Response of Gallium Nitride Chemiresistors to Carbon Monoxide is due to Oxygen Contamination

Ravi Mohan Prasad, a, d Stefan Lauterbach, a Hans-Joachim Kleebe, a Odile Merdrignac-Conanec, 5 Nicole Baraban, b Udo Weimar, b and Aleksander Gurlo a,e

a - Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Fachgebiet Disperse Feststoffe, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
b - Tübingen University, Faculty of Science, Chemistry Department, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
c - UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Équipe Verres et Céramiques, Université de Rennes 1, 35042 Rennes Cedex, France
d - now at Indian Institute of Technology Ropar, School of Mechanical, Materials and Energy Engineering, Nangal Road, Rupnagar 140001, Punjab, India
e - now at Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany

Supporting Information Placeholder

ABSTRACT: We report on the influence of oxygen impurities on the gas sensing properties of gallium nitride (GaN) chemiresistors. As shown by XRD, elemental analysis and TEM characterization, surface oxidation of GaN – for example, upon contact to ambient air atmosphere - creates an oxidative amorphous layer which provides the sites for the sensing towards CO. Treating this powder under dry ammonia at 800 °C converts the oxide layer in nitride and consequently the sensing performance towards CO is dramatically reduced for ammonia treated GaN gas sensors. Hence the response of GaN sensors to CO is caused by oxygen in the form of amorphous surface oxide or oxynitride.

Keywords: chemiresistors, gallium nitride, carbon monoxide, oxygen, gallium oxide

Nowadays gas sensors based on metal oxides (SnO₂, ZnO, TiO₂, WO₃, In₂O₃ etc.) are widely used for the detection of toxic and combustible gases as well as for air quality control in buildings, vehicles and airplanes. 1,4 Metal nitride (e.g. GaN) sensors are known to be capable of operation in harsh environmental conditions. 5,6 With a wide bandgap of 3.45 eV and strong chemical bonds, GaN combines favorable properties especially for high power, high-frequency, and high-temperature devices. GaN powders and films have been applied for sensing H₂, CO and CH₄. 5,10 Oxygen is a common impurity in GaN that influences significantly electrical and optical properties of GaN-based materials (see ref.11 and references therein). Besides substitutional oxygen 12, which can occur under typical synthesis conditions, i.e. heat treatment under ammonia or CVD process, an oxide passivation on the surface of freshly produced GaN develops over time. GaN surfaces are becoming firstly covered with amorphous GaOₓ layer that finally crystallizes to polycrystalline Ga₂O₃ film. 13 Passivation oxide layer on GaN surfaces is a well known effect studied in much detail in previous works. 14 However, the effect of surface oxygen impurities as well as surface oxide layer on the gas sensing properties of GaN remains still unclear, even if there are some indications of that. 15,16

In the present work, we study the influence of oxygen impurities in GaN sensors applied for CO detection in the oxygen-free atmosphere. GaN specimens were prepared from as-synthesized oxygen-contaminated GaN powder and post-treated under dry nitrogen and dry ammonia gases as well. The latter is known to be an effective method for the removal of oxygen from GaN surfaces. 17

Table 1 displays the results of elemental analysis and phase composition of untreated (“GaN”), nitrogen (“GaN/N₂”) and ammonia (“GaN/NH₃”) treated GaN powders.

Table 1. Elemental analysis and phase composition of as-received (untreated) GaN powders and heat-treated specimens in N₂ and NH₃ gases.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Synthesis/treatment conditions</th>
<th>N (wt.%)</th>
<th>O (wt.%)</th>
<th>O/N</th>
<th>Phase composition (XRD) (TEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“GaN”</td>
<td>β-GaN treated in NH₃ (900 °C, 24 h)</td>
<td>14.9</td>
<td>2.8</td>
<td>14</td>
<td>GaN + Ga₂O₃ + amorphous surface</td>
</tr>
<tr>
<td>“GaN/N₂”</td>
<td>“GaN” treated in N₂ (600 °C, 2 h)</td>
<td>15.0</td>
<td>2.7</td>
<td>13</td>
<td>GaN not studied</td>
</tr>
<tr>
<td>“GaN/NH₃”</td>
<td>“GaN” treated in NH₃ (800 °C, 6 h)</td>
<td>15.9</td>
<td>1.6</td>
<td>8</td>
<td>GaN + Ga₂O₃ + amorphous surface</td>
</tr>
</tbody>
</table>

[a] “GaN” specimen treated under conditions (N₂) applied for the fitting of the sensors (for details, see experimental methods in SI); [b] smaller Ga₂O₃ particles if compared to untreated “GaN”.

Let us note that the oxygen content of the “GaN/N₂” specimen remains similar to that of “GaN” sample, indicating that, as intended for, the treatment in dry nitrogen, in the conditions applied for the sensors preparation does not modify the chemical composition of the sensors. However, a significant difference in oxygen content is observed in the “GaN” and “GaN/NH₃” specimens. GaN specimen synthesized from β-GaN treated under ammonia at 900 °C and stored in air for about six months possesses about 2.8 wt.% of oxygen, which is reduced to about 1.6 wt.% after treatment in ammonia at 800 °C for 6 hours.

No difference in the X-ray diffraction patterns is observed for the “GaN”, “GaN/N₂”, and “GaN/NH₃” powders (Figure 1) as well as for GaN sensors before and
after sensing tests under CO (20-120 ppm in N₂) at 530 °C (Figure 2).

Figure 1. X-ray powder diffraction (XRPD) patterns of “GaN” (i), “GaN/N₂” (ii), and “GaN/NH₃” (iii) specimens (see Table 1). The diffraction patterns of β-Ga₂O₃ (ICDD PDF No. 43-1012, monoclinic, space group C2/m, a = 12.23 Å, b = 3.04 Å, c = 5.80 Å) and GaN (ICDD PDF No. 50-0792, hexagonal, space group P6₃mc, a = 3.18907 Å, b = 3.18907 Å, c = 5.1855 Å) are shown at the bottom.

Figure 2. X-ray powder diffraction (XRPD) patterns of GaN layers on sensor substrates before and after gas sensing measurements: (i) and (ii) represent “GaN” coated sensor substrates before and after sensing measurement, respectively; (iii) and (iv) represent “GaN/NH₃” coated sensor substrates before and after sensing measurement. Here, it should be noted that XRD characterization done on the GaN coated sensor substrates before sensing measurement, specimen (i) and (iii), are different sensor samples than those after sensing measurements, specimen (ii) and (iv). Al₂O₃ and Pt reflections are due to sensor substrate and electrodes.

Figure 3 shows the TEM images of “GaN” and “GaN/NH₃” specimens. For both “GaN” and “GaN/NH₃” powders an amorphous surface layer is observed. Surface Ga₃O₅ particles are seen for “GaN” powder (Figure 3A,B), as well as for “GaN/NH₃” powder (Figure 3C,D,E). However, larger particles were observed via TEM in the untreated powders compared to the ammonia treated sample, where the particles are in the order of 2–5 nm.

EDS chemical analysis reveals that the particles on the surface in both samples are Ga₂O₃ which are not present in the XRD diffraction pattern (Figure 1), whereas the matrix in the close vicinity of the particles is GaN (see FFT filtered inset in Figure 3E). The amorphous surface layer shows peaks in EDS which can be assigned to gallium and oxygen. Because the surface layer also contributes to the analysis done at the bulk sample, the EDS will also show a minor amount of oxygen. The carbon peaks are due to contamination during the measurement and are more pronounced for the small particles. Our finding is similar to the mechanism of GaN surface oxidation as proposed in other works, which show the formation of a Ga₂O₃ layer covering GaN particles.

To assess the performance of “GaN” and “GaN/NH₃” sensors in oxygen-free conditions, gas sensing properties of the sensors were studied at 350°C and 530°C towards different CO (10–120 ppm) concentrations (Figure 4A,B). A number of significant differences are observed between “GaN” and “GaN/NH₃” sensors. Upon CO exposure, reasonable resistance changes are measured for the “GaN” sensor with rather fast response and recovery times at both
temperatures, whereas for the “GaN/NH₃” coated sensor only a weak response is observed at 530°C. This effect was reproducible and was observed repeatedly on several sensors. Sensor signal towards CO is dramatically increased when oxygen in GaN is present (Figure 4C). Sensor signal for “GaN/NH₃” sensors were 3-10.4 times (at 350 °C) and 1.3-3.1 times (at 530 °C) weaker than “GaN” sensors in the CO (20-120 ppm).

Interestingly, we observe an amorphous surface in both, i.e., “GaN” and “GaN/NH₃,” that show quite remarkable difference in the gas sensing properties. The main difference we found is the oxygen content, i.e. ca. 14% in “GaN” and ca. 8% in “GaN/NH₃,” specimens and a decrease in the amount and size of Ga₃O₅ particles. Therefore, we conclude that the difference in the gas sensing properties of “GaN” and “GaN/NH₃,” is caused by the local structural arrangements that involve Ga–N and Ga–O bonds. GaN consists of slightly distorted [GaN₄] tetrahedral units with the hybridized sp³ orbitals that form in-plane and out-of-plane bonds (Figure 5A). The X-ray Absorbance Spectroscopy (XAS) results indicate that the [GaN₄] tetrahedra are modified in the amorphous films due to the preferential substitution of the out-of-plane components, as a result oxygen-substituted polyhedra appear at the GaN surface.

As shown by Ga L₁-, N K- and O K-edge XAS, the coordination symmetry of gallium in a-GaN(O) depends on the amount of oxygen incorporated, i.e. with increasing oxygen amount the tetrahedral [Ga(N,O)₄] units are transformed into distorted octahedral [Ga(N,O)₆] units that are characteristic for gallium oxynitride. A full substitution of N by O subsequently forms β-Ga₂O₃ (Figure 5A). Effectively, both [Ga(N,O)₄] and [Ga(N,O)₆] units look amorphous in XRD characterization (Figure 1). Figure 5B displays a model of transformation stages of GaN specimens studied in the present work. The decrease in the oxygen content in GaN powder from ca. 14 to 8% after its treatment under ammonia at 800 °C is indicated by the decrease in the amount and size of Ga₃O₅ particles and by the decrease of thickness of the surface amorphous gallium oxynitride layer.

Based on results of XRD, elemental analysis and TEM characterization of GaN powders we can propose that when as-synthesized GaN powder is stored under ambient air condition, surface oxidation of GaN creates an oxidative amorphous layer (that does not appear in the XRD pattern) which provides the sites for the sensing towards CO. Treating this powder under dry ammonia at 800 °C destroys the oxidative layer (converting to nitride layer) and consequently the sensing performance towards CO is dramatically reduced for ammonia treated GaN gas sensors.

Therefore, it is logically coherent to suggest that distorted octahedral [Ga(N,O)₆] and [GaO₅] units in untreated a-GaN(O) with higher oxygen content and β-Ga₂O₃, respectively, provide sensitivity to CO, and tetrahedral [Ga(N,O)₄] with lower oxygen content in ammonia treated GaN do not. Our assumption is confirmed by the similar response to CO of β-Ga₂O₃ and untreated-GaN [please refer to supporting information (SI)] that indicates a similar detection mechanism for both, i.e. a chemisorption path that leads to an accumulation layer due to CO-adsorbrates on [Ga(N,O)₆] /[GaO₅] surface that donate electrons to the conduction band of GaN increasing in this a conductivity of the material. The effect we observe resembles a significant increase in CO sensitivity on surface-nitridated Ga₃O₅ nanowires thus indicating an
activity of mixed-bond \([\text{Ga}(\text{N},\text{O})_x]\) units in CO detection both on partially oxidized GaN or partially nitridated Ga\(_2\)O\(_3\) materials.

\[\text{(A)} \]
\[\beta-\text{Ga}_2\text{O}_3 \]
\[\text{NH}_2 \rightarrow \text{Ga}_2\text{O}_3 \text{ CO} \]
\[x_p=14\% \]
\[\text{(B)} \]
\[\text{NH}_2 \rightarrow \text{Ga}_2\text{O}_3 \text{ CO} \]
\[x_p=8\% \]

Figure 5. (A) Schematic representation of the local structure model representing the relationship between interaction of oxygen with GaN sensors and their sensitivity to CO. The tetrahedral coordination of Ga remains intact when a low amount of oxygen is incorporated. Interaction of oxygen with out-of-plane dangling bonds lead to the formation of amorphous gallium oxynitride with tetrahedral a-GaN(O):Ga\(_2\)O\(_3\) units that eliminate out-of-plane Ga-N bonds but do not influence the GaN bulk structure. Further increase of the oxygen amount leads to the formation of a distorted amorphous gallium oxynitride with octahedral a-GaN(O):Ga\(_2\)O\(_3\) units. Complete substitution of N by O yields in distorted octahedral Ga\(_2\)O\(_3\) units. (B) Schematic representation of different stages of transformation process, from amonolysis of Ga\(_2\)O\(_3\) to GaN following surface oxidation of as-synthesized GaN under air after storing for 6 months and finally re-treatment of “GaN” under ammonia at 800 °C for 6 h; a-GaN(O) represents amorphous gallium oxynitride layer formed due to surface oxidation.

In summary, the effect of ammonia treatment of as-synthesized GaN based sensors on their gas sensing properties has been investigated. Untreated GaN sensors show high response towards CO in oxygen-free conditions whereas for ammonia treated GaN based sensors the sensitivity towards CO is lost at 350 °C and significantly reduced at 530 °C. This study gives the direct evidence of the oxygen impingement in the CO detection process in oxygen-free conditions of GaN gas sensors. It also points out that for non-oxides based gas sensors, prone to oxidation when exposed to air, accurate characterization of the surface chemistry is of crucial importance.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI:... GaN synthesis, sensor fabrication, characterization methods, gas sensing performance of Ga\(_2\)O\(_3\) based sensors.

AUTHOR INFORMATION

* E-mail: gurlo@ceramics.tu-berlin.de

ACKNOWLEDGMENT

The financial support by the priority program “Adapting surfaces for high temperature applications” (SPP 1299, Grant Gu 992/3-2) of the German Research Foundation (DFG) is greatly acknowledged. The authors appreciate Michael Huebner for the sensing tests.

REFERENCES
