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Abstract: We study the transient electron transfer process in 

CsCoFe and RbMnFe Prussian Blue Analogues (PBA), by time-

resolved X-ray Absorption Near Edge Structure (XANES) and by 

time-resolved optical spectroscopy. We performed time-resolved 

studies on CsCoFe nanocrystals dispersed in solution. The 

XANES results obtained at room temperature clearly evidence the 

CoIII(LS)FeII→CoII(HS)FeIII electron transfer between the metal 

centers, through the opposite spectral shifts at the Fe and Co 

edges. We also studied the MnIII(LS)FeII→MnII(HS)FeIII process in 

RbMnFe powder sample, at thermal equilibrium as well and under 

laser excitation. Optical spectroscopy reveals that the process 

occurs on the picosecond timescale, as already reported by 

Raman spectroscopy and that the lifetime of the photoinduced 

charge-transfer states is in the 1-10 µs range, depending on the 

sample and on temperature. 

Introduction 

The control by light of the physical and chemical properties 

(magnetic, optical, conductivity, motion, reactivity…) of materials 

is a challenging field of research from the fundamental and 

technological aspects. Optically switchable materials are 

extensively studied because of their potential applications in light-

based technologies, such as optical memory devices or sensors 

for example. Several studies involving different kinds of materials 

have been reported, such as neutral-ionic or insulating-metal 

charge-transfer systems,[1] metal oxides,[2] photochromic 

materials,[3] spin-crossover complexes,[4] and cyanide-bridged 

bimetallic assemblies[5]. For these systems to be useful and in 

order to control their light-induced properties, it is compulsory to 

understand the elementary mechanisms that take place on the 

short time scale, allowing structural trapping of new electronic 

states. Molecule-based materials containing transition metal ions, 

such as Spin Crossover (SCO) systems and charge-transfer 

Prussian Blue Analogues (CT-PBA) possess a common behavior 

that is a very strong coupling between the electronic and structural 

changes after light illumination. The Light-Induced Excited Spin 

State Trapping (LIESST) phenomenon, was thoroughly 

investigated in many spin-crossover materials in the solid state[6]. 

Transient LIESST and its dynamics were studied by time-resolved 

techniques, including optical and X-ray spectroscopies, down to 

the femtosecond timescale, in solution[7] or in solids.[8] Ultrafast 

studies were also performed in cyanide-bridged bimetallic 

assemblies, using time-resolved optical,[9] Raman,[10] X-ray 

diffraction[11] and X-ray spectroscopy.[12] Optical and X-ray probe 

techniques are sensitive to both electronic and structural aspects 

and are therefore particularly interesting for understanding the 

transformation mechanisms of such materials.[8c] Here we use 

time-resolved X-ray Absorption Near Edge Structure (XANES) to 

evidence the transient charge transfer, induced by a laser pulse 

(~1 ps = 10-12 s), in two types of cyano-bridged photomagnetic 

networks in the form of nanocrystals for the compound noted 

CsCoFe and as powder for the compound noted RbMnFe in the 

following. The X-ray Absorption Near Edge Structure (XANES) 

experiments were performed at the ID09 beamline of the ESRF 

synchrotron and optical pump-probe studies were performed at 

the Institut de Physique de Rennes to characterize the lifetime of 

the transient CT states.  

Cs{Co[Fe(CN)6]}[5d] and Rb{Mn[Fe(CN)6]}[5f] are photomagnetic 

materials known as Prussian Blue Analogues (PBA), consisting in 

face centered cubic (fcc) 3D network (Fig. 1(a)). The exact 

composition of the studied samples are given in experimental 

section and ESI. The CN- groups bridge the two metal ions where 

Fe is linked to the carbon side of CN- and Co and Mn to the 

nitrogen side. The alkali ions (CsI and RbI) occupy the tetrahedral 

sites of the fcc network. The metal ions have octahedral geometry 

with a symmetry very close to Oh. The octahedral crystal field of 

the ligands splits the 3d orbitals into two sets of t2g and eg orbitals. 

The Fe ions are always in the low spin (LS) state and the Mn ions 

in the high spin (HS) state. While the spin state of Co depends on 

its oxidation state; CoII  is high spin (S = 3/2) and CoIII is low spin 

(S = 0). For CsCoFe, there are, thus, two electronic configurations 

for the Co-Fe pairs i.e. the diamagnetic FeII(S=0)-CoIII(S=0) and 

the paramagnetic FeIII(S=1/2)-CoII(S=3/2). External control 

parameters like temperature or light allows switching between the 

two states as schematically represented by the potential energy 

curves in Fig. 1(b). At low temperature, light illumination allows an 

electron transfer from FeII to CoIII concomitant to a spin change to 
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Figure 1. Schematic representation of the 3D structure (a) and potential energy 

curves (b) with electronic and structural changes associated with charge-

transfer process in CsCoFe (c) and RbMnFe (d) systems. 

Figure 2. Schematic experimental set-up used for time-resolved XANES 

studies at the ESRF. 

the higher entropy FeIII(S=1/2)-CoII(S=3/2) configuration. At 

thermal equilibrium, the change of spin state on the Co site is 

associated with a structural reorganization Fig. 1(c). As electron 

populates the antibonding eg orbitals in the HS state, the Co-N 

bonds expand by about 0.2 Å, inducing a lattice expansion. 

Different alkali like CsI and RbI can be included in the tetrahedral 

sites of the fcc network to favor or not the higher volume state. 

Bleuzen et al. demonstrated by XANES measurements at the Fe 

and Co edges that it is possible for a given composition of the 

material, to photoinduce the CoIII(LS)FeII(LS)→CoII(HS)FeIII(LS) 

charge transfer at room temperature under pressure.[5d]  

For RbMnFe systems, there are also two possible electronic 

states: the ground one MnIII(S=2)FeII(S=0), and the high-

temperature one MnII(S=5/2)FeIII(S=1/2) Fig. 1(d). The thermally-

induced electron transfer was also characterized by XANES 

studies at the Fe and Mn edges, and here the main structural 

change occurs around the Mn site.[13]  For both systems, the K 

edge XANES spectra are modified through their sensitivity to 

charge transfer (resulting in a “rigid shift” of the absorption 

spectra) and to structural rearrangement (change of the XANES 

spectrum). As detailed in the experimental section, we use these 

XANES fingerprints to track the electron transfer photoinduced by 

a femtosecond laser pulse, in CsCoFe  and RbMnFe systems, by 

using the experimental set-up developed at the ID09 beamline of 

the ESRF (Figure 2). In addition, we use time-resolved optical 

spectroscopy to characterize the lifetime of the transient and out-

of-equilibrium electron transfer.    

Results and Discussion 

The CsCoFe nanocrystals dispersed in water studied here are in 

the diamagnetic FeII(S=0)-CoIII(S=0) state at room temperature, 

which allows performing the photo transformation experiments at 

room temperature. We acquired the XANES data from the 15 nm 

size nanocrystals dispersed in water and excited by 650 nm laser 

pulses (Fig. 2). The XANES changes were monitored by the 70 

ps X-ray pulses at the ID09 beamline as shown in Figure 3. Before 

laser irradiation, the maxima of X-ray absorption intensity I(a.u.) 

are around 7728 eV at the Co K-edge and around 7130 eV at the 

Fe K-edge. These results are in good agreement with the results 

obtained by Bleuzen et al.[5d] The spectral changes measured 

500ps after laser excitation (red curve) are very weak. This is 

often the case in time-resolved studies, because the excitation 

density used is typically of the order of 1 photon per 100 active 

sites. Therefore, the spectral changes due to photoexcited 

species are better observed on the spectral intensity change, I 

= (I500ps-Ioff), also shown in Figure 3. The difference spectra at the 

Co edge shows a spectral shift towards lower energy, 

characterized by an absorption increase below the Co edge and 

a decrease just above. Difference spectra at Fe edge shows the 

opposite spectral shift towards higher energy, with an absorption 

decrease below the Fe edge and an increase just above.  

Such changes in the absorption spectra are characteristic of the 

change of the formal oxidation state of the metal ions and 

therefore of the CoIII(LS)FeII→CoII(HS)FeIII electron transfer.[5d, 14] 

Additional oscillating changes above the Co edge are 

characteristic of the local structural change around Co due to the 

spin-crossover as already observed for Fe in the SCO systems.[7h] 

The transient XANES changes I(t) after photoexcitation were 

measured at photon energies just above and below the Co and 

Fe absorption edges (Figure 4). These traces indicate that the 

electron transfer occurs within the 100 ps time resolution of the 

experiment and that the photoinduced CoII(HS)FeIII state has a 

lifetime larger than 1 ns at room temperature.  



 

           

 

 

 

 

 

 

Figure 3. XANES spectra, for the CsCoFe nanocrystals, at the Fe and Co edges 

before (black) and 500 ps after laser excitation (red) and corresponding spectra 

change I(t).  

Figure 4. Time scans of relative absorption changes at selected X-ray energies 

below and above the Co and Fe edges, for he CsCoFe nanocrystals. 

Figure 5. OD change at 520 nm, after fs laser at 650 nm, for he CsCoFe 

nanocrystals. 

Cartier dit Moulin et al reported that the irradiation induces a shift 

for the preedge from 7711 to 7710 eV,[14a] hardly seen in Fig. 3 

due to experimental limitations, which will be interesting to track 

in real time in future work.  

For tracking the lifetime of the photoinduced CoII(HS)FeIII(LS)  

state, we performed complementary optical measurements on the 

experimental set-up available at the Institut de Physique de 

Rennes. We used time-resolved optical spectroscopy to study the 

relaxation process of CsCoFe nanocrystals in solution that were 

photo-excited at room temperature by 650 nm optical pulses.  



 

           

 

 

 

 

The probe wavelength was set to 520 nm, which corresponds to 

the maximum of the CoIII(LS)FeII→CoII(HS)FeIII absorption band 

(Fig. S4). The time-resolved OD decrease after photoexcitation 

shown in Figure 5, is due to the depopulation of the CoIII(LS)FeII 

after photoexcitation and indicates that the CoII(HS)FeIII → 

CoIII(LS)FeII relaxation occurs within few µs at room temperature. 

 

We performed similar studies for the RbMnFe system. At the 

difference to the CsCoFe system, the RbMnFe is in the MnIIFeIII 

state at room temperature. Upon cooling down, thermal electron 

transfer leads to the MnIIIFeII state around 210 K with a complete 

conversion below 190 K. The thermal transition shows a thermal 

hysteresis and as the back conversion towards the MnIIFeIII state 

occurs around 300 K.[5f] We measured the X-ray absorption at the 

Mn edge at room temperature (Figure 6). The maximum around 

6551 eV is characteristic of the MnII state.[13] At lower temperature 

(210 K), the intensity of this peak decreases and a new one 

appears at 6557 eV characteristic of the MnIII state and indicating  

the thermal conversion from MnII to MnIII, as reported 

previously.[13] This temperature corresponds to the descending 

branch of the thermal hysteresis, where MnIIIFeII and MnIIFeIII 

states coexist. We observed additional changes of the spectrum 

change under cw laser excitation at 400 nm, which switches the 

system from MnIIFeIII to MnIIIFeII state.[5f] This is illustrated by the 

decrease (resp. increase) of the MnII (resp. MnIII) peak in figure 6. 

 

Figure 6. XANES spectra measured at the Mn edge, for the RbMnFe compound 

at room temperature, at 210 K and at 210 K under cw laser excitation at 400 nm, 

with corresponding spectral changes I(t).   

Figure 7. Time scans of relative absorption change 6557 eV for RbMnFe, after 

fs laser excitation at 530 nm. 

Figure 8. OD change, for he RbMnFe compound at 650 nm, after fs laser at 

530 nm. 

 

We then performed time-resolved XANES measurements on 

RbMnFe powder at 200 K. We monitored the transient XANES 

changes I(t) at 6557 eV, induced by laser pulse photoexcitation 

at 530 nm, is known to induce the MnIIIFeII → MnIIFeIII electron 

transfer. The time trace reported in Figure 8 indicates that the 

electron transfer occurs within the 100 ps time resolution of the 

experiment. Time-resolved optical spectroscopy studies 

monitored the relaxation process of RbMnFe at 140 K, through 

the transient change of optical transmission intensity at 650 nm 

excitation by a fs laser pulse at 530 nm. The data presented in 

Figure 7 indicate that the MnIIFeIII → MnIIIFeII relaxation occurs 

within 10 µs.  

Conclusions 

The present study reveals transient CT state in different PBAs, 

characterized by time-resolved optical spectroscopy and time-

resolved XANES. The lifetime of the CT states is in the 1-10 µs 

range in the 200-300 K range. This study also shows that it is 

possible to perform time-resolved studies with nano crystals in 

solution. It opens new possibilities to extend XANES studies at  

X-ray free electron laser, for tracking the intrinsic dynamics at sub-

picosecond timescale, as recently performed for spin-crossover 

molecules in solution and in crystals.[7h, 8c, 8e, 8h] 



 

           

 

 

 

 

Experimental Section 

Synthesis and characterization of the CsCoFe(CN)6 nanocrystals. 

The nanocrystals noted CsCoFe(CN)6 were prepared by mixing 

two solutions one containing K3[FeIII(CN)6] and CsCl and one 

CoIICl2•6H2O; they were recovered embedded in 

Polyvinylpyrrolidone (PVP) as already described for other similar 

nanocrystals.[15] The size of the objects was probed in solution 

before adding PVP and was found to be close to 15 nm (see ESI, 

Figure S1). The size was confirmed by Transmission Electron 

Microscopy imaging (see ESI, Figure S2). X-ray powder 

diffraction measurement gives the expected face centered cubic 

structure with a cell parameter of 9.96 Å characteristics of the FeII-

CoIII lattice; an electron transfer from Co to Fe thus occurs during 

the nanocrystals’ synthesis.[5d] The infra-red spectrum in the 

2000-2200 cm-1 region has an intense band at 2112 nm 

corresponding to the asymmetric cyanide vibration of the FeII-CN-

CoIII lattice; the weak band at 2070 corresponds to FeII(CN)6
4- 

species present at the surface of the 15 nm particles (see ESI, 

Figure S3). Elemental analysis gives the following composition 

Cs0.58{Co[Fe(CN)6]0.87. The time resolved XANES studies were 

performed on the nanocrystals embedded in PVP and dispersed 

in water. We also studied RbMnFe nanocrystals, obtained from a 

solution of manganese chlorides added to a mixed aqueous 

solution of rubidium chloride and potassium ferrocyanide. The 

precipitate is filtered and dried, giving a light brown powdered 

sample. By controlling the rubidium chloride concentration in the 

synthetic solution, samples with different compositions are 

realized. Elemental analyses of the prepared sample showed that 

the formula was RbMn[Fe(CN)6]0.96·2.6H2O: Calculated; Rb, 

21.64; Mn, 13.91; Fe, 13.86%: Found; Rb, 21.98; Mn, 13.85; Fe, 

13.79%. A SEM photograph of this sample is provided in Fig. S5. 

Time-resolved optical pump-probe spectroscopy allowed tracking 

the lifetime of the charge-transfer states through optical 

absorption change. We used the optical pump-probe set-up 

described in ref[16],  where the synchronization between the pump 

and probe femtosecond amplifiers is electronically tuned for 10 ns 

-ms delays, while a mechanical translation stage sets the optical 

path difference for sub-ns measurements. The experiments were 

configured in visible-NIR transmission geometry with a quasi-

collinear configuration of pump and probe beams. We used 60 fs 

laser pulses at 650 nm (resp 532 nm) to photoexcite CsCoFe 

(resp. RbMnFe) and at 520 nm (resp. 650 nm) to probe the 

relaxation dynamics. More details about the experimental set-up 

are presented in the paper by Lorenc et al.[16]  

The time resolved XANES measurements were performed using 

the optical pump / X-ray probe technique at the ID09 beamline. 

We used the X-ray pulses delivered from the ESRF using the 16 

bunch-filling mode. The energy of X-ray emitted by the undulators 

(U27 and U17) was controlled by opening gap of the undulators. 

The X-ray beam passes through a cryo cooled (100K) Si(111) 

double crystal monochromator and is focused at the sample 

position with a toroidal mirror. Two choppers are used decrease 

the repetition rate of the X-ray train of pulses to 1kHz.[17] The 

temporal overlap of the X-ray/optic pulses is measured with the 

GaAs detector, which is sensitive to the both radiations, with a 

precision of 25 ps and the time delay between both pulses is 

electronically controlled. At the overlap position, the optical pump 

and the X-ray probe have respectively a pulse duration of 150 fs 

and 70 ps, with a focal area of 120 x 350 µm and 60 x 120 µm. 

The same was excited in quasi collinear geometry (angle between 

x-ray and laser beam of ~10°). The solution samples is circulated 

via a closed loop system through a 0.5 mm capillary tube and the 

rate flow is maintained using the peristaltic pump (Gilson Minipuls 

3). The 2D detector (MAXIPIX) is mounted close to the sample (~ 

3 cm) perpendicular to the X-ray propagation direction to minimize 

the collection of elastic photon scattering. In this geometry the 

active window (28.4 x 28.4 mm2) covers a solid angle of ~ 0.74 sr 

(5.89 % of 4π). We used a Pin diode to measure simultaneously 

the transmission and scattered X-ray, in order to normalize the 

final fluorescence signal (Intensity fluctuation, the long decay of 

the current after each refill).  
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Figure S1. Dynamic Light Scattering measurement of CsCoFe nanocrystals in solution 
 

 
Figure S2. Transmission Electron Microscopy imaging of the CsCoFe nanocrystals (left) and size count (right). 
 

 
Figure S3. Infra-red spectrum of the CsCoFe nanocrystals embedded in PVP 
 

 
Figure S4. UV-vis spectrum of the CsCoFe nanocrystals in the CoIIIFeII state.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S5. SEM photograph of the sample RbMnII[FeIII(CN)6]0.92[FeII(CN)6]0.06·2.6H2O. 


