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Abstract

Domain-specific languages (DSL) are developed for answering specific problems by leveraging the expertise of do-
main stakeholders. The development of DSLs requires a significant software engineering effort: editors, code gener-
ators, etc., must be developed to make a DSL usable. Documenting a DSL is also a major and time-consuming task
required to promote it and address its learning curve. Recent research work in software language engineering focus
on easing the development of DSLs. This work focuses on easing the production of documentation of textual DSLs.
The API documentation domain identified challenges we adapted to DSL documentation. Based on these challenges
we propose a model-driven approach that relies on DSL artifacts to extract information required to build documenta-
tion. Our implementation, called Docywood, targets two platforms: Markdown documentation for static web sites and
Xtext code fragments for live documentation while modeling. We used Docywood on two DSLs, namely ThingML
and Target Platform Definition. Feedback from end users and language designers exhibits qualitative benefits of the
proposal with regard to the DSL documentation challenges. End user experiments conducted on ThingML and Target
Platform Definition show benefits on the correctness of the created models when using Docywood on ThingML.

Keywords: software documentation, domain-specific language, model slicing

1. Introduction

According to Mernik et al., domain-specific language (DSLs) are software languages that “provide notations and
constructs tailored toward a particular application domain” [1]. DSLs are increasingly being developed to leverage
specific domain expertise of various stakeholders involved in the development of software systems [2]. Although
DSLs are usually small, their development requires a significant software engineering effort [3, 4]. Concrete syntaxes,
editors and compilers are examples of core components that compose a DSL ecosystem. Current research efforts focus
on easing the development of specific parts of DSLs to reduce their development cost and maintenance [5, 6, 7, 8].

The work proposed in this paper aims at opening new research questions and proposing new tools for DSL main-
tenance with a focus on the user documentation of DSLs. As advocated by Fowler, a “kind of generator [that comes
with DSLs] would define human readable documentation – the language workbench equivalent of javadoc. [...] There
will still be a need to generate web or paper documentation” [9]. Documenting a DSL is indeed another major and
time-consuming development task [1, 3]. This task, however, is required to promote DSLs, address their learning
curve [3], and limit the “language cacophony problem”: languages are hard to learn and the use of many languages
will be much more complicated than using a single language [9]. By studying parallels made between DSLs and
APIs (Application Programming Interface) [1, 10, 11], we identified four technical properties that end-user DSL
documentation tools should possess: 1) Documentation must be complete, i.e., all the DSL concepts must have an
up-to-date documentation; 2) Documentation has to be contextualized according to the current need of the DSL users;
3) Maintaining documentation over several platforms is a complex task that can lead to documentation obsoleteness;
4) Providing code examples to illustrate each concept of a DSL is a time-consuming task. Documentation is known
as improving the usability of the documented artifact [12]. So, these four properties aim at answering a more general
challenge that is improving the usability of DSLs by improving their end user documentation.

The proposed approach focuses on textual and grammar-based DSLs. The approach produces end user documen-
tation from artifacts of the implementation phase of DSLs: the metamodel, the grammar, and models that cover all
the concepts of a DSL. For each concept of a DSL, the metamodel, the grammar, and a model are sliced [13, 14] to
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keep their elements that focus on this concept. A piece of documentation, dedicated to this concept, is then produced
and is composed of: an illustrative example; explanations about the concept and its possible parameters, in natural
language. These explanations are not fully synthesized by our approach: metamodel documentation is extracted from
the metamodel to be used in the generated documentation. One benefit of the approach is its ability to capitalize on
existing DSL artifacts to produce documentation for different platforms. For example, the documentation are currently
generated for two platforms: 1) in a Markdown format to be easily integrated in wikis; 2) as Java code to be seam-
lessly integrated in the Xtext [5] DSL editor and then to provide DSL users with live documentation by content assist.
Our generative process follows coverage criteria: the produced end user documentation explains all the concepts of
the DSL domain model (e.g., all the classes, attributes, and references of the DSL metamodel).

The proposal has been prototyped in Docywood,1 built on top of the Eclipse Modeling Framework (EMF) [15] and
Xtext. We validated the proposal through an experiment that involves: 17 subjects; two third-part modeling DSLs,
namely ThingML2 [16] and Target Platform Definition,3 designed for a computer science audience; two language
designers of ThingML. The results of the experiment exhibit qualitative benefits of the proposal with regard to the
five DSL documentation challenges. Both subjects and language designers identified several possible improvements.
The quantitative results exhibit benefits regarding the correctness of the created models when using the generated
documentation in addition to the official one for ThingML.

The paper is structured as follows. Section 2 introduces an example used throughout the paper to illustrate the
approach. Section 3 explains the approach. Section 4 details the evaluation of the approach. Section 5 discusses
related work. Section 6 concludes the paper and gives insights for future work.

2. Problem Statement

First, we introduce an illustrative example use throughout this paper to illustrate the approach. Then, we formalize
the problem to solve.

2.1. Illustrative example: a DSL for moving robots

We define a simple language, called Robot, for moving robots. Figure 1 describes the documented metamodel
of the Robot DSL. A user can define a program (ProgramUnit) to move a robot with commands (Command). The
commands are: move forward (Move); rotate on itself following a given rotation angle (Turn); a specific while loop
to execute commands while no obstacle is in front of the robot (WhileNoObstacle). All the metamodel elements
are documented (Figure 1 shows the embedded documentation of three elements, namely ProgramUnit, ProgramU-
nit.commands, and Move). The documentation, written by language designers, is embedded in the metamodel. For
example with EcoreTools, such a metamodel documentation consists of annotations on the metamodel elements.

ProgramUnit Command

Move

distance : Double

Turn

angle : Double

WhileNoObstacle

distance : Double

[0..*] commands

[0..*] commands

A ProgramUnit contains the 
commands for controlling a robot. 
It is the main class of the language.

A program contains a set of commands 
to be executed to control the robot.

It defines a command for moving 
forward the robot.

Figure 1: The metamodel of the Robot language

1See: https://github.com/arnobl/comlanDocywood
2See http://thingml.org/
3See https://github.com/mbarbero/fr.obeo.releng.targetplatform
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Listing 1 shows a Robot code snippet that follows the grammar of Listing 2. A ProgramUnitsurrounds its com-
mands with the begin and end tokens. The Move, Turn, and WhileNoObstacle commands respectively match the tokens
move, turn, and whileNoObstacleAt, followed by their parameters declared between parentheses. A WhileNoObstacle
command defines sub-commands between brackets.

1 begin

2 move (25)

3 whileNoObstacleAt (10) {

4 move (75)

5 turn (90)

6 move (50)

7 }

8 turn (-100)

9 move (60)

10 end

Listing 1: A Robot model

1 ProgramUnit: ’begin ’ (commands += Command )* ’end’;

2 Command: Move | Turn | WhileNoObstacle;

3 Move: ’move’ ’(’ distance=Double ’)’;

4 Turn: ’turn’ ’(’ angle=Double ’)’;

5 WhileNoObstacle: ’whileNoObstacleAt ’ ’(’ distance=Double

6 ’)’ ’{’ (commands += Command )* ’}’;

Listing 2: The Xtext grammar of the Robot DSL

2.2. Overall Objectives

Provide a support to automate the production of DSL documentation.

2.2.1. Technical properties
Software languages are software too [17] and relations between APIs (Application Programming Interface) and

DSLs have been established [1, 10]. So, the relationship can be drawn between DSL and API documentation to
precise the overall objectives. API documentation pitfalls have been identified from end users feedback [11]. From
these pitfalls we derived four technical properties that end user documentation tools should possess.
Property #1 – Documentation coverage guarantee. Incomplete documentation has been identified as the most
important problem that affects API documentation. This property aims at assuring that documentation coverage
criterion has been considered. We define the documentation coverage criterion as follows: all the concepts of the
DSL are covered by the documentation. When the domain model of the DSL is a metamodel, this criterion can be
decomposed into three coverage criteria: all the attributes, references, and classes of the DSL metamodel are covered
by the documentation. For example with the illustrating example, all the concepts of the Robot metamodel must be
documented: classes such as ProgramUnit, attributes such as angle, and relations such as commands.
Property #2 – Documentation contextualization. Documentation has to be contextualized according to the current
needs of the language users. This may limit the bloat and tangled information issues brought by providing large
and not fully relevant chunks of texts to users. For example with the illustrating example, when an end user of the
Robot language works on the Turn class, only the documentation that concerns this class and related elements (e.g.,
its mandatory attribute angle) must provided.
Property #3 – Multi-platform documentation generation. Maintaining documentation manually over one or several
platforms (several language workbenches, websites, etc.) is a complex task that can lead to documentation obsolete-
ness. For example with the illustrating example, documentation to be integrated within the Xtext editor or within wiki
pages could be generated. In case of changes in the language artifacts (e.g., the Robot metamodel or its grammar), the
documentation must be easily updated.
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Property #4 – Example-based documentation. While users generally appreciate examples in the documentation,
these examples must be supplemented with adequate explanations. For example with the illustrating example, the
documentation that concerns the class Move must have small yet relevant illustrative examples, such as: move(75).

In the early stages of the DSL development process, domain analysis can help in identifying the concepts of the
DSL and in producing some general documentation [18]. Downstream of the development process, language designers
can manually write documentation using common tools such as EcoreTools [15]. These different approaches do not
possess the four properties that characterize the scientific problem of easing the production of DSL documentation: if
language designers can document a metamodel, this documentation is mainly dedicated to other language designers
to build the DSL ecosystem. The four properties concern the documentation dedicated to DSL users, i.e., to users that
will use the DSL through its ecosystem (e.g., editors). Moreover, metamodel documentation does not usually come
with examples. As highlighted by the property #4, examples must be provided to ease the understanding of DSL
concepts. As this task can be time-consuming, an approach must be proposed to ease the production of examples in
DSL user documentation.

2.2.2. Usefulness of the approach
The four aforementioned properties focus on features tools that produce DSL documentation should support. From

an end user perspective, these four properties aim at achieving a more general challenge, defined as follows.

Challenge – Improving DSL usability with end user documentation. Documentation is known as improving the
usability of the documented artifact [12]. A tool that possesses the four aforementioned properties must improve the
usability of DSLs by improving their end user documentation. Based on the four aforementioned properties, this paper
proposes a new DSL documentation approach to automate the production of DSL documentation. The evaluation of
the approach focuses on discussing the global challenge by measuring the impact of the documentation generated by
the implementation of the approach on the usability of two industrial DSLs.

3. Approach

This section presents the approach in details. Section 3.1 details the content of the produced documentation.
Section 3.2 gives the overview of the approach. The main steps are then detailed in Sections 3.3 to 3.5.

3.1. Documentation Content and Structure

The output documentation produced by the approach are pieces of documentation that document each concept of
the DSL under study.

A piece of documentation is composed of: a model in its textual form to illustrate the concerned concept; textual
documentation about the current concept; the textual instructions for creating the illustrative example; references to
other related pieces of documentation.

The illustrative example of a piece of documentation is extracted from existing models provided as input of the
approach. The textual documentation is extracted from the documentation embedded in the metamodel of the DSL.
If the DSL under study does not have such metamodel documentation, the approach can still be applied but no
explanation about the concepts is provided.

Figure 2 depicts one piece of documentation of the Robot DSL. The piece of documentation starts with a model
extracted from Listing 1 that covers the targeted concept, i.e., the Move command, and its mandatory related elements
(here, ProgramUnitand the Move’s attribute distance). Then, the text of the documentation explains the different
elements not already explained in other pieces of documentation: we assume that ProgramUnithas its own piece of
documentation so ProgramUnitis not explained in the documentation related to Move. The generated text uses: the
documentation extracted from the metamodel of Figure 1; the concrete syntax grammar of Listing 2; an illustrative
model (Listing 1). Links to the documentation of related concepts are provided. For example, the documentation
related to Move ends with a link to the definition of a ProgramUnit.
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Figure 2: The piece of documentation that explains the Move concept of the Robot DSL

Figure 3: The different steps of the approach

3.2. Overview and scope of the approach

3.2.1. Overview
The proposed approach produces end user documentation for textual DSLs through a model-based approach.

Figure 3 depicts the different steps of the approach. The language designer has to provide as input data to the approach
the documented metamodel of a DSL, its grammar, and models that will serve as examples in the documentation.

An activity diagram can also be provided as input data to the approach. This activity diagram orders the generation
of the pieces of documentation.

This diagram is automatically generated at the first run of the approach on a given DSL. Once generated, language
designers can edit this diagram to: change the generation order of the pieces of documentation; merge, remove, or
modify pieces of documentation. Section 3.3 details the characteristics of the input data.

Section 3.4 details the generation of the activity diagram (DSL to activity diagram transformation in Figure 3).
The process then takes the first activity of the activity diagram to produce the root piece of documentation of the DSL.
The root piece of documentation explains the root concepts of the DSL, i.e., the minimal necessary instructions for a
model to be valid.

The production of the root piece of documentation follows step 3.5 of Figure 3. First, the Slicer slices the meta-
model to keep only its minimal mandatory elements. Model slicing is an operation that extracts a subset of model
elements [13, 14]. Second, the Documentation generation module uses the sliced metamodel, the grammar, and the
input models to generate the root piece of documentation. Then, the sliced metamodel is augmented with one concept
from the original metamodel thanks to the next concept selector step of Figure 3. Model slicing is also used during
this step to get the mandatory elements related to the concept newly added. The documentation generation and incre-
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mentation (“next concept selector”) steps repeat over the successive sliced metamodels until all the activities of the
activity diagram are considered. Section 3.5 details the documentation generation.

3.2.2. Scope of the approach
First, the proposed approach detailed in this section focuses on external grammar-based and textual DSLs. Ex-

ternal DSLs represent 50% of the DSLs [8]. If graphical DSLs could be supported by the approach, DSLs not based
on grammars would require deep changes in the proposed process. Second, the approach relies on the DSL meta-
model, grammar, and models to produce end user documentation. The approach does not exploit the DSL behavioral
semantics to this end. Third, the approach is generalizable to any meta-metamodel that supports the class, attribute,
relation, inheritance, and cardinality concepts. This is the case of several widely used meta-metamodel languages,
such as Ecore (used in the implementation), UML,4 or MetaEdit+ [19]. Finally, we originally designed the approach
for DSLs that target a computer science audience. The approach may be used on DSLs that target other audiences,
but this requires supplementary experiments, that is out of the scope of the current paper.

3.3. Input data

The language designer provides the documented metamodel, grammar, and a set of models of the DSL. A docu-
mented metamodel is a metamodel where its concepts (classes, attributes, references, etc.) have an associated docu-
mentation. For example, elements of an Ecore model (i.e., a metamodel) can be documented. This documentation is
embedded in the metamodel as annotations as illustrated in Figure 1. The metamodel has to be documented to provide
textual explanations on the concepts explained in a piece of documentation. If the metamodel is not documented the
process still works but textual explanations will be absent from the generated documentation.

The grammar of a DSL is used to: give instructions in pieces of documentation on how to write the current
concepts using the concrete syntax; produce code examples from the input models (see Section 3.5).

The input models must cover all the concepts of the DSL. They indeed constitute the examples on which docu-
mentation will be based. Their usages are detailed in Section 3.5.

3.4. DSL to activity diagram transformation

The first time a language designer runs the approach for a given DSL, a UML activity diagram is automatically
produced. This activity diagram describes the sequences of the pieces of documentation. The goals of this activity
diagram are twofold. First, it orders the generation of the pieces of documentation, as detailed in Section 3.4.1.
Second, it allows the language designers to change this generation order, as detailed in Section 3.4.2.

3.4.1. Activity diagram generation
Algorithm 1 details the generation of the activity diagram. Figure 4 illustrates this algorithm using the Robot

DSL. The first goal of the activity diagram is to order the generation of the pieces of documentation. This order is
mandatory as a generated piece of documentation will contain details about its parent documentation. For example,
the Move class of the Robot language should be explained after the ProgramUnit concept as there is a composition
relation between these two classes in the Robot metamodel (see Figure 1).

The algorithm follows the structure of the metamodel. The first step consists in detecting the root class of the
metamodel (line 2). For simplicity, this description and Algorithm 1 make the assumption that a metamodel has a
single root class. The approach, however, supports several root classes. In the case of the Robot metamodel, the root
class is ProgramUnit(Figure 4a). The activity corresponding to the root class is then produced (line 5). Figure 4b
shows the created activity “Defining a ProgramUnit”. During the creation of an activity, the current metamodel
element to explain is associated to the activity to get it back during the generation of the corresponding documentation
(see activity.getData(), line 6 in Algorithm 2, in Section 3.5.1).

A crucial step in the approach is the use of model slicing [14, 13] to get the minimal metamodel chunk from a set
of slicing criteria, i.e., a set of metamodel elements. Model slicing is a model comprehension technique inspired by
program slicing [20]. The process of model slicing involves extracting from an input model a subset of model elements

4http://www.omg.org/spec/UML
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Algorithm 1 Activity diagram generation algorithm
1: procedure generateActivityDiagram(metamodel)
2: rootClass := extractRootClass(metamodel)
3: initNode := new InitNode
4: activityDiag := {initNode}
5: genActivity(rootClass,metamodel, initNode, ∅, activityDiag)
6: return activityDiag
7:
8: procedure genActivity(elt, metamodel, prevActivity, explained, diag)
9: activity := createActivity(elt)

10: explained := explained ∪ sliceMetamodel(metamodel, elt)
11: diag := diag ∪ {prevActivity→ activity}
12: elements := getElements(elt) \ explained
13: for each e ∈ elements do
14: genActivity(e,metamodel, activity, clone(explained), diag)

that represent a model slice. Slicing criteria are model elements from the input model that provide entry points for
producing a model slice. The slicing criterion is currently the ProgramUnitclass. To get the minimal metamodel
chunk from the ProgramUnitclass, all the metamodel elements strongly connected to this class are included (line 10):
all the attributes and relations that have a lower cardinality greater than 0 are recursively included in the metamodel
chunk. The elements of the sliced metamodel will be explained in the same piece of documentation (if not already
explained in another piece of documentation).5 The ProgramUnitclass does not have any mandatory element so that
the minimal metamodel chunk is composed of the ProgramUnitclass only (Figure 4a).

Then, all the elements contained by the current element elt (e.g., a class has attributes and references, a reference
has a target class) and not already explained in generated pieces of documentation are gathered (line 12). For each of
these elements, an activity will be recursively produced following the current activity (lines 13 and 14).

For example, Figure 4c is the sliced Robot metamodel produced for the second round of the activity diagram
generation. The slicing criteria are now the class ProgramUnitplus its single element: the composition commands that
targets the abstract class Command. Because Command is abstract, its sub-classes are directly considered (sub-classes
are also considered for concrete classes). The first sub-classes of Command is Move. Move has a mandatory attribute
distance. From this new sliced metamodel, a new activity “Defining a Move” is produced, as depicted by Figure 4d.
This activity will document both the class Move and its attribute distance.

Figure 4e is the next sliced Robot metamodel where another sub-class of Command is used, namely the class
Turn. This class has a mandatory attribute angle that is included in the sliced metamodel. The activity diagram is then
completed with another activity “Defining a Turn” to document both the class Turn and its attribute angle. Note that
this new activity is not placed following the activity related to Move produced during the previous round: there is no
relation from Move to Turn.

Figure 4g is the next sliced Robot metamodel where the last sub-class of Command is used: WhileNoObsta-
cle. This class has a mandatory attribute distance included in the sliced metamodel. A new activity “Defining
a WhileNoObstacle” is created to document both the class WhileNoObstacle and its attribute distance. Note that
sliced metamodel of this round does not include the composition commands of WhileNoObstacle: this composition
is not mandatory and thus not included by default in the metamodel. This explains why the new activity created for
WhileNoObstacle does not refer to this composition (see Figure 4g). Note that this new activity will not explain the
target class Command, or its sub-classes, of this composition since activities already exist for these classes. All the
metamodel elements encountered are registered (line 10) and then discarded from the set of elements to be covered by
the activity currently produced. If all elements have been traversed, this last set is empty and then the recursive call
ends (lines 13 to 14).

The last round of the process on the Robot DSL focuses on the composition commands of WhileNoObstacle that

5The fact that the attributes with a lower cardinality of 0 are not explained in the same documentation is a design choice. We prefer to provide
the most simple documentation possible before providing the details.
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ProgramUnit

(a) The sliced metamodel of Robot using ProgramUnitas slicing
criterion

Defining a ProgramUnit

robot.ProgramUnit

(b) The activity produced from the metamodel sliced using Pro-
gramUnit

ProgramUnit Command

Move

distance : Double

[0..*] commands

(c) The sliced metamodel of Robot using ProgramUnit, com-
mands, and Move as slicing criteria

Defining a ProgramUnit

Defining a Move

robot.Move

robot.ProgramUnit

robot.ProgramUnit.commands:[1]

(d) The activity produced from the sliced metamodel on the left
where Move has its own activity

ProgramUnit Command

Turn

angle : Double

[0..*] commands

(e) The sliced metamodel of Robot using ProgramUnit, com-
mands, and Turn as slicing criteria

Defining a ProgramUnit

Defining a Move

robot.Move

Defining a Turn

robot.Turn
robot.ProgramUnit.commands:[1]

robot.ProgramUnit

robot.ProgramUnit.commands:[1]

(f) The updated activity diagram where Turn has its own activity

ProgramUnit Command

WhileNoObstacle

distance : Double

[0..*] commands

(g) The sliced metamodel of Robot using ProgramUnit, com-
mands, and WhileNoObstacle as slicing criteria

Defining a ProgramUnit

Defining a Move

robot.Move

Defining a Turn

robot.Turn
robot.ProgramUnit.commands:[1]

Defining a WhileNoObstacle

robot.ProgramUnit

robot.WhileNoObstaclerobot.ProgramUnit.commands:[1]

(h) The updated activity diagram where WhileNoObstacle has its
own activity

ProgramUnit Command

WhileNoObstacle

distance : Double

[0..*] commands

[0..*] commands

(i) The sliced metamodel of Robot using ProgramUnit, com-
mands, WhileNoObstacle and its commands composition

Defining a ProgramUnit

Defining a Move

robot.Move

Defining a Turn

robot.Turn
robot.ProgramUnit.commands:[1]

Defining a WhileNoObstacle

Defining a WhileNoObstacle
with a command

robot.WhileNoObstacle.commands:[1]

robot.ProgramUnit

robot.ProgramUnit.commands:[1]
robot.WhileNoObstaclerobot.ProgramUnit.commands:[1]

(j) The updated activity diagram where an activity that focuses on
the composition commands of WhileNoObstacle has been created

Figure 4: Illustration of Algorithm 1 using the Robot example
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is now included in the sliced metamodel (see Figure 4i). The final activity diagram is depicted by Figure 4j. It now
contains a last activity that focuses on the composition commands of the class WhileNoObstacle.

The algorithm follows coverage criteria to ensure that all the elements of a DSL are explained in one piece of
documentation: all the attributes, references, and classes of the DSL metamodel are covered by at least one piece of
documentation. Algorithm 1 ensures these coverage criteria by recursively producing activities.

3.4.2. Activity diagram usage

Defining a ProgramUnit

Defining a Move

robot.Move
robot.ProgramUnit.commands:[1]

Defining a Turn

robot.Turn
robot.ProgramUnit.commands:[1]

Defining a WhileNoObstacle

logo.ProgramUnit

robot.WhileNoObstacle
robot.ProgramUnit.commands:[1]

robot.WhileNoObstacle.commands:[1]

Figure 5: The UML activity diagram of Figure 4j modified by a language designer

Once the activity diagram has been generated, a language designer can merge, remove, modify, and change the
order of the activities. The goal is to let language designers customize the documentation to generate. For example
with Robot, the language designer may want to explain the Turn class after and using the Move class. Figure 5 is
the UML activity diagram of Figure 4j we modified. The activity dedicated to Turn is now an output activity of the
Move activity. The documentation related to Turn generated from this modified activity diagram (see Figure 6b) now
contains a Move command in its code example and a reference to the documentation related to Move, contrary to
the documentation related to Turn generated from the default activity diagram (see Figure 6a). Note that the Move
command is not explained in the piece of documentation of Figure 6b but in its own one.

A second modification brought to the original activity diagram is the merge of the activities “Defining a WhileNoOb-
stacle” and “Defining a WhileNoObstacle with a command”. The goal of this change is to explain in the same piece
of documentation, the WhileNoObstacle class and its optional reference commands.

(a) A piece of documentation that explains the Turn con-
cept of the Robot DSL. This documentation is generated
from the default activity diagram depicted by Figure 4j.

(b) A piece of documentation that explains the Turn con-
cept of the Robot DSL. This documentation is generated
from the manually modified activity diagram depicted by
Figure 5.

Figure 6: Editing the activity diagram may have impacts on the generated documentation.

By default, the generated activity diagrams respect the coverage criteria detailed in Section 2.2. A language
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designer may also define her own activity diagrams to design specific documentations, such as tutorials. This point,
however, goes beyond the scope of this paper.

3.5. Documentation generation

This section details the documentation generation process.

3.5.1. General process

Figure 7: A piece of documentation that explains the class ProgramUnitof the Robot DSL

The documentation generation process takes as input the metamodel, the grammar, a set of models, and the UML
activity diagram. Algorithm 2 details the generation process. Figures 6 and 7 illustrate the generated documentation
using the Robot example. The generation is driven by the activity diagram (cf. Section 3.4 for the automatic production
of the activity diagram at the first run of the approach): one activity is used to generate one piece of documentation.
The documentation generation starts with the root activity of the activity diagram (lines 2 and 3), e.g., the activity
“Defining a ProgramUnit” for the Robot activity diagram. The metamodel elements associated to this activity (i.e.,
the class ProgramUnit) are then fetched (line 6). Using these metamodel elements, a model slicer slices the metamodel
to get the minimal metamodel that uses the elements of the current activity (line 8). A second model slicer is then
used to slice a model using this minimal metamodel (line 9). The goal of this second slicing is to get a model that only
contains the elements contained in the sliced metamodel. The model will be used to explain the current concept. For
example with ProgramUnit, the input model is given in Listing 1. The sliced model that only uses the ProgramUnit
class is depicted by Figure 7. In this sliced model, only the tokens (begin, end) that correspond to ProgramUnit are
kept. To do so, the Robot grammar is also sliced to keep the necessary rule (line 16):
ProgramUnit : ’begin’ ’end’;

The text of a piece of documentation is then produced using this sliced metamodel and the sliced grammar
(line 10). The grammar rules are analyzed to progressively provide both typing instructions and the text extracted
from the metamodel documentation. For example with Figure 7, the first line “A ProgramUnit [...] the language”
comes from the metamodel documentation. The typing instructions, “Type begin. Type end.” are generated from the
sliced grammar.

Finally, all the output activities of the current one are recursively treated (lines 12 and 13). For example, the
activity “Defining a Turn” follows the activity “Defining a ProgramUnit”. The generated documentation that explains
Turn is depicted by Figure 6a. The input model is now sliced with both the ProgramUnit and Turn classes. The
slicer produces a model that contains one instance of both concept. A command turn(-100) is now contained into
the begin/end block. The end of this piece of documentation contains a reference to the previous activities, here to
“Defining a ProgramUnit”.

3.5.2. Markdown and Xtext generation
The Markdown generation of a given piece of documentation is summarized by the lines 15 to 18 of Algorithm 2.

The model that will illustrate a piece of documentation is produced by: 1) finding a model, among those provided by
the language designer, that has all the elements of the sliced metamodel to explain; 2) slicing the found model to match
the current sliced metamodel (line 9); 3) converting the sliced model into its concrete syntax to be integrated in the text
(line 16). Then, the grammar is analyzed to extract the sequence of typing actions that explain how to write the model
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Algorithm 2 Documentation Generation
Require: metamodel, grammar, models, activityDiagram

1: prevElts := ∅
2: rootActivity := getRootActivity(activityDiagram)
3: produceDoc(rootActivity, prevElts, metamodel, models, grammar)
4:
5: procedure produceDoc(activity, prevElts, mm, models, grammar)
6: elements := findElements(activity.getData(), mm)
7: inputSlicer := prevElts ∪ {elements}
8: slicedMM := sliceMetamodel(mm, inputSlicer)
9: slicedModel := findAndSliceModel(slicedMM, models)

10: produceMarkdownText(slicedMM, slicedModel, prevElts, grammar)
11: prevElts := prevElts ∪ {elements}
12: for each nextActivity in activity.getOutputs() do
13: produceDoc(nextActivity, clone(prevElts), mm, models, grammar)
14:
15: procedure produceMarkdownText(slicedMM, model, prevElts, grammar)
16: codeExample := fromXMItoConcreteSyntax(model)
17: actions := extractActions(slicedMM, grammar)
18: text := toText(actions, codeExample)

(line 17). For example, given the Robot grammar (Listing 2) and the root activity “Defining a ProgramUnit”, Figure 8
depicts the corresponding sequence of actions. The grammar rule corresponding to the ProgramUnitclass is the first
rule (line 1 in Listing 2). It corresponds to three actions: typing the keyword “begin”, then a list of commands, and
then the keyword “end”. In the sliced metamodel (see Figure 4a) the Command class that corresponds to the second
action does not exist. This action is thus ignored. So, the resulting piece of documentation is composed of the actions
“begin” and “end” only. The resulting Markdown documentation is shown in Figure 7. The two first sentences of the
text come from the metamodel documentation.

'begin' 'end'

Figure 8: The sequence of generated actions for the activity “Defining a ProgramUnit” (see Figure 4b)

'begin' 'end':Move(25)

Figure 9: The sequence of generated actions for the activity “Defining a Move” (see Figure 4d) and the example model of Listing 1

Given the second activity “Defining a Move” and the model of Listing 1, Figure 9 depicts the sequence of actions.
The same reasoning applies. Contrary to the previous example, the Command class exists in the sliced metamodel
(see Figure 4c). So, the corresponding action is explained. The only available alternative of the second rule of the
grammar (Listing 2) is Move. So, only the first Move command of the example is taken into account in this piece
of documentation: move(25). Figure 2 shows the output Markdown piece of documentation for this activity. The
documentation embedded by the metamodel elements is used to provide the textual explanations. Given the Robot
example, the process goes on with the activities “Defining a Turn”, “Defining a WhileNoObstacle”, and “Defining a
WhileNoObstacle with a command” that follow the same process than for “Defining a Move”.

By default, the process uses a metamodel element one time in a piece of documentation, e.g., the documentation
dedicated to Figure 2 contains a single move command. Language designers can change the cardinality in the activity
diagram (e.g., by changing a “[1]” to a “[2]” in Figure 4j). This implies that the input models have the requested
cardinalities.

The approach also generates an Xtext fragment that can be integrated into the Xtext editor of the DSL. The goal
of this fragment is to contextualize the documentation while an end user is modeling, as depicted by Figure 10. The
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Xtext fragment generation integrates the generated Markdown documentation into the Xtext API.

4. Evaluation

The evaluation of the proposed approach focuses on its correctness and its usefulness. The correctness of the
approach is evaluated by ensuring that the required properties mentioned in Section 2.2.1 are considered (Section 4.1).
Since the documentation is supposed to help in the usability of the documented object, usefulness of the approach is
evaluated regarding the provided increase of the DSL usability (Section 4.2). The materials of the evaluation are
available on the companion web page of this paper.6

4.1. Analytical validation of the tooling

Figure 10: Example of contextualized documentation in an Xtext editor

We implemented the approach detailed in Section 3 in a tool named Docywood. This tool is built on top of the
Eclipse Modeling Framework (EMF) [15]. Docywood also relies on Xtext [5] to manage the description of the DSL
concrete textual syntaxes. The model slicing technique used in the approach is performed by Kompren, a DSL for
defining model slicers [13, 14]. Docywood takes as input: an Ecore model (the metamodel of the DSL); instances of
this metamodel (models of the DSL); the Xtext model that defines the concrete textual syntax of the DSL. Docywood
can also take as input the UML activity diagram that describes the generation order of the pieces of documentation.
When not provided as input, this diagram is automatically generated during the execution of Docywood. Language
designers can then edit it for future documentation generations.

We now discuss the four technical properties that a DSL documentation approach must possess. The proposed
approach relies on coverage criteria to overcome the documentation coverage issue (property #1). The coverage
criteria are based on the traversal strategies of the DSL metamodel. The approach is based on Ecore metamodels
so that the traversal strategies use the relations (i.e., references and compositions) to cover classes, attributes, and
relations. The class, attribute, relation are supported by most of the current used meta-metamodel languages, such
as UML and MetaEdit+. The current implementation Docywood has two limits in terms of documentation coverage.
First, Docywood may not produce documentation for all the references. For example with Robot, the current version
of Docywood does not explain the reference WhileNoObstacle.commands since Commands already has dedicated
documentation. This is a technical choice made for Docywood, which can be changed in future versions. Second,
metamodels may be supplemented with constraints declared using the OCL language 7 or within the type checker of
an editor.

Regarding the property #2 – Documentation contextualization – Docywood enables user context adaptation of the
documentation through two features. First, the generation process generates pieces of documentation. Each piece of

6See: https://github.com/arnobl/comlanDocywood
7http://www.omg.org/spec/OCL/
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documentation focuses a specific concept of the DSL. The Xtext code generated by Docywood selects the appropriate
piece of documentation for the content assist service. The Xtext generated code has a limitation: it strongly depends on
the content assist service of the DSL editor, relying on the concrete syntax and the typing information. Consequently,
the granularity of the contextualization is bound to model elements and their corresponding types. If the content assist
service of the DSL editor has been already edited by language designers, the generated Xtext code fragment and the
current content assist service must be merged.

Regarding the property #3 – Multi-platform documentation generation – a current issue is that language designers
have to maintain documentation over different platforms (e.g., on the web site of the DSL, embedded in tools). The
documentation generation process is platform-independent. As a demonstration, the current implementation targets
two platforms. First, Markdown documents are generated to be integrated on web sites as static documentation.
Second, Xtext code fragments are generated to be seamlessly integrated in the code completion of the Xtext editor of
the DSL and provide live documentation. We identified on limit in the proposed approach regarding documentation
updates. On metamodel changes, the documentation and the activity diagram produced by Docywood can be re-
generated. However, if the activity diagram has been previously modified, its changes may be lost.

Regarding the property #4 – Example-based documentation – each piece of documentation has an illustrative
example. This model is specifically customized to match the DSL concept of its piece of documentation. To do so,
model slicing is used to slice input models provided by language designers. This feature has a limitation: the input
models are provided by the language designer, so that they must be carefully selected to illustrate the DSL. Illustrative
examples are provided with no context regarding their original model. So, they should be simple or explicit enough
to be understood by end users.

4.2. Experimental validation

In this section we evaluate qualitatively and quantitatively [21] the benefits of the proposal by conducting an
empirical experiment on real third-part DSLs. We first then use the GQM (Goal Question Metric) approach [22]
to specify our experiment. We then describe the experimental protocol and detail the results of the experiment.
Discussions conclude the evaluation.

4.2.1. Goals, Questions, and Metrics of the evaluation

Goal: to empirically observe whether the proposed approach overcomes the global DSL documentation challenge
detailed in Section 2.2: evaluate whether the generated DSL documentation is useful for language designers and end
users.

Research Questions:

RQ1 Does the use of the generated documentations improve the correctness of those tasks of DSLs?

RQ2 Does the use of the generated documentations reduce the time needed to complete typical tasks of DSLs?

RQ3 Do end users consider the generated documentations as beneficial for the understanding of DSLs?

RQ4 Do language designers consider the approach valuable for documenting DSLs?

Metrics: The metrics related to the quantitative RQ1 and RQ2 are described in the paragraph Dependent variables
of Section 4.2.2. RQ3 and RQ4 are qualitative RQs based on discussions with the subjects and interviewed language
designers. qualitative RQs ”help to answer questions that involve variables that are difficult to quantify (particularly
human characteristics such as motivation, perception, and experience)” [21]. RQ1 and RQ2 are qualitative RQs
because of the difficulty to quantify the feelings of the subjects regarding the proposed approach.

Recent work focus on proposing metrics for DSL quality assessment [23, 24, 25, 26, 27, 28]. These metrics
are designed to evaluate DSLs, but can be adapted to evaluate other types of software such as Docywood or the
documentation it generates. As detailed in this section, we adapted the time and correctness metrics as well as
qualitative questionnaire to our approach.
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4.2.2. Experimental protocol

The objects of the experiment are two DSLs. The first DSL is ThingML,8 a DSL for modeling embedded and
distributed systems [16]. The second DSL is TPD (Target Platform Definition) 9 dedicated to the definition of Eclipse
target platforms (i.e., Eclipse plug-in repositories). These two DSLs have been selected using the following criteria:
they are developed by third parties (ThingML is developed at SINTEF, Norway and TPD by Obeo/Eclipse, France);
they are developed on top of EMF and Xtext; they both have online documentation10; models of these DSLs can be
used; they have different characteristics (the ThingML metamodel has 96 meta-classes while TPD has eight meta-
classes).

We used Docywood on two DSLs before the experiment: the Robot DSL we designed to illustrate this work; The
Kompren DSL, a language for defining model slicers (Kompren is also used in the approach itself to slice models) [13,
14]. We do not use Kompren in the experiment since one of the authors of this paper is a maintainer of this DSL.
The generated documentations for these DSLs are available on the Kompren’s web page11 and on the companion web
page of this paper.

Tasks. We designed two exercises, one for ThingML and one for TPD. We measure the complexity of these
exercises using the metrics Abstraction that counts the number of abstractions the subjects had to handle to do each
exercise. The ThingML exercise consists in modeling a component that receives random values from a port and then
sends each obtained value to a screen display from another port with alternatively the color black or red. This exercise
has been validated by a ThingML language designer. The Abstraction value of the ThingML exercise is 55 model
elements.

The TPD exercise consists in modeling a target platform that imports from different other sources specific plug-ins
with specific versions for a given platform. The Abstraction value of the TPD exercise is 20 model elements.

Subjects. 17 subjects did the experiment: one master student, seven PhD students, four software engineers, two
post-doc, and three researchers. We selected subjects in our research laboratory (around 700 persons) with the follow-
ing criteria: they must have a background in software engineering and must be recurrent users of different DSLs.

Table 1: Exercises distribution among the 17 subjects

Subjects Execution Docywood Knowledge in
ID Order usage Eclipse TPD Distibuted system ThingML

#1 TPD thingml Yes No 2 1 3 1
#2 thingml TPD Yes No 1 1 1 1
#3 TPD thingml No Yes 1 1 1 1
#4 thingml TPD No Yes 3 1 4 1
#5 TPD thingml Yes No 1 1 1 1
#6 thingml TPD Yes No 3 1 3 1
#7 TPD thingml No Yes 4 1 2 1
#8 thingml TPD No Yes 2 1 1 1
#9 TPD thingml Yes No 4 1 2 1
#10 thingml TPD Yes No 1 1 3 1
#11 TPD thingml No Yes 2 1 1 1
#12 thingml TPD No Yes 2 1 2 1
#13 TPD thingml Yes No 1 1 1 1
#14 thingml TPD Yes No 5 1 2 3
#15 TPD thingml No Yes 2 1 2 3
#16 thingml TPD No Yes 3 1 4 2
#17 thingml TPD Yes No 1 1 1 1

Regarding RQ4, three language designers of each DSL were contacted by email.

8http://thingml.org/
9https://github.com/mbarbero/fr.obeo.releng.targetplatform

10See https://github.com/TelluIoT/ThingML for ThingML and the official web page of TPD.
11https://github.com/arnobl/kompren
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Procedure. The experiment was tested by one subject (not counted in the 17 subjects) to check the tools and the
protocol. The results of this subject were not considered. The experiment is based on a within-subjects design [29]:
each subject did the experiment on both ThingML and TPD. Interference between the use of ThingML and TPD
may result due to their execution order. To mitigate this classical threat of using a within-subjects design, we use
counterbalancing: we designed a Latin squares table, as illustrated by Table 1, to vary the execution parameters.
Half of the subjects did the ThingML exercise (resp. TPD exercise) using the official documentation of the DSL
only (“Docywood usage”: “No”). These subjects did the TPD exercise (resp. ThingML exercise) using the official
documentation plus the documentation generated by Docywood (“Docywood usage”: “Yes”). The goal is not to state
whether the generated documentation is better than the official one or not, but whether it improves the modeling tasks
of DSL users.

The experiment was conducted during two days in a dedicated and isolated room. The same supervisor, author
of the paper, conducted the experiment. A desktop computer was provided. This computer had a 24 inch screen and
all the materials for the experiment were already installed on a Linux system. Two versions of each DSL editor were
installed: one with our generated Docywoord Xtext code fragment integrated and another one without it. Eclipse 4.6
was used with the following plug-ins: Xtext 2.11.0; EMF 2.12.0. Subjects came randomly one by one in the room.
We asked the subjects not to talk each other about the experiment. Their skills on ThingML and TPD were asked
just before the experiment to choose a slot in Table 1: we aimed at having the same number of subjects with similar
knowledge on a given DSL that used this DSL with and without Docywood. To do so, each subject had to fill a form
with the following four questions:
“Knowledge in embedded and distributed systems (select the corresponding value, 1 = no knowledge, 5 = expert)”;
“Knowledge in the ThingML DSL”.
“Knowledge in Target Platform (Eclipse plugins / platform)”.
“Knowledge in the DSL Target Platform Definition”.
The PDF version of the form and the resulting subjects data are available on the companion web page. Table 1 reports
these data for each subject. Once filled, we selected a slot in Table 1. The supervisor then explained the first exercise
and how to use the documentations. The supervisor launched: the software systems necessary for this exercise;
a web browser on the official documentation of the current DSL and, if Docywood usage = yes, on its generated
documentation we put on the companion web page of this paper. The subject read the text of the first exercise and
was allowed to ask questions about it to the supervisor. The subject notified the supervisor when he/she started the
exercise. Questions were not allowed during an exercise. The subject notified the supervisor when he/she ended the
exercise. No time limit was used: a subject ended when he/she finished or withdrew from the exercise. The same
process was used for the second exercise. The subjects had no way, but the type checker of the DSL editor, to test or
check the models they created. Finally, the subjects had to fill a form with qualitative questions. The content of this
form is described below in the results discussion of RQ3.

Dependent variables. To answer RQ1 and RQ2 we defined two measures frequently used in usability evaluations
of DSLs and their related tools [28]:

CORRECT To answer RQ1 we manually evaluate the models created by the subjects while performing the tasks.
This measure is done in percentage of correctness. We manually corrected the exercises.

TIME To answer RQ2 we measure the time spent by the subjects to perform the modeling tasks using ThingML and
TPD.

To answer RQ3, we asked for anonymous feedback from the subjects (as end users). For RQ4, we sent an email
to the language designers of the two DSLs under study. In this email, we began by quickly presenting the Docywood
project, and then we provided the produced artifacts for the addressed DSL (ThingML or TPD). Finally, we asked
them three questions:

1. Do you think that DSL development can benefit from such an approach?

2. Is the produced documentation relevant?

3. Can you think of any benefit / drawback?

We also precised that they could add any extra comment.
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4.2.3. Analysis and results
The results of the experiments are analyzed and discussed in this section. Regarding the quantitative results, we

apply the independent samples Mann-Whitney tests [30] (data do not follow a normal distribution) to compare the
performance, in terms of time and correctness, that may bring the documentations generated by Docywood, using a
95% confidence level (i.e., p-value < 0.05). We use the Cohen’s d index to measure the effect size between means [30].

Dependent Mean Mean Mean Cohen’s d Significance
variables Official + Official Diff p-value

Docywood

CORRECTT HINGML 92.9% 71.3% +21.6% 1.18 0.04216
CORRECTT PD 93.1% 93.9% -0.8% 0.18 0.7588
T IMET HINGML 31.14m 39.33m -8.19m 0.61 0.4807
T IMET PD 11.34m 10.53m 41s 0.17 0.9626

Table 2: Results of CORRECT and TIME on ThingML and TPD with their official documentation compared to their official documentation plus
the one generated by Docywood.

Figure 11: Box plots of CORRECT on ThingML and TPD with their official documentation compared to their official documentation plus the one
generated by Docywood.

RQ1. Regarding the correctness of the models designed by the subjects (Table 2 and fig. 11), the average correctness
measured shows a benefit when using the documentations generated by Docywood on ThingML (+21.6%). According
to the Cohen’s d test, this increase is large (1.18). This result is significant (p-value < 0.05). The average correctness
measured on TPD shows no significant results. To conclude on RQ1, the generated documentation improves the
correctness of the models designed by end users of ThingML.

RQ2. Regarding the time spent by the subjects to perform the exercises (Table 2 and fig. 12), the average time
measured shows no significant benefits when using the generated documentation. We think that for large DSLs
(such as ThingML), users need to understand the goal of the language before doing the exercise by browsing the
official documentation. This is not the goal of our generated documentation that rather focuses on helping users while
modeling with a DSL. To conclude on RQ2, the generated documentation does not help newcomers of textual and
metamodel-based DSLs to do their first models faster. One possible explanation is that the generated documentation
requires time to be read by the subjects. We also observed subjects that read all the documentation available before
starting the exercises while other subjects iterate between the editor and the documentation. However, time spent by
the subjects to do the basic ThingML exercise (around 30 minutes) shows that the initial learning curve is a challenge
to tackle in future work.
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Figure 12: Box plots of TIME on ThingML and TPD with their official documentation compared to their official documentation plus the one
generated by Docywood.

RQ3. Several points were anonymously evaluated (with a score on a scale of 1 to 5, 1 meaning useless, 5 meaning
mandatory / very good) by the subjects at the end of their experiment:

• the global usefulness of the generated documentation (mean of 3.65);

• the usefulness of the code examples (mean of 3.88);

• the readability of the documentation (mean of 3.47);

• the completeness of the documentation (mean of 3.47);

• the usefulness of the coding instructions in the documentation (mean of 3).

The results are plotted in Figure 13. Subjects were then invited to give free and anonymous comments.

Figure 13: Anonymous evaluations of the generated documentation by the subjects
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Several lessons can be drawn from these data. We link them to the end user DSL documentation properties
described in Section 2.2. First, the subjects globally valued the documentation and found it useful and complete
to perform the exercises (property #1: documentation coverage guarantee). Regarding the pros of the generated
documentation, one subject appreciated that the documentation integrated in Xtext is “very direct” (property #2:
documentation contextualization). The documentation is also “good to remind me or to describe me how to do
something”. “I am quite surprised by the readability [of the documentation].”

Second, several cons have been detailed: “the generated documentation is not self-contained”; “I am not sure that
is could be a good ’getting started’ documentation”. The goal of the generated documentation is not to replace the
official one, which usually contains how-to-start documents, tutorials, or global explanations about the goal of the
language. A subject also explained that he/she “could not find any information about version ranges” using TPD. The
problem is that version ranges are not part of the language but a string convention defined by Eclipse. We think this is
an issue of the language that makes use of a string to represent a concept. Moreover, two subjects suggested to provide
hyperlinks to elements that an object can use (instead of referring to the elements parent to the current object). They
think that this would help in understanding what a user can do with a given object.

Third, the code examples provided in each generated documentation unit were strongly appreciated (property #4:
example-based documentation). We think that providing users with example for each concept of a DSL is a crucial
point. One user suggested that “I would also like to have different examples for the same concept”. This is possible
using our model slicing approach and may be an input parameter of Docywood. One user explained that the “provided
[variable] names lack semantics [(i.e., meaning)], which do not make clearer the code snippets”. This is one point
that language designers have to consider while using our approach: the code example are not introduced and language
designers must carefully select them to improve the understanding of the documented concepts. Another subject
pointed out that “the generated documentation provides good examples but they lack at explaining what we can do
with them”. We think that this point is important and depends on the models selected and used for the generation.

Fourth, the coding instructions provided in the generated documentation may not be useful. One subject explained
that the “typing instructions may be difficult to follow”. Another one said “there is a lot of ’Type }’ in the text”. We
think that adding such instructions in the documentation should be optional.

Finally, “TPD is probably too simple to enjoy the generated documentation”. “The auto-completion is sufficient
for this language”. We think that small DSLs, as TPD, may not benefit of our documentation as the keyword of the
textual syntax may be sufficient to understand it. This may explain the non-significant results we got on TPD.

To conclude on RQ3, the subjects globally consider the generated documentations as beneficial for the under-
standing of ThingML. They identified different improvements to make in future work.

RQ4. We conducted a face-to-face discussion with one ThingML language designer (nicknamed as LD1 hereafter). A
second ThingML language designer (nicknamed as LD2 below) gave us feedback by email. We got feedback from one
TPD language designer by email (nicknamed as LD3 below). LD1 and LD2 appreciated the generated documentation
and consider it a useful complement of the official documentation, which is tedious to maintain on different supports
(property #3: multi-platform documentation). LD1 noticed that each class parameter has, by default, its dedicated
documentation. LD1 considers this choice as not always relevant, preferring to have a single piece of documentation
that includes the optional attributes. LD2 explained that some attributes have a strong impact on ThingML and should
have their own documentation, contrary to some other attributes. LD2 also asks for customization mechanisms to
order or change the documentation generation. We explain to them that this is possible by editing the UML activity
diagram they consider interesting to bring flexibility to the approach. In a next version of Docywood, we may add
an option to document a class and all its attributes in a single piece of documentation. LD2 does not consider the
typing instructions useful. This is in line with the comments of the subjects we discussed in RQ3. LD2 also highlights
various issues in the documentation related to the action language of ThingML. We think this is a current limitation
of the proposal, as discussed in Section 4.3: the ThingML action language complexifies its grammar to overcome
left-recursion issues. Our prototype may fail in such situations, where a gap exists between the metamodel and the
grammar. LD3 found the contextual documentation improves the usability of the editor and suggested to contribute to
Xtext on this point. As a language designer of TPD, LD3 did not find the documentation useful for his needs since he
already knows the concepts of the DSL. We agree since the approach aims at helping non-expert DSL end users. LD3
also explained that the approach may be useful for DSLs having a large metamodels. LD3, however, considered that
designing a large metamodel for a DSL (e.g., UML, around 1.000 model elements [31]) in a bad practice since a DSL
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should remain small. RQ1 shows benefits regarding the correctness of the created ThingML models when using the
approach while ThingML contains 55 model elements, much less than UML.

To conclude on RQ4 the interviewed language designers consider the approach valuable for documenting non-
trival DSLs for non-expert end-users. They identified several current limits, discussed in the next sub-sections, and
improvements to make in future works.

4.2.4. Threats to validity
Internal validity. The obtained results may depend on the quality of the metamodel documentation provided by the
language designers. To mitigate this threat, we selected two DSLs with existing metamodel documentations. The
TPD metamodel documentation, however, is more detailed than the ThingML one.

External validity. This threat regards the possibility to generalize our findings. We designed the experiments using
two DSLs with different characteristics and developed by different language designers. Our approach, however,
focuses on grammar-based textual DSLs.

Regarding the subject population validity, we asked the subjects to estimate their skills for each DSL between 1
and 5 (5 is expert) before the experiment. We use these data to balance the group of users that use a DSL with our
generated documentation and the group of users that use the official documentation only. We do not consider TIME
and CORRECT for the subjects that have strong skills in ThingML and TPD as they already know the syntax of the
DSL. However, we got their feedback to discuss RQ3. This concerns one subject with ThingML.

Construct validity. This threat relates to the perceived overall validity of the experiments. We designed representative
yet simple exercises to limit the time of the experiment for each subject to limit their tiredness. The feedback from
the subjects were gathered anonymously.

4.3. Limits of the approach

The proposal has the following limitations. As discussed in Section 4.1, the proposed approach does not support
constraints that language designers may define to precise the semantics of the metamodel. For example with ThingML,
as noticed by its language designers the initial documentation for the CompositeState class contained the following
code excerpt:

1 composite state c init s1 {

2 }

This code conforms the ThingML metamodel but is not correct because of constraints declared in the Xtext type
checker of ThingML: the initial state s1 must be part of the CompositeState:

1 composite state c init s1 {

2 state s1 {}

3 }

To overcome this limitation, language designers can modify the UML activity diagram produced by the approach.
This is what we did with ThingML to have a state s1 defined in the composite state c.

Second, as discussed in Section 4.1 too, on metamodel changes the activity diagram has to be re-generated. If a
language designers changed this activity diagram, the changes will be lost. Approaches that treat the co-evolution of
models have been proposed and could be used to overcome this current limitation of our proposal [32, 33].

Third, the ThingML and TPD DSLs did not have a metamodel with embedded documentation. Instead, the classes
and attributes of their metamodel are explained on their web site. The reason is that these DSLs use Xtext to generate
the Ecore metamodel from the grammar, which does not support Ecore documentation. We had to manually put
these documentations into the metamodels. In future work Docywood will consider other sources of metamodel
documentation to remove this limitation.

Fourth, UML activity diagrams may be hard to explore and edit on large DSLs because of the high number of
activities created by the approach. This is a usability issue of the UML tools. Slicing techniques have been proposed
to ease the understanding of large UML models [31]. Such techniques could be used to apply the approach on small
separate parts of the metamodel rather than on the whole metamodel in one shot.
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5. Related work

Software documentation. Because software languages are software too [17], we detail the major techniques used for
documenting software systems. Various approaches have been proposed to automatically infer API documentations
or recommendations by analyzing their usages [34]. These approaches require a large data set to analyze. DSLs are
dedicated to a specific and thus limited audience. The quantity of artifacts created from these DSLs may not be large
enough to be mined to infer documentation. Manually-authored API documentation may be incomplete or wrong,
and it should be complemented with the output of automated techniques [34]. Our approach follows this claim by
proposing an automated documentation process based on coverage criteria.

Software languages, such as UML, can be used as documentation tools of software systems. Arisholm et al.
shown that the time spent to update UML models, used as documentation, during code changes limits the benefits of
this documentation [35]. They argue that UML tools should be improved to support the co-evolution of the code and
UML models. Our approach supports that principle by allowing developers to re-generate the documentation with
little maintenance cost: only a manually-modified activity diagram may have to be updated.

DSL documentation generation. Meta-metamodel languages provide several tools to generate documentation.
EcoreDoc12 and Ecore Documentation Generator13 are tools similar to JavaDoc but for the Ecore meta-metamodel
language. These two tools generates documentation in different formats (HTML, LATEX) based on the information
embedded in an Ecore model (i.e., a metamodel).

MetaEdit+ also provides a documentation generation tool.14 This documentation tool generates from a MetaEdit+
project, pieces of documentation (one for each model that the project contains). Each piece of documentation contains
a picture of the model (if the model has a graphical syntax), meta-information related to the model, and navigation
links to the other pieces of documentation of the project.

These tools provide a basic support for helping language designers in documenting DSLs. Docywood processes
input models to provide illustrative examples. Docywood relies on model slicing techniques to decompose documen-
tation into pieces of documentation that each focuses on a specific concept of the DSL.

Automated exercise production. Complementary to our proposal, the automated production of exercises aims at
helping the learning of a language or concepts. The application domains are for example the production of exercises
for online courses [36] or to illustrate mathematical problems [37]. In MDE, Gómez et al. propose an approach
that generates exercises to train users in recognizing well-formed and badly-formed models [38]. To this end, their
approach generates models that focus on a targeted concept (e.g., state machines) and mutates them to get badly-
formed models. Our method could improve exercises generation by introducing the notion of exercise sequences. In
the method of Gómez et al., the exercises are generated in a random order and do not necessarily focus on one concept
of the metamodel. Exercise generation could benefit from such concepts, for example to train on metamodel elements
following a progressive level of difficulty. It would be interesting for language designers to provide some information
to guide the exercises generation order, like the UML activity diagram of our approach.

Automated models production. In MDE, model generation and mutation techniques are mainly used to test model
transformations. Model transformation testing and documentation production share similarities. In particular, consid-
ering coverage criteria is mandatory to measure the elements of a model transformation (or a metamodel) covered by
tests (or documentation). Metamodel coverage has been widely studied in the literature [39, 40]. Metamodel coverage
can be performed at two levels [40]: class coverage and cardinality coverage (i.e., attributes and associations cardi-
nalities). Regarding cardinality coverage, the techniques proposed consist in designing partitions over cardinalities
(e.g., [0..∗] is partitioned to {{0}, {1}, [2..∗]}) [41, 42]. Then, at least one value of each partitioning set must be tested.
The main challenge in class coverage is to limit the number of models (i.e., it is not necessary for the same class
to be covered by too many tests). To this end, several methods exist: classifying models in equivalence class and
select a representative one [43]; translate this objective to a multi-function optimization problem [44]. As explained
in Section 3.4.1, our approach is based the following coverage criteria: each class, attribute, and reference is covered
by one piece of documentation. Several metamodel elements can be covered in the same piece of documentation.

12https://marketplace.eclipse.org/content/ecoredoc
13https://marketplace.eclipse.org/content/ecore-documentation-generator
14https://www.metacase.com/support/55/manuals/meplus/Mp.html#Mp-5_2_2.html
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In their approach, Batot et al. proposed a framework for generating a minimum number of models that cover
a metamodel and that focus one a minimum number of metamodel elements [44]. Their approach is based on a
genetic algorithm. This approach can hardly be reused in our context since the models are randomly generated: the
input models used to illustrate the documentation would not be as understandable as models provided by language
designers. The method of Batot et al. could be helpful if language designers lack of models for their DSLs and want
to quickly produce documentation.

Decision making. The automatic production of documentations is related to the design of auto-completion and related
techniques that help users while creating models. Proactive modeling aims at helping users while creating models [45].
This technique complements ours since it proposes to users actions to perform while creating graphical models. As
with our proposal, this approach analyses the domain model to extract information about the next actions to propose
to the user.

Use case modeling and domain analysis. Use case modeling is done to capture functional requirements [46]. Domain
analysis can be used to get, in the context of software language engineering, domain models (e.g., metamodels) [18].
Approaches have been proposed to transform use cases into domain models [47]. These approaches come in the
early stages of the DSL development process to identify the DSL concepts. Our approach comes downstream of the
development process to document DSLs based on their developed concrete artifacts.

Empirical studies on DSLs. Johanson et al. detailed an empirical study that focuses on the potential benefits the use
of a DSL may have compared to the use of a GPL (General Purpose Language) [48]. More precisely, the study focuses
on a domain expert audience not familiar with programming. These domain experts used a DSL for high-performance
marine ecosystem and C++ to perform representative tasks of their domain. The effectiveness and efficiency of the
DSL and C++ were then measured and compared. The study exhibits significant results in favor of the DSL: higher
accuracy, less time spent by domain experts.

Häser et al. conducted a study to compare the use of a DSL for BDD (Behaviour Driven Development) to another
version of the same DSL, extended with business model concepts [49]. The results show that test case creation is
significantly faster with the DSL supporting business model features, and that users feel better supported by this
extended DSL.

Albuquerque et al. proposed an approach to compare the usability of DSLs in the context of DSL mainte-
nance [27]. Their approach is based on the CDN (Cognitive Dimensions of Notations) framework [50], which defines
several cognitive dimensions (e.g., consistency and error-proneness) to evaluate the usability of notational systems,
such as DSLs. They identified two main cognitive dimensions to take into account: expressiveness and conciseness,
that are subdivided into other cognitive dimensions from the CDN (eight dimensions in total, e.g., capacity of abstrac-
tion for expressiveness and viscosity, or adaptability, for conciseness). The results of their evaluation show that these
dimensions are critical and useful to evaluate a DSL usability at an early stage of its development.

Barišić et al. proposed a formal model to evaluate DSLs [51]. This model is designed to comply with the approach
of iterative user-centered evaluation practices. The philosophy of this approach is to evaluate the DSL at several stages
of its development in order to avoid performing only a last-minute evaluation, when it is too late to implement subjects’
reviews. Our evaluation complies with the model. It is compatible with iterative evaluation principles since subjects
reviews can be taken into account in future works.

More recently, Barišić et al. proposed the USE-ME framework to design usability studies of DSLs and their related
tools [28]. This framework allows to formally model the context, goals, and evaluation protocol of a DSL or tool under
study. They evaluated their approach by selecting four DSLs and making master students use the framework to model
an appropriate usability study. For each DSL, they measured the correctness of the produced models in time-limited
sessions and asked feedback from the participants. The results show significant satisfactory results for a small limited
time (12h in total for the whole process, from context definition to protocol modeling). In our approach, we also use
the time spent and the correctness as evaluation metrics.

De Sousa et al. presented an approach to design spatial simulation scenarios with the DSL3S language [24]. A
usability evaluation was conducted. This evaluation is partially based on a questionnaire with Likert-like questions.
We also submitted a questionnaire to the DSL designers. The difference is that our questions are open and not in a
Likert-scale format.

Giraldo et al. presented two literature reviews in the field of assessing the quality of MDE methods, on academic
and industrial papers, webpages, blogposts, working notes, etc. [23] The authors show that quality concerns expressed
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by the MDE practitioners are not taken into consideration when designing frameworks for MDE quality evaluation. In
particular, the Physics of Notations (PoN) framework lacks of crucial metrics. The main supported idea in this paper
is that academic research should show more interest in industrial constraints and organizations in order to propose
MDE methods and tools that could really be used. In our work, this principle is applied by asking questions about the
usage of Docywood to the DSL designers (to answer RQ4).

6. Conclusion and Future Work

6.1. Conclusion

In this paper we proposed an automated approach for producing DSL documentations. The approach has been
implemented in Docywood and has been evaluated with the ThingML and TPD DSLs, both dedicated to a computer
science audience. The evaluation shows that the proposed approach improves the correctness of ThingML models
created by novice end users. ThingML is a textual, large metamodel-based (96 meta-classes) DSL. The evaluation
does not expose benefits for the Eclipse Target Platform DSL, which is a small (eight meta-classes) textual and
metamodel-based DSL. We thus think that Docywood may be useful to document large textual DSLs dedicated to
a computer science audience. Feedback from end users and language designers exhibits qualitative benefits of the
proposal with regard to the DSL documentation challenges. They identify several shortcomings such as: coding
instructions that may not be useful; hyperlinks to the elements that the current object can use should be provided;
the readability of the generated documentations strongly depends on the example selected by the language designers
and the readability of the metamodel documentation; the documentation may have a limited interest for small DSLs
and expert end-users. The generated documentation does not aim at replacing the official one. It rather completes the
existing tutorials, how-to-start documentation written by language designers.

6.2. Future Work

The current proposal has several limits that we will study in the future. First, we will investigate how to encompass
DSLs with concrete graphical syntaxes. We will also address auto-completion to provide users with model skeletons
produced from the grammar by using a slicing process. Easing the initial learning effort of new users is also a
challenge to overcome: end users need explanations about a DSL and its goals to start using this DSL and our
generated documentation. Finally, we will investigate to what extent a language designer can define her own activity
diagrams to design specific documentation.
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