Supporting information

Contrast-matched isotropic bicelles: a versatile tool to specifically probe the solution structure of peripheral membrane proteins using SANS.

Raphael Dos Santos Morais^{1,2,3,4}, Olivier Delalande^{1,2}, Javier Pérez⁴, Liza Mouret⁵, Arnaud Bondon⁵, Anne Martel⁶, Marie-Sousai Appavou⁷, Elisabeth Le Rumeur^{1,2}, Jean-François Hubert^{1,2}, and Sophie Combet^{3,*}.

¹Université de Rennes 1, F-35043 Rennes, France. ²CNRS UMR 6290, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France. ³Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette CEDEX F-91191, France. ⁴SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France. ⁵CNRS 6226, Institut des Sciences Chimiques de Rennes, PRISM, F-350043 Rennes, France. ⁶Institut Laue-Langevin, F-38042 Grenoble, France. ⁷Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching, Germany.

Name	Formula	MW (g/mol)	Volume (Å ³)	SANS SLD (10 ⁻⁶ Å ⁻²)	SANS contrast in 100% D ₂ O (10^{-6} Å ⁻²)	SANS contrast in 42% $D_2O(10^{-6} \text{ Å}^{-2})$
h-DMPC	C36 H72 N O8 P	678	1090	0.28	-6.06	
Head	C10 O8 P N H14	308	336	2.24	-4.10	
Tail	C26 H58	370	754	-0.58	-6.92	
h-DHPC	C20 H40 N O8 P	454	660	0.67	-5.67	
Head	C10 O8 P N H14	308	336	2.24	-4.10	
Tail	C10 H26	146	324	-0.95	-7.29	
d-DMPC	C36 H5 N O8 P D67	745	1090	6.65		4.31
Head	C10 O8 P N H5 D9	317	336	5.05		2.71
Tail	C26 D58	428	754	7.39		5.05
d-DHPC	C20 H5 N O8 P D35	489	660	6.20		3.86
Head	C10 O8 P N H5 D9	317	336	5.05		2.71
Tail	C10 D26	172	324	7.38		5.04

Table S1: Summary of the parameters used for the fitting procedure.

The SLD of 42% (corresponding to the SANS matching point of most hydrogenated proteins) and 100% (corresponding to the SANS matching point of d-bicelles) D_2O are 2.34 and 6.34.10⁻⁶ Å⁻² respectively.

Description of the "core-shell cylinder" form factor model:

$$P(Q, \alpha) = \frac{scale}{V_s} f^2(Q) + bkg$$
Eq. S1

where

$$f(Q) = \frac{2(\rho_c - \rho_s)V_c \sin\left[Qt_c \cos\frac{\alpha}{2}\right]}{\left[Qt_c \cos\frac{\alpha}{2}\right] \frac{J_1(qr_c \sin\alpha)}{(Qr_c \sin\alpha)}} + \frac{2(\rho_s - \rho_{solv})V_s \sin\left[Q(t_c + 2t_s)\cos\frac{\alpha}{2}\right]}{\left[Q(t_c + 2t_s)\cos\frac{\alpha}{2}\right] \frac{J_1(Q(r_c + t_s)\sin\alpha)}{(Q(r_c + t_s)\sin\alpha)}}$$
Eq. S2

and

$$V_s = \pi (r_c + t_s)^2 (t_c + 2t_s)$$
 Eq. S3

where α is the angle between the axis of the cylinder and the *Q*-vector, V_s is the volume of the outer shell (*i.e.* the total volume, including the shell), V_c is the volume of the core, t_c is the thickness of the core, r_c is the radius of the core, t_s is the thickness of the shell, ρ_c , ρ_s , and ρ_{solv} are the scattering length densities of the core, the shell, and the solvent, respectively, and *bkg* is the background level. The outer radius of the shell is given by $r_c + t_s$ and the total length of the outer shell is given by $t_c + 2t_s$. J_1 is the first order Bessel function.

Figure S1: (A) Square root of $I(Q = 0.01 \text{ Å}^{-1})$ versus the percentage of D₂O plot obtained with the experimental data of d-bicelles in 42, 70, and 100% D₂O (see Figure 3). Experimental match-point is 104% D₂O. (B) Square root of $I(Q = 2.5 \ 10^{-3} \ \text{Å}^{-1})$ versus the percentage of D₂O plot obtained with theoretical data generated with the "core-shell cylinder" model. Theoretical match-point is 99% D₂O. (C) Simulated SANS intensities of the "core-shell cylinder" model in 0 (black), 20 (red), 42 (green), 70 (yellow), 90 (dark blue), and 100 (magenta) % D₂O.

Figure S2: SANS intensities measured for q = 1 h-bicelles at 20°C for a total DMPC/DHPC concentration of 265 ($q_{eff} = 1.05$) (red) and 100 ($q_{eff} = 1.1$) (orange) mM and for q = 1 contrast-matched d-bicelles at 225 ($q_{eff} = 1.05$) (dark blue) and 100 ($q_{eff} = 1.1$) (cyan) mM in 100% D₂O d-TNE buffer. At 265 mM, the structure peak is observed for h-bicelles. The contrast-matched d-bicelles are superimposed and close to zero intensity.

Figure S3: (A): SDS-PAGE analysis of DYS-R11-15, assessing the purity and the expected molecular weight of the protein. (B): Tryptophan intrinsic fluorescence variation of DYS-R11-15 alone (green) or in the presence of h-bicelles (blue). Fluorescence intensity variation is attributed to a modification in the tryptophan environment due to lipid binding. (C) Chromatographic (HPLC) co-elution (Abs_{280nm} detector) of DYS-R11-15 bound to h-bicelles (blue) versus the elutions of h-bicelles (red) or DYS R11-15 (green) alone. Top of the peaks was normalized to the unity for clarity.