adjacent intestinal 405 

epithelial cells. This pathway is regulated by junctional complexes including tight junction proteins. 406 

Transcellular route refers to the passage of larger molecules via endocytose. DIO has been associated 407 

with increased paracellular permeability, along with decreased tight junction protein expression in 408 

both humans and animals models (11, 13, 31). Although literature data are scarce, transcellular 409 

permeability seems to be similarly increased in response to obesity or WD feeding (27). In our model, 410 

paracellular and transcellular permeabilities, evaluated respectively by electric conductance and HRP 411 

flux across the mucosa in Ussing chambers were increased in the ileum, but not the caecum of WD-fed 412 

rats. Tight junction protein mRNA levels were poorly affected by the diet in both intestinal sections, 413 

except for occludin and to a lesser extent claudin-2 mRNA levels in the caecum. It is noteworthy that a 414 

direct link between tight junction protein mRNA levels and epithelial permeability cannot be drawn as 415 

many factors regulate epithelial permeability, such as expression, localization and phosphorylation of 416 

the different tight junction proteins within the cells (9).  417 

To our knowledge, our study is the first to evaluate the passage of LPS across the intestinal mucosa 418 

using Ussing chambers in an obesity model. LPS flux across the ileum strongly correlated with serum 419 

LBP and to a lesser extent serum LPS. Similarly, in a model of pig divergent for food intake and 420 

exhibiting differences in serum endotoxemia, Mani et al observed a positive correlation between 421 

serum endotoxin concentrations and passage of LPS across ileal, but not colonic, mucosa mounted in 422 

Ussing chamber (51). This reinforces the fact that LPS permeability specifically in the ileum could be 423 

a key driver of metabolic endotoxemia.  The precise mechanisms by which LPS crosses the intestinal 424 

epithelium and possible regional variations along the gut remain unknown. According to its size (59), 425 

LPS likely crosses IEC through a transcellular pathway rather than a paracellular route. In the small 426 

intestine, LPS crosses the enterocytes together with lipid absorption through the chylomicrons 427 

pathway in postprandial phases. In a fasted state, it has been suggested that LPS could cross the 428 

intestinal epithelium either through enterocytes (4, 50) or mucus emptied-goblets cells (29) via the 429 

recently described goblet-cell associated passage (GAP) (38). In our study, we observed a large 430 



quantity of mucus in the lumen of WD-fed rats that could result from reduced degradation of mucus 431 

and/or recent mucus secretion just before euthanasia. We suggest that this increased presence of mucus 432 

within the ileal lumen is due to mucus secretion. Indeed, mucus secretion would result in emptying GC 433 

that would not be stained by the PAS/AB staining, in agreement with the reduced number of  434 

PAS/AB-stained GC also observed. This possibility is also strengthened by the fact that the number of 435 

PAS/AB-stained GC was negatively correlated with luminal mucus presence score (r=-0.770 and -436 

0.733 for villi and crypt, respectively, P<0.0001 for both), suggesting a direct inverse relationship 437 

between this two phenomena. Moreover, this type of images has already been observed in mice 438 

intestine where mucus secretion from GC was induced by leptin (60). Leptinemia is probably 439 

increased in our WD-fed animals exhibiting an increased adiposity index compared to C rats and as 440 

already demonstrated in the same animal model (27). We therefore speculate that increased ileal 441 

mucus secretion and subsequent increased in empty GC might allow LPS crossing through GAP, 442 

resulting in elevated LPS flux as observed in Ussing chambers. However, we also observed increased 443 

in ileal HRP flux in WD animals suggesting that LPS might also cross the enterocytes through regular 444 

transcytosis pathway. Further research is therefore needed to determine which of these mechanisms is 445 

the main LPS route of passage in the ileum.  446 

 447 

DIO has been associated with drastic changes in the composition of the gut microbiota (24). Yet the 448 

impact of such changes in intestinal ecology in term of luminal LPS concentration is difficult to 449 

interpret. Indeed, inconsistent results are found in literature concerning how WD consumption impacts 450 

quantity of luminal LPS. Whereas two studies showed increased quantity of fecal LPS in WD-fed 451 

mice (35, 40) suggesting an increase in Gram-negative bacteria proportion in the gut lumen, Everard et 452 

al showed by metagenomics, a decrease in the abundance of genes involved in LPS biosynthesis 453 

within the caecal lumen (23). By evaluating the levels of the main phyla in the caecum, we sought to 454 

estimate the Gram negative/positive ratio after 6 weeks of WD feeding. We observed increased levels 455 

of the phylum Verrucomicrobia and of the genus Bifidobacterium (representative of Actinobacteria) in 456 

WD-fed rats. In healthy rats, Verrucomicrobia account for 2% of the caecal microbiota and 457 

Actinobacteria for less than 0.1% (27). Hence, the elevation in the Gram-positive Bifidobacterium 458 



level is probably irrelevant compared to the increase in the Gram-negative Verrucomicrobia in terms 459 

of Gram+/Gram- ratio. However, considering the small proportion of Verrucomicrobia (2%) compared 460 

to Firmicutes and Bacteroidetes that represent more than 90% of bacteria harboring the colon, the 461 

increased Gram-negative bacteria observed might also be poorly relevant in term of LPS luminal 462 

concentration. Interestingly, our correlation analysis highlighted correlations between serum LPS 463 

and/or LBP and the Gram-negative phyla Proteobacteria and Verrucomicrobia (positive correlations) 464 

and negative correlation with the gram positive Firmicutes.  Thus the Garm-positive / Gram-negative 465 

composition and balance within the gut appears to also be a key driver of metabolic endotoxemia. 466 

 467 

The liver is the main internal organ involved in LPS detoxification and disposal processes. Within 468 

hepatocytes, LPS is endocytosed by Scavenger-Receptor (71) and detoxified by two majors enzymes: 469 

AOAH (65) and ALPL (2). Those two enzymes are both upregulated in sepsis, characterized by high 470 

concentration of LPS (57, 67). Our study is the first to investigate the impact of DIO on LPS liver 471 

detoxification enzyme expression. Consumption of WD for 6 weeks did not significantly modify 472 

hepatic gene expressions of AOAH and ALPL despite hepatic LPS exposure as demonstrated by 473 

increased lbp mRNA and plasma LBP. This suggests either a dose effect, whereby a certain amount of 474 

LPS is needed to induce detoxification enzyme up-regulation or a location effect as gut-derived LPS in 475 

our model travels through the portal vein, thus achieving high intra-sinusoidal LPS concentrations as 476 

opposed to experimental model of sepsis were LPS is injected intravenously. However, despite 477 

absence of significant increase in AOAH gene expression, a significant correlation between serum 478 

LPS and AOAH gene expression was observed. AOAH is an important lipase enzyme that selectively 479 

removes the secondary fatty acyl chains attached to the primary chains in the lipid A moiety and 480 

detoxifies endotoxin (65). It has been shown in immune cells that its expression is up-regulated by 481 

LPS exposure (15) . Increased hepatic exposure to LPS either through an increased passage across the 482 

ileum or through the blood circulation could therefore up-regulates hepatic AOAH gene expression.   483 

 484 

In conclusion, our data demonstrate that 6-week WD feeding in rats leads to multiple adaptations of 485 

the intestinal mechanisms involved in protection against LPS entry and dissemination within the host. 486 



They also highlight that the disrupted ileal barrier function characterized by impairment of mucosa 487 

defense mechanisms associated to increased ileal permeability to LPS and probably to an unbalance in 488 

the Gram-negative / Gram positive ratio within the gut microbiota is central to the development of 489 

metabolic endotoxemia. Therefore, the ileum should be chosen as a target organ for developing 490 

efficient strategies to reduce/decrease/blunt metabolic endotoxemia. Another novelty of our study is 491 

that by using a pair-feeding procedure we highlighted the fact that the first week hyperphagia under 492 

high fat diet might play a role in maintaining long term caecal homeostasis. One limitation of our 493 

study is that we did not investigate the mechanisms behind this effect, yet we used this variability to 494 

investigate more deeply gut-induced metabolic endotoxemia. Further studies are needed to understand 495 

the WDpf phenotype.  496 
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 756 

 Figure legends  757 

Figure 1: Western diet feeding induces a mild obesity phenotype 758 



Daily average food intake on week 1 (A) and on the whole dietary intervention period  (B), weight 759 

gain over the 6-week period (C), adiposity index (D), mesenteric fat adipocyte average size (E), 760 

hepatic steatosis (F), hepatic triglyceride content (G) and serum ASAT (H) and ALAT (I) 761 

concentrations at week 6 for control ad libitum (Cal), control pair-fed (Cpf), WD ad libitum (WDal) 762 

and WD pair-fed (WDpf) rats. Data are expressed as mean ± SEM. * P<0.05.  763 

Figure 2: Western diet feeding induces metabolic endotoxemia   764 

Serum concentration of LPS (A), LBP (B) and hepatic mRNA levels of lbp (C) of control ad libitum 765 

(Cal), control pair-fed (Cpf), WD ad libitum (WDal) and WD pair-fed (WDpf) rats at week 6. 766 

Correlation between hepatic lbp gene expression and serum LBP levels (D). Data are presented as 767 

means ± SEM.  * P<0.05. 768 

 769 

Figure 3: Western diet feeding alters caecal microbiota composition  770 

Levels of Bacteroidetes (A), Firmicutes (B), Proteobacteria (C), Verrucomicrobia (D) and 771 

Bifidobacteria (E) in caecal content of control ad libitum (Cal), control pair-fed (Cpf), WD ad libitum 772 

(WDal) and WD pair-fed (WDpf) rats at 6 weeks. (E). Data are presented as means ± SEM. * P<0.05. 773 

 774 

 Figure 4: Western diet feeding reduces goblet cell number but increase luminal mucus in the 775 

ileum   776 

Number of goblet cells (GC) per villus (A) or per crypt (B); number of GC / µm of villus (C) or crypt 777 

(D) and score of presence of luminal mucus (F) in the ileum of control ad libitum (Cal), control pair-778 

fed (Cpf), WD ad libitum (WDal) and WD pair-fed (WDpf) rats at week 6. Representative histological 779 

images of ileum sections stained with PAS/AB (I) of Cal, Cpf, WDal and WDpf rats at week 6 €. Data 780 

are presented as means ± SEM. * P<0.05. 781 

 782 

Figure 5:  Western diet feeding increases intestinal permeability  783 

LPS-FITC flux across ileum (A) and caecum (B), conductance of ileum (C) and caecum (D),  HRP 784 

flux across ileum (E) and caecum (F) of control ad libitum (Cal), control pair-fed (Cpf), WD ad 785 



libitum (WDal) and WD pair-fed (WDpf) rats at week 6. Data are presented as means ± SEM. 786 

*P<0.05.   787 

 788 

Figure 6: Correlation of serum LPS and LBP with intestinal and hepatic parameters 789 

Correlation matrix of serum LPS and LBP and intestinal and hepatic parameters involved in LPS 790 

detoxification or disposal (A). Correlation of serum LPS with ileal LPS flux (B), ileal IAP activity (C), 791 

Proteobacteria level (D) and hepatic aoah mRNA level (E). Correlation of serum LBP with ileal LPS 792 

flux (F), score of mucus presence in the ileum (G), ileal IAP activity (H), Verrucomicrobioa level (I), 793 

number of GC / µm in ileal villus (J) and Firmicutes level (K). 794 
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FIGURE 4 

Feeding pattern x diet: P=0.0008, Wdal vs WDpf P=0.005 
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FIGURE 5 

Feeding pattern x diet: P=0.06, Wdal vs WDpf P=0.015 
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Table 1: Primers sequences used in this study 

 

 

 

Gene Forward (5’-3’) Reverse (3’-5’) 

ACTIN CCCTAAGGCCAACCGTGAAA CATACAGGGACAACACAGCCT 
ALPL GACATCGCCTATCAGCTAATGC CCACATCAGTTCTGTTCTTGGG 
AOAH ATGAAGGCTGATGTGGTGTG AGGACTTCCTGAGGACTTGT 
BACTEROIDETES ATACGCGAGGAACCTTACC AGCTGACGACAACCATGCAG 
BIFIDOBACTERIA TCGCGTC(CT)GGTGTGAAAG CCACATCCAGC(AG)TCCAC 
DEFA1 AGAGGCAGAGGAAGAGACTAAA AGGACTACAGGGCTCATCTAC 
FIRMICUTES TGAAACTYAAAGGAATTGACG ACCATGCACCACCTGTC 
GAPDH GGTCGGTGTGAACGGATTT TGGAAGATGGTGATGGGTTTC 
HPRT1 TAGGTCCATTCCTATGACTGTAGA TGGCCTGTATCCAACACTTC 
IL-1β ATCTATACCTGTCCTGTGTGATG GACAGGTCTGTGCTCTGC 
LBP AGTCTGCAGAGAGAGCTGTA CCAGGCTATGAAACTCGTACTG 
LYZ-C GAATGGGATGTCTGGCTACTATG GTCTCCAGGGTTGTAGTTTCTG 
PLA2gIIa GCTGTGTGACTCATGACTGTT CTCGGTAGGAGAACTTGTAGGT 
PROTEOBACTERIA AACGCGAAAAACCTTACCTACC TGCCCTTTCGTAGCAACTAGTG 
REG3-β ATCACAGGTGCAAGGAGAAG TGAAACAGGGCATAGCAGTAG 
REG3-γ GCATATGGCTCCTACTGCTATG TCAGCTACATTGAGCACAGATAC 
SCARB-1 GCAGTGATGATGGAGGACAA GGGAACATGCCTGGGAAATA 
UNIVERSAL 16S AAACTCAAAKGAATTGACGG CTCARRCACGAGCTGAC 
VERRUMICROBIOTA TCAKGTCAGTATGGCCCTTAT CAGTTTTYAGGATTTCCTCCGCC 



 

Table 2: IL-1β gene expression in ileum, caecum and liver after 6-week WD or C feeding. 

 

 

 

 

 

 

Results are means ± SEM. FP=feeding pattern. 

 

  P-value 

 Cal Cpf WDal WDpf diet FP diet x FP 

ileum, 2-dCt 0.19 ± 0.06 0.19 ± 0.02 0.18 ± 0.02 0.22 ± 0.03 0.85 0.53 0.65 

caecum, 2-dCt 0.52 ± 0.24 0.64 ± 0.25 0.92 ± 0.46 0.91 ± 0.36 0.009 0.69 0.58 

liver, 2-dCt 0.11 ± 0.02 0.06 ± 0.01 0.11 ± 0.01 0.13 ± 0.03 0.23 0.55 0.17 



 
 
  
 
 
 
 
 
 
 
 
Table 3: IAP activity in ileum and caecum and anti-microbial peptides gene expression in ileum  

 
 Results are means ± SEM. FP=feeding pattern. 
 

 

 

     P-value 

 Cal Cpf WDal WDpf Diet FP Diet x 
FP 

Ileal IAP 
activity 

(AU/mg) 
4.4 ± 0.7 2.6 ± 0.5 51.1 ± 14.1 36.5 ± 10.2 0.008 0.44 0.55 

Caecal  IAP 
activity 

(AU/mg) 
3.1 ± 0.6 3.2 ± 1.0 15.5 ± 2.7 10.2 ± 1.8 <0.0001 0.21 0.19 

reg3-β, 2-dCt 0.42 ± 0.16 0.18 ± 0.05 0.06 ± 0.02 0.11 ± 0.03 0.009 0.24 0.08 

reg3-γ, 2-dCt 0.34 ± 0.13 0.19 ± 0.03 0.08 ± 0.04 0.08 ± 0.0 0.003 0.19 0.18 

lyzc, 2-dCt   0.02± 0.005 0.12 ± 0.02 0.03 ± 0.008 0.08 ± 0.03 0.58 0.009 0.29 

defa-1,2-dCt   0.46 ± 0.11 0.52 ± 0.06 0.67 ± 0.16 0.49 ± 0.05 0.33 0.48 0.20 

pla-2,2-dCt   0.01 ± 0.004 0.08 ± 0.02 0.01 ± 0.002 0.04 ± 0.01 0.11 0.001 0.13 



Table 4: Tight junction protein and MLCK gene expression in ileum and caecum 
 

 

 

 

 

 

 

Results are means ± SEM. FP=feeding pattern 

 

    P-value 

 Cal Cpf WDal WDpf Diet FP Diet 
x FP

Ileum        

zo-1, 2-dCt 0.60 ± 0.04  1.50 ± 0.13  0.56 ± 0.02  1.24 ± 0.26  0.62 0.002 0.52 

claudin-1,2-dCt  0.59 ± 0.11  1.47 ± 0.17  0.98 ± 0.34  1.56 ± 0.35  0.46 0.04 0.68 

claudin-2, 2-dCt 0.69 ± 0.12  1.72 ± 0.17 0.76 ± 0.06  1.30 ± 0.39  0.61 0.02 0.46 

occludin, 2-dCt 0.35 ± 0.05  0.97 ± 0.06  0.40 ± 0.01  0.86 ± 0.16  0.82 0.0009 0.60 

mlck, 2-dCt 0.003 ± 0.001  0.004 ± 0.001 0.003 ± 0.001 0.005 ± 0.001 0.61 0.03 0.69 

Caecum        

zo-1, 2-dCt 0.79 ± 0.13 1.31 ± 0.15 0.87 ± 0.10 1.25 ± 0.22 0.96 0.03 0.71 

claudin-1,2-dCt  0.02 ± 0.004 0.03 ± 0.003 0.03 ± 0.004 0.04 ± 0.01 0.28 0.19 0.51 

claudin-2, 2-dCt 0.14 ± 0.008  0.31 ± 0.02  0.09 ± 0.01  0.22 ± 0.05  0.07 0.001 0.53 

occludin, 2-dCt 5.48 ± 1.13  5.76 ± 0.34  3.33 ± 0.20  3.98 ± 0.40  0.003 0.44 0.75 

mlck, 2-dCt 2.00 ± 0.3  2.62 ± 0.27  1.92 ± 0.31  2.8 ± 0.27  0.87 0.02 0.65 



 

 

Table 5 : Hepatic detoxification enzymes and receptors gene expression 

 

P-value 

 Cal Cpf WDal WDpf Diet FP Diet 
xFP 

aoah, 2-dCt 

alpl, 2-dCt 

scarb-1, 2-dCt 

0.60 ± 0.08 

0.14 ± 0.02 

0.90 ± 0.13 

0.61 ± 0.15 

0.27 ± 0.05 

0.63 ± 0.10 

0.72 ± 0.07 

0.13 ± 0.02 

0.99 ± 0.11 

0.84 ± 0.14 

0.18 ± 0.03 

0.82 ± 0.09 

0.24 

0.17 

0.19 

0.63 

0.01 

0.05 

0.70 

0.29 

0.64 

Results are means ± SEM. FP=feeding pattern. 
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