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Abstract  

 In lymphomas arising from the germinal center, prognostic factors are linked to 

the myeloid compartment. In particular, high circulating monocyte or myeloid-derived 

suppressor cell counts are associated with poor prognosis for patients with high-

grade B-cell lymphomas. Macrophages with an M2 phenotype are enriched within 

lymphoma tumors. However, the M1/M2 nomenclature is now deprecated and the 

clinical impact of this phenotype remains controversial. Across cancer types, myeloid 

cells are primarily thought to function as immune suppressors during tumor initiation 

and maintenance, but the biological mechanisms behind the myeloid signatures are 

still poorly understood in germinal center B-cell lymphomas. Herein, we describe the 

role and clinical relevance of myeloid cells in B-cell lymphoma and propose 

innovative approaches to decipher this complex cellular compartment. Indeed, 

characterization of this heterogeneous cell ecosystem has been largely 

accomplished with “low resolution” approaches like morphological evaluation and 

immunohistochemistry, where cells are characterized using a few proteins and 

qualitative metrics. High-resolution, quantitative approaches, such as mass 

cytometry, are valuable in order to better understand myeloid cell diversity, functions, 

and to identify potential targets for novel therapies.  
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Précis 

Mass cytometry deciphers the ecosystem of suppressive myeloid regulatory cells in 
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germinal center B-cell lymphomas  

 

Abbreviations  

CyTOF: cytometry by time-of-flight 

DLBCL: diffuse large B cell lymphoma 

FL: follicular lymphoma 

HL: Hodgkin lymphoma 

M-MDSC: monocytic myeloid derived suppressor cell  

PMN-MDSC: polymorphonuclear myeloid derived suppressor cell 

TAM: tumor associated macrophage 

TME: tumor microenvironment 

Treg: regulatory T cell 

viSNE: visualization of t-distributed stochastic neighbor embedding  
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In B-cell lymphomas, the myeloid compartment contributes to prognosis  

Lymphomas constitute a large group of cancer arising from lymphoid or extra-

nodal tissues [1]. The nomenclature of these neoplasms regularly evolves, and 

currently comprises more than 30 distinct clinical, pathological, genetic, and 

molecular entities [2]. Altogether, around 10,000 new cases of lymphoma are 

diagnosed each year, worldwide, and 90% of these are B-cell lymphomas [3]. Diffuse 

large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and classical Hodgkin 

lymphoma (HL) represent 60% to 70% of B-cell lymphoma cases. Over the past 

decade of B-cell lymphoma research, the tumor microenvironment (TME) has 

emerged as a therapeutic target [3-8]. The composition of the TME is highly variable, 

and B-cell neoplasms can be categorized in terms of their dependence on cells in the 

TME [3]. For example, more than 90% of the cells in HL tumors are considered non-

malignant TME and thought to support tumor cell growth [3]. Conversely, in Burkitt's 

lymphoma, tumor cells appear to be virtually independent from non-tumor cells 

signals [3]. The abundance of different TME cell subsets varies greatly between 

tumors and can include stromal cells, T cell subsets (including T helper cells [TH1, 

TH2], T follicular helper cells [TFH], regulatory T cells [Treg], and CD8pos T cells), B 

cells, and myeloid cells (including mast cells, macrophages, and myeloid-derived 

suppressor cells [MDSC]) [3, 9].  

Despite the introduction of immunotherapy, treatment failure is still observed 

and emphasizes the need for prognostic biomarkers to better identify at-risk patients 

[10] and research into mechanisms of resistance. In B-cell lymphomas, some 

prognostic factors are linked to myeloid cell biology. In particular, gene expression 

profiling experiments in DLBCL, FL, and HL have revealed the presence of myeloid 
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cell-related prognostic signatures [4-6]. Currently, we still lack a full understanding of 

the biology that underlies these signatures. Prognostic factors that are evaluated at 

the time of diagnosis in peripheral blood or at the tumor site include: i) soluble factors 

such as soluble PD-L1 [11, 12], soluble CD163 [13], CCL17 [13], CXCL10 [14], and 

IL-10 [14], ii) number of myeloid cells or macrophages in the TME expressing 

CD68pos [6, 10, 15, 16] or CD163pos [16-18], and iii) number of circulating myeloid 

cells [17, 19-25]. In Rituximab era studies of DLBCL, FL, and HL, increases in 

circulating neutrophils [17, 19] and/or monocytes [17, 20-24] have been proposed as 

independent prognostic markers. In particular, we demonstrated that a regulatory 

subtype of monocytes, so-called M-MDSC (Monocytic-MDSC), is increased in the 

blood of DLBCL patients, as compared to healthy donors, and that this increase is 

correlated with poor prognosis [25].  

 

In germinal center B-cell lymphomas, myeloid regulatory cells are involved in 

the neoplastic process  

The myeloid tumor microenvironment includes dendritic cells (DCs), MDSCs, 

and tumor-associated macrophages (TAMs). Few studies have evaluated 

associations between DCs and B-cell lymphoma prognosis. High numbers of 

plasmacytoid DCs in FL tumors were correlated with a good prognosis [26]. 

Consistent results were found in HL for CD83pos myeloid DCs [27] and in DLBCL for 

CD1apos DCs [28]. Altogether, these results suggested DCs mediate anti-tumor 

immunity [26].  

MDSCs are a heterogeneous population arising from polymorphonuclear cells 

(PMN-MDSC, LinnegHLA-DRnegCD33posCD11bpos) and from monocytes (M-MDSC, 

CD14posHLA-DRlow) [29]. MDSCs are primarily defined by immunosuppressive 
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functions [29, 30]. Additional markers, such as CD116, CD124, VEGF-R (vascular 

endothelial growth factor receptor), CD11c, CD11b, and PD-L1, are commonly 

expressed on MDSCs and play functional roles in MDSC-mediated immune 

regulation [30]. Interestingly, these markers are regulated by environmental signals, 

and MDSC phenotypes vary widely across tumors [31]. MDSC induction and 

expansion is mediated by soluble factors including VEGF (vascular endothelial 

growth factor), GM-CSF, M-CSF, S100A8/A9, IL-4, IL-6, and IL-10, which can be 

produced by tumor and/or surrounding cells, such as stromal cells, T cells, and 

macrophages [30]. Many of these environmental cues depend on STAT3, STAT6, 

and STAT1, and these transcription factors activate expression of genes involved in 

the blockade of the myeloid differentiation or in immune regulation. These multiple 

suppressive mechanisms converge to impair effector T cell and NK cell functions and 

also contribute to macrophage polarization towards what has classically been 

described as an M2 anti-inflammatory phenotype. In humans, myeloid regulatory 

mechanisms include: i) Treg expansion, ii) depletion of amino acids essentials for T-

cell metabolism by expression of arginase 1 or IDO, iii) production of reactive oxygen 

species (ROS) through expression of NADPH (Nicotinamide Adenine Dinucleotide 

Phosphatase) oxydase (NOX2), and iv) IL-10, TGFβ (transforming growth factor) 

release and PD-L1 expression [31, 32].  

In most solid cancers studied (melanoma, renal, lung, liver, or prostate 

cancer), circulating MDSCs are increased and their abundance is correlated with 

tumor stage, tumor volume, and disease prognosis [33-35]. In hematological 

malignancies, the role of circulating MDSCs is less clear. An enrichment in circulating 

MDSCs has been described in myeloma [36] and T-cell lymphoma [37]. We recently 

showed, as others, that the number of circulating MDSCs constitutes a prognostic 
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factor in DLBCLs [25, 38]. Poor prognostic significance of MDSCs has also been 

observed in indolent lymphoma [39], chronic lymphocytic leukemia [40, 41], and HL 

[38, 42]. While numerous suppressive mechanisms have been described in MDSC 

biology [31, 32], only few of these mechanisms have been explored in B-cell 

lymphomas (Figure 1). In DLBCLs, an increase of PMN-MDSC in peripheral blood 

has been reported [25, 38, 43]. We observed PMN-MDSC express arginase I, but we 

did not observe an association between MDSC abundance and clinical outcome, in 

contrast with a recent study [38]. This difference could be explained by subtle 

differences in expert gating strategies used for PMN-MDSC enumeration 

(CD66bposCD33dimHLA-DRneg [38] vs. LinnegCD123lowHLA-DRnegCD33posCD11bpos 

[25]). Computational analysis of myeloid cells may provide an unbiased way to 

resolve this difference [44, 45]. Preparation of samples was also different in these 

studies. Our experiments were performed on whole peripheral blood and the other 

study was performed on the mononuclear cell fraction of peripheral blood [38]. The 

latter one is now recommended to better evaluate low density PMN-MDSCs [29]. M-

MDSCs (CD14posHLA-DRlow) were detected in peripheral blood from DLBCL patients 

in 4 studies [25, 39, 46, 47]. Arginase I involvement in immune suppression was 

reported only in one study [39]. We demonstrated that the overall increase of 

monocytes in peripheral blood of DLBCL patients might be related to an increase of 

M-MDSCs. Indeed, gene expression profiling revealed a myeloid suppressive cell 

signature in peripheral blood characterized by expansion in circulating M-MDSC 

counts (CD14posHLA-DRlow). Interestingly, intact M-MDSCs function was 

demonstrated by suppression of T-cell response in vitro. M-MDSCs (CD14posHLA-

DRlow) were compared to monocytes (CD14posHLA-DRhigh) by transcriptomic analysis. 

In M-MDSCs, we found an overexpression of genes involved in MDSC biology such 
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as IL4-R, IL6-R, RELB, STAT3, NFKB, CEBPβ, AIM2, TNFR2, and NOX2. In DLBCL, 

the M-MDSC transcriptomic signature and the abundance of M-MDSC in peripheral 

blood were correlated with the international prognostic index and event-free survival. 

Finally, although arginase I and IDO activities were detected in plasma from DLBCLs, 

the suppressive activity of M-MDSC was not impaired in vitro in the presence of 

arginase- or IDO- inhibitors. Thus, we concluded that M-MDSC suppressive activity 

in DLBCL is independent of arginase I and IDO activity. This finding was supported 

by the observation that myeloid-dependent T-cell suppression could be ascribed to a 

release of IL-10 and S100A12 and an increase in PD-L1 expression [25] (Figure 1). 

MDSC counts were evaluated in two recent studies with a total of 53 indolent 

lymphomas (cases were primarily FL; also included were cases of mantle cell 

lymphoma, chronic lymphocytic leukemia, mucosa-associated lymphoid tissue 

lymphoma, and lymphoplasmacytoid lymphoma) [38, 39]. When compared to healthy 

donors, an increase in circulating PMN-MDSCs (CD66bposCD33dimHLA-DRneg) with 

arginase I activity was observed in a cohort of 31 indolent lymphomas [38]. M-

MDSCs (CD14posHLA-DRlow) were detected in a cohort of 22 indolent lymphomas 

[39]. In HL, abundance of both PMN- and M-MDSCs was increased in peripheral 

blood [38, 42] and arginase I activity was increased.  

It has been demonstrated in murine models of solid tumors that MDSCs also 

have the ability to differentiate into TAMs at the tumor site [48-50]. TAMs exhibit a so-

called M2 phenotype, and are characterized by the expression of immunomodulatory 

molecules (such as PD-L1, B7-H4, and VISTA [V-domain Ig suppressor of T cell 

activation]), the production of immunosuppressive cytokines (like IL-10 and TGFβ), 

and the capacity to inhibit effector T cell functions via arginase 1 or IDO activities 

[50]. Within tissues, CD68 and CD163 are frequently proposed to define macrophage 
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subsets [50]. Macrophages, which are involved in tissue homeostasis and host 

defense, were historically split into classically activated or “M1” and alternatively 

activated or “M2”. M1 polarization occurs in response to IFN-γ or LPS stimulation 

and is associated with an increase of inflammatory cytokines and tumoricidal 

capabilities. In contrast, IL-4, IL-10, or IL-13 stimulation polarizes macrophages to an 

M2 phenotype associated with tissue repair, angiogenesis, and a lack of effective 

tumor immunity. In fact, these two types capture functions that are the extremes of a 

wide spectrum of overlapping polarization states that depend largely on programming 

from external stimuli [51-53].  

The contribution of TAM infiltration to B-lymphoma prognosis is hotly debated 

and TAM phenotypes are poorly characterized in human lymphoma [54]. Additionally, 

although TAMs have been associated with immunomodulation in other tumor types, 

their functional role has not yet been fully defined within the lymphoma 

microenvironment. In DLBCL, TAMs were defined in the TME as CD68pos or 

CD68posCD163pos and their prognostic impact remains controversial [15, 55, 56]. In 

particular, differing correlations with clinical outcome were observed and appeared to 

depend on the way TAMs were defined (i.e., as CD68pos, CD163pos, or 

CD68posCD163pos) and whether treatments included the anti-CD20 antibody 

Rituximab or not [57]. To date, these discrepancies have not been resolved in 

DLBCL and a definitive study employing standardized techniques is needed [57]. In 

FLs, TAMs were defined and enumerated as CD68pos or CD163pos cells and their 

correlation with clinical outcome has also been controversial. Indeed, a high TAM 

count correlated with poor prognosis in patients treated by chemotherapy [58], in 

agreement with their capacity to activate FL B cells through the release of IL-15 or 

the triggering of BCR signaling [59, 60].  In contrast, in a study of FL patients treated 
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with Rituximab [61-63], TAMs were associated with good prognosis. This apparent 

discrepancy might be explained by rituximab-dependent tumor cell phagocytosis 

mediated by macrophages that would otherwise be suppressive [64]. Interestingly, 

M2 macrophages, which bear many similarities to TAMs and may be an equivalent 

population, display a phagocytic capacity superior to classical pro-inflammatory M1 

macrophages. This increased functional capacity is thought to be based in 

expression of receptors to the Fc portion of IgG isotype immunoglobulin (FcγRs), 

including high expression of CD32a/FcγRIIa [65]. Thus, TAMs exhibit treatment-

specific roles in B-cell lymphomas, and the same might be expected to be observed 

for MDSCs. Detrimental immunosuppressive and tumor-promoting properties of 

MDSCs have been widely described in solid cancers during disease onset and, to a 

lesser extent, during chemotherapy treatment. It is currently unclear whether the 

efficacy of immunotherapeutic agents, such as cytotoxic antibodies, is modulated by 

MDSCs (and vice versa). As for newer approaches like immune checkpoint inhibitors, 

it is highly likely that TAMs play a role, since TAMs can express PD family ligands 

PD-L1 and PD-L2. However, the involvement of MDSCs is more speculative as their 

characterization is more recent and relies on deep phenotyping and functional 

assays. In HL, TAMs defined as CD68pos or CD163pos cells are associated with a 

shortened overall survival in the majority but not all of the studies [5, 66-68].  

 

Mass cytometry clarifies the myeloid landscape  

Although their phenotype is heterogeneous, myeloid regulatory cell 

characterization has classically relied on a small number of proteins, such as CD68 

and/or CD163, to delineate TAM populations [69, 70]. MDSCs were originally defined 

by fluorescence cytometry using a small set of canonical markers that included 
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CD11b, CD15, CD33, HLA-DR, and CD14 [29]. High-resolution approaches such as 

mass cytometry can better characterize the diversity and function of MDSC and may 

help to reveal cell-specific features that may constitute potential targets for novel 

therapies [71-73]. Mass cytometry combined with high-dimensional analysis tools 

from machine learning, such as visualization of t-distributed stochastic neighbor 

embedding (viSNE) and spanning-tree progression analysis of density-normalized 

events (SPADE), is now considered a robust method to identify numerous and novel 

subsets within heterogeneous tissues, including blood and tumor [74-76]. Several 

studies using mass cytometry have explored immune compartments including B-, T-, 

NK-, or myeloid cells [74, 77-89]. In particular, Becher et al. developed a dedicated 

panel to characterize myeloid cells across eight mouse tissues, which revealed 

previously unidentified populations in mice using unsupervised analysis of mass 

cytometry [44, 79]. In humans, 2 different myeloid panels revealed underestimated 

TAM subtypes in renal cell carcinoma and lung adenocarcinoma [90, 91]. In 

particular, TAM subsets were identified expressing high level of HLA-DR, CD68, 

CD64, CD204, and CD38 or CD14, CD64, CD11c, and PPARγ (peroxisome 

proliferator-activated receptor gamma) in samples from renal or lung carcinoma, 

respectively.  

With the aim to obtain a broad overview of the myeloid compartment in B-cell 

lymphoma, a panel dedicated to the myeloid compartment was defined and validated 

on in-vitro derived monocyte, MDSC, and macrophage subsets [45]. Sample 

preparation and analysis workflows were also optimized or developed [92-94]. Tumor 

tissues from DLBCL, FL, and reactive lymph nodes from healthy donors were 

analyzed (unpublished data). These studies revealed the diversity of the myeloid 

compartment in TME by enumerating MDSCs/TAMs and DCs and by characterizing 
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the specific pattern of myeloid cell enrichment in each disease (Figure 2). As with the 

studies of lung adenocarcinoma and renal cell carcinoma, mass cytometry revealed 

involvement of T cell subsets in B cell lymphoma [90, 91]. In particular, in DLBCL 

Tregs and CD8 effector memory were increased in the TME (unpublished data). 

Altogether, these studies demonstrated the feasibility of deep phenotyping human 

tissues and the value of mass cytometry in deciphering the myeloid compartment and 

relationships between immune cell subsets. 

 

Challenges and future directions  

In the near future, mass cytometry will be combined with state-of-the-art 

immunohistochemistry approaches [95, 96]. Such combinations allow detection of 

more than 30 parameters on histological samples and quantitative, high dimensional 

analysis that is coupled to knowledge of cell location and quantification of cell-to-cell 

positional relationships within tissue microenvironments (Table I). High-resolution 

imaging with 3D reconstruction after tissue clearing is a rapidly growing field [97]. 

These approaches are expected to be particularly valuable for studies of TAM 

biology in lymphomas. Notably, antibody based imaging and flow cytometry 

approaches allow the detection of transcription factors phosphorylation events (e.g., 

phospho-STATs and cEBPβ) and other key molecules contributing to immune 

regulation (e.g., Arginase I, NOX2, NOS2 [nitric oxide synthase], PD-L1, IL-10, TGF-

β, and CD124) [29]. Although deep phenotyping does not replace functional assays 

(reviewed in [29]), the opportunity to simultaneously analyze numerous MDSC/TAM 

surface markers, transcription factors, signaling events, and immune regulation 

molecules will likely be a major step forward in clinical, personalized medicine studies 

of TAM/MDSC, where functional assays are impractical.  



 13 

Controlling the expansion and accumulation of MDSCs and blocking MDSC 

suppressive functions, e.g. by targeting CSF1-R (colony stimulating factor 1 receptor) 

[98] or S100 family members [99], represent promising novel approaches in cancer 

therapy. As MDSC do not bear a single, cell-lineage specific, extracellular membrane 

marker, it is very difficult to deplete MDSC in vivo while sparing other myeloid cells. 

To date, the main target is CSF1-R, the receptor for M-CSF, as its expression is 

largely restricted to cells from the monocytic lineage. Numerous clinical trials 

investing the efficacy of blocking CSF-1R and its effector signaling cascade by 

means of kinase inhibitors or antagonistic monoclonal antibodies are ongoing [50, 

100]. These studies should determine whether shutting down the CSF1/CSF1-R axis 

in vivo effectively removes MDSC, induces MDSC reprogramming, and/or skews 

MDSC differentiation. Some classical chemotherapeutic molecules, such as 

gemcitabine, 5-fluoro-uracile (5-FU) or lenalidomide, may also specifically trigger 

MDSC apoptosis in vitro and in vivo [101-103].  

In B-cell lymphomas, there is a need to capture the biological features and 

immunological properties of regulatory myeloid cells and to understand the crosstalk 

between tumor cells, myeloid cells, and other immune cells. This knowledge will 

greatly accelerate the development of targeted treatments for patients with B-cell 

lymphoma. In the near future, the field is expected to benefit greatly from high-

dimensional approaches, such as flow mass cytometry, imaging mass cytometry, and 

high-resolution microscopy with 3D reconstruction. 
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Table I: Potential approaches for myeloid regulatory cells phenotype analysis 
 

 Immunohisto -chemistry/-
fluorescence 

Flow cytometry Mass cytometry 

Main 
advantages 

● Histology 
● Direct cell-cell interactions 
● Signaling (phosphoprotein, 
transcription factor) 

● 10-18 parameters 
● Single cell analysis 
● Signaling (phosphoprotein, 
transcription factor) 
● Dynamic (basal / after 
stimulation or co-culture) 
● High dimensional analysis 
workflow 
● Potentially combined with 
transcriptomic or functional 
analyses after sorting 

● >40 parameters 
● Single cell analysis 
● Signalling 
(phosphoprotein, 
transcription factor) 
● Dynamic (basal / after 
stimulation or co-culture) 
● High number of 
parameters 
● High dimensional 
analysis workflow 

Limitations 

● Expert interpretation 
needed 
● Limited number of 
parameters 
● No dynamic approach 

● Dissociated cells ● Dissociated cells 
● Expert analysis needed 
● Number of cells 
required 

Current 
developments 

● High-resolution confocal 
microscopy and 3D 
reconstruction 
● Tissue clearing 

● Increase number of 
parameters, new fluorochromes 

● Increase number of 
parameters, new metal 
tags 
● New visualization tools 
● Harmonization of 
analysis worflow 
● Imaging mass 
cytometry 
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Figures  

 

Figure 1: In B-cell lymphoma, myeloid regulatory cells engage various 
suppressive mechanisms 
This figure is adapted from Gabrilovich et al. [32] and depicts mechanisms involved 
in MDSC immunosuppression. Mechanisms already described in B-cell lymphoma 
are unshaded whereas mechanisms not explored are shaded in grey. MDSCs can 
inhibit T cell responses through various mechanisms, 1) interference with T/NK cell 
migration and viability, 2) generation of oxidative stress by ROS and NO production, 
3) deprivation in essential amino acids for growth and differentiation, and 4) Treg 
development and expansion. Ly: lymphocyte; NOX: NADPH oxidase complex; iNOS: 
inductible nitric oxide synthase; ARG1: arginase 1. Figure prepared using tools from 
Servier Medical Art (http://www.servier.com/Powerpoint-image-bank). 
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Figure 2: Mass cytometry reveals contrasting myeloid cell phenotypes between 
and within three lymphoma tumors 
Cryopreserved cells from B-cell lymphomas (DLBCL, HL, and FL) were stained with 
a panel dedicated to the myeloid compartment [45]. A- After acquisition on CyTOF, 
cells were parsed by ViSNE to define B-, T-, NK-, and myeloid- cells following a 
workflow analysis already described [45, 94]. B- Due to the frequency of 
macrophages cells in TME from B-cell lymphoma, 5x105 to 1x106 viable cells were 
acquired on CyTOF. C- Macrophages from patients were then analyzed jointly by 
viSNE. A representative example of viSNE analysis is shown for myeloid cells from 3 
patients: 1 DLBCL (green), 1 HL (blue), and 1 FL (brown) demonstrating differences 
in myeloid cell phenotype across these B-cell lymphomas. 
 


