Supporting information

How the anchoring site on two extended tetrathiafulvalenes impacts the electronic communication through a bis(acetylide)ruthenium linker

Hadi Hachem, Antoine Vacher, Vincent Dorcet, Dominique Lorcy*

Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 10A, 35042 Rennes cedex, France. Tel: 33 2 2323 6273; E-mail:

Dominique.lorcy@univ-rennes1.fr

Synthesis of TTFAQ 1b

TTFAQ-Me(SMe)₂. To a solution of the dithiole phosphonate (3.15 g, 12.4 mmol) in dry THF (320 mL), at -78°C and under argon, nBuLi was added (9 mL, 14.4 mmol). After 1h stirring at -78°C, the anthraquinone derivative¹ (1.38 g, 3.57 mmol) was added to the medium and the reaction mixture was allowed to warm to room temperature and stirred for 15h. The solvent was evaporated under reduced pressure and the residue was solubilized with CH₂Cl₂ and the organic phase was washed with water (2x100 mL). The organic layer was dried over MgSO₄ and the solvent evaporated to obtain a yellowish powder that was purified by column chromatography on silica gel using CH₂Cl₂:petroleum ether (1:2) to afford TTFAQ-Me(SMe)₂ as a yellow powder in 95% yield. mp >220°C; ¹HNMR: δ 7.69 (m, 2H), 7.53 (m, 2H), 7.29 (m, 4H), 5.87 (q, 1H, J=1.5 Hz), 2.38 (s, 6H; 2(SMe)), 2.06 (s, 3H, J=1.5 Hz; Me); HMRS calcd for C₂₃H₁₈S₆: 485.97273. Found : 485.9728.

TTFAQ 1b. To a solution of TTFAQ-Me(SMe)₂ (1.5 g, 3 mmol) in dry THF (300 mL), under argon and at -78°C, LDA (6.4 mmol) was slowly added. After 1h stirring at -78°C, perfluoro-

¹ Batsanov, A. S.; Bryce, M. R.; Coffin, M. A.; Green, A.; Hester, R. E.; Howard, J. A. K.; Lednev, I. K.; Martin, N.; Moore, A. J.; Moore, J. N.; Orti, E.Sánchez, L.; Savirón, M. Viruela, P.M.; Viruela, R.; Ye, T. Q. *Chem. Eur. J.* **1998**, *4*, 2580-2592.

1-iodohexane (1.3 mL, 6 mmol) was slowly added to the medium and the reaction mixture was allowed to warm to room temperature and stirred for 15h. The solvent was evaporated under reduced pressure and the residue was solubilized with CH_2Cl_2 and the organic phase was washed with water (2x100 mL). The organic layer was dried over MgSO₄ and the solvent evaporated to obtain a powder that was purified by column chromatography using CH_2Cl_2 /petroleum ether as eluent (1:2) to afford TTFAQ **1b** as a dark red powder in quantitative yield. mp >220°C; ¹HNMR: δ 7.56 (m, 4H); 7.31 (m, 4H); 2.39 (s, 6H; 2(SMe)); 2.06 (s, 3H; Me); ¹³CNMR: δ (ppm) 134.5, 126.3, 126.1, 125.4, 125.1, 122.7, 19.1, 18.8, 1.01; HMRS calcd for $C_{23}H_{17}S_6I:611.86938$. Found: 611.8696 (0 ppm)

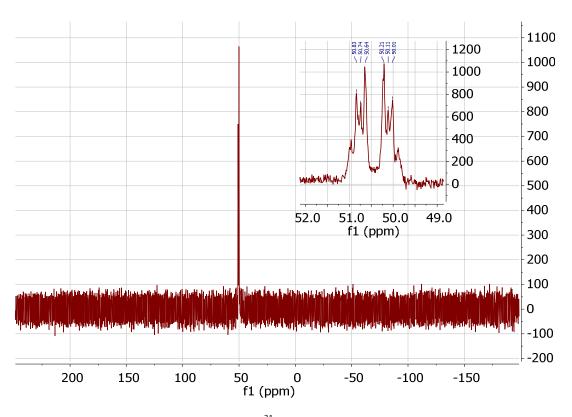


Figure S1. ³¹P NMR of complex 5a

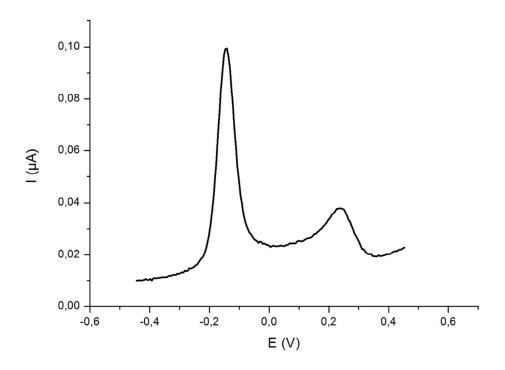


Figure S2. DPV of complex 8. E in V vs Fc

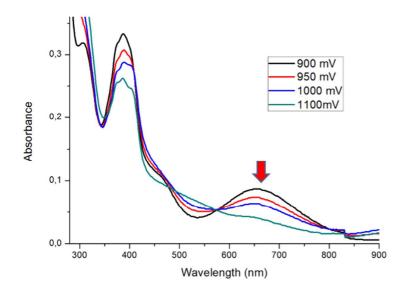
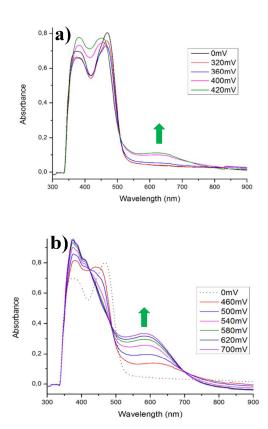



Figure S3. UV-vis-NIR monitoring of the electrochemical oxidation of D-Ru $\mathbf{5a}$ in CH_2Cl_2 containing 0.2 M Bu_4NPF_6 to the full oxidation state.

Figure S4 UV-vis-NIR monitoring of the electrochemical oxidation of $6\mathbf{b}$ in CH_2Cl_2 containing 0.2 M Bu_4NPF_6 , potentials are quoted vs SCE. a) gradual oxidation to the dication $6\mathbf{b}^{2+}$ b) to the tetracation $6\mathbf{b}^{4+}$.

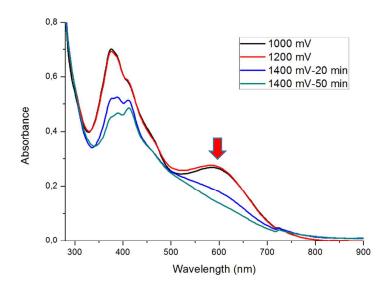


Figure S5. UV-vis-NIR monitoring of the electrochemical oxidation of D-Ru-D $\bf 6b$ in CH_2Cl_2 containing 0.2 M Bu_4NPF_6 to the full oxidation state.