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Interfacial bubbles formed by plunging thin liquid films in a pool

Louis Salkin,1 Alexandre Schmit,1, 2 Richard David,1 Alexandre

Delvert,1 Eric Gicquel,1 Pascal Panizza,1 and Laurent Courbin1

1IPR, UMR CNRS 6251, Campus Beaulieu, Université de Rennes 1, 35042 Rennes, France
2NANO, UR1268, BIA, INRA, rue de la Géraudière, 44316 Nantes, France

We show that the immersion of an horizontally-suspended thin film of liquid in a pool of the
same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the
fluid properties, the film’s size and its immersion velocity, our experiments unveil two formation
regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the
size of a produced bubble. To rationalize these results, we compare the pressure exerted by the
air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which
subsequently yields air entrapment and the production of a bubble. This physical model explains the
power-law variations of the bubble size with the governing dimensionless number for each regime.

PACS numbers: 47.55.N- 47.55.Ca 47.55.db

Introduction. Air entrapment is a commonly observed
phenomenon in free surface flows1. It occurs in both
natural phenomena such as falling raindrops2,3 and in-
dustrial processes, e.g. coating, ink-jet printing, and
spray cooling. The creation of air bubbles is generally
detrimental to such processes and their applications in
industry. For instance, it often changes for the worse
both optical and mechanical properties of final products
such as paint or molten glass. For these reasons, air en-
trapment is an active research topic that has been in-
vestigated for a wide variety of flow configurations. Ex-
amples of these include drops impacting smooth4–13 or
rough14–16 solids and liquid surfaces17–24, solid objects
plunged into a pool25–28, liquid jets either poured into
fluids29–31 or impacting solid surfaces32, and collapsing
interfacial bubbles33,34. For all these situations, studies
share the common goal of identifying the key variables at
play, obtaining a physical understanding of the problem,
and predicting the formation of bubbles and their size.

Here, we study an uninvestigated situation where the
impact at constant velocity of an horizontal thin film of
liquid with a pool of the same fluid produces film dim-
pling, air entrapment and an interfacial bubble. Our ex-
periments show that the size of such a bubble increases
with both the impact velocity and size of a plunging film;
by contrast, it does not depend on a film’s thickness.
Varying the impact speed, we observe two possible forma-
tion regimes. The bubble size results from either a visco-
capillary (small enough speed) or an inertio-capillary
(sufficiently large speed) mechanism. The regime at low
speeds bears analogies with drop impact on solids12. In
contrast with this case however, the evolution of the bub-
ble size with the speed is monotonic for plunging films
and we do not observe a maximum bubble size for an
intermediate impact speed12.

Experiments: setup, materials and methods. As de-
picted in Fig. 1(a), our setup consists of a thin-liquid film
suspended horizontally on a ring (radius R) mounted on a
vertical linear motor stage (Aerotech ACT115DL) that is

connected to a controller (Aerotech Soloist HPE). A ring
is made of wire with a radius b = 500 µm that is negligi-
ble compared to R = 10–80 mm. A house-made Labview
software controls the motion of a ring upwards or down-
wards at constant speed v = 10−3–1 m s−1 over a dis-
tance d ≤ 0.5 m. Imposing a constant speed to a station-
ary ring or stopping a moving one requires acceleration
and deceleration phases, respectively. We impose a con-
stant acceleration (0–50 m s−2) during these two phases
by selecting the distances da and dd over which the ring
accelerates and decelerates, respectively; the correspond-

ing absolute values of the accelerations are aa = v2

2da
and

ad = v2

2dd
[see Fig. 1(b)].

In our experiments, a ring, which is first immersed in
the liquid bath, is withdrawn quasistatically at a height
h0 from the free surface. As discussed in35, because of
surface tension, withdrawing the ring creates a minimal
surface of revolution, i.e., a catenoid. Above a critical
height hc ≈ 0.66R < h0, this shape becomes unstable
and collapses to leave a planar film on the ring and an
interfacial bubble on the bath36. This bubble is then
punctured with a needle to remove it from the free sur-
face. We measure the thickness (e = 1–10 µm) of the
planar film with a spectrometer (Avantes AvaSpec-2048).
This film is then moved downward so that it impacts the
free surface at constant velocity v (see Fig. 1). A cer-
tain amount of air (density ρa and dynamic viscosity ηa)
is trapped between film and liquid surface upon impact,
creating an interfacial bubble of radius Rb, as illustrated
by the series of high-speed images in Fig. 1(c).

The liquid is either a soap solution (2 wt% Fairy
(P&G) and 98 wt% water) or polydimethylsiloxane
(PDMS) (Sylgard 184, Dow Corning). Both fluids are
Newtonian and their dynamic viscosities ηℓ measured at
20 °C with an Anton Paar MCR 301 rheometer are 1
mPa s (soap solution) and 6.4 Pa s (PDMS). ρℓ herein
denotes the liquid density: ρℓ = 965 kg m−3 (PDMS) and
ρℓ = 1000 kg m−3 (soap solution). We use pendant drop
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FIG. 1. Schematics of (a) the setup and (b) the temporal
evolution of the impact speed defining the experimental vari-
ables. The shaded areas in (b) indicate acceleration and decel-
eration phases. (c) Side-view images illustrating the creation
of a bubble for v = 0.4 m s−1, R = 41 mm and h0 = 95 mm.

tensiometry (Teclis Tracker) to determine the liquid-air
surface tension γ. We find 25 mN m−1 (soap solution)
and 20 mN m−1 (PDMS). To measure a bubble’s radius,
we record its formation from below with a high-speed
camera (Photron SA3) working at 250–2000 frames s−1.

Oscillations at small heights. We begin by studying
the variations of Rb with the initial height h0 for differ-
ent impact speeds, all other variables remaining constant
(figure 1 defines the variables at play). We select values
of d, da and dd that satisfy the three conditions d > h0,
da < h0 and dd < d − h0 so that v is constant when the
ring impacts the liquid pool [see Fig. 1(b)]; dd is smaller
than the depth of the pool.

When v is large enough, i.e., larger than about
0.2 m s−1 for a medium ring size, the evolution of Rb with
h0 is characterized by damped oscillations for any speed
[see Fig. 2(a)]. R∞

b and ∆h0 denote respectively the con-
stant bubble radius found within the limit h0 → ∞ and
the distance between two consecutive maxima in the sig-
nal Rb vs. h0. Both quantities increase with v [Fig. 2(a)].
The amplitude of the observed oscillations, i.e. the size
of a produced bubble for small h0, is in fact a function
of the applied acceleration aa (see Fig. S3 and related
discussion in37).

Side-view videos of plunging films under conditions
similar to those of Fig. 2 help to understand the oscil-
latory signal Rb vs. h0. For both PDMS and the soap
solution, they indeed reveal that a film oscillates verti-
cally as it moves towards the pool (see37 for MovieS1
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FIG. 2. Radius of the interfacial bubble Rb versus (a) height
h0 and (b) τ =

h0−da
v

for a ring of radius R = 31 mm and
three impact speeds v as indicated. Other parameters are
da = 10 mm and dd = 8 mm so that the acceleration aa is
(top graph) 32 m s−2, (middle graph) 16 m s−2 and (bottom
graph) 8 m s−2 . (c) Series of photographs illustrating the
influence of the position at impact of an oscillating film on
the size of a produced bubble in the case of v = 0.6 m s−1 in
Fig. 1(a) for three different heights h0 as indicated [(i)-(iii)].
Scale bar: 1 cm. The liquid is the soap solution.

and a brief discussion of the oscillations of a film). In
what follows, we discuss the forces acting on a film in the
non-inertial reference frame of the ring that is accelerated
with regard to that of the laboratory. In this reference
frame, during the acceleration phase, a fictitious force
deflects the film upward from its horizontal equilibrium
position, surface tension being a resisting force that op-
poses this deflection. Air friction also acts on the film
and the combination of the three forces give the shape
of the film. The fictitious force vanishes when the ring
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reaches a stationary velocity. No longer at equilibrium,
the film then relaxes to a new steady state position. This
surface-tension driven relaxation induces air friction on
the film which causes the damped oscillatory variations
of Rb with h0. When a ring impacts the pool, the vol-
ume of entrapped air is maximal (resp. minimal) when
the film presents a maximal deflection above (resp. be-
low) the ring. Figure 2(c) shows a series of photographs
that illustrate how the position at impact of an oscillating
film influences the size of a produced bubble. To validate
the above scenario, we plot in Fig. 2(b) the evolution of
Rb with the time τ = h0−da

v elapsed between the end
of the acceleration phase and the contact between ring
and pool. As indicated by the dashed vertical lines in
Fig. 2(b), the distance between two consecutive maxima
corresponds to the constant period of oscillations T that
we manually measure using the first two maxima that
are easier to define than those found at higher heights.
The period T of the damped oscillations, which does not
depend on vc < v < 1 m s−1, is an intrinsic parameter of
the soap film. We show in37 that this time corresponds to
the first antisymmetric mode of oscillation of a film38,39.

Bubble size in the high height regime. h0 is hereafter
large enough so that nonoscillating films impact the pool
and R∞

b is independent of both h0 and aa (see Fig. S3
in37). The variations of R∞

b with v for both fluid systems
unveil two formation regimes, each characterized by a
power-law response (see Fig. 3). As mentioned earlier, in
contrast with drop impact on solids12, R∞

b is increasing
monotonically with v. The exponent of the power law
above a threshold speed vc is larger than at small v. In
addition, the results shown in Fig. 3 suggest that these
exponents are independent of both R and the nature of
the fluid and that vc decreases with R. Also, the curves
shown in Fig. 3 tend to flatten out for the largest speeds
when R∞

b gets close to R.

Discussion and model. Understanding our findings re-
quires to identify the variables controlling the response.
As indicated above, the power laws seem to be indepen-
dent of the liquid properties40, i.e., ρℓ and ηℓ. By con-
trast, to account for film dimpling, we expect the sur-
face tension γ to be a controlling variable. Hence, R∞

b
should depend on v, R, γ, ρa and ηa. One could spec-
ulate that the film thickness e also plays a role in the
formation of bubbles. To characterize the influence of
e, we have performed experiments with plunging films
prepared by withdrawing a ring at different speeds. Be-
cause of Frankel’s law of film thickness, such films have
different thicknesses, in the range e = 1–10 µm for our
experiments. We have found that the impact of these
films with the pool for a fixed speed v produces bubbles
having the same radius in both regimes. One could also
consider that gravity influences the formation of bubbles.
However, in our experiments, gravity (∝ πR2eρℓg) should
dominate effects of surface tension (∝ 2πRγ) when the
films are sufficiently thick, that is, e > 2γ

ρℓgR
. This es-

timate corresponds to films larger than about 100 µm
which is an order of magnitude larger than the thick-
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FIG. 3. R∞

b versus v for different radii R: 82 mm (�), 51 mm
(•), 36 mm (N), 35 mm (◦) and 25 mm (�). Open and closed
symbols stand for PDMS and the soap solution, respectively.
For any liquid and value of R, one observes a power-law re-
sponse with a small (resp. large) exponent when v < vc (resp.
v > vc) as indicated by the lines that are guides for the eyes.
Inset: bottom-view picture of an interfacial bubble defining
the measured bubble radius R∞

b . Scale bar: 5 mm.

nesses of the films that we use. Hence, on can con-
sider that surface tension dominates gravity for the whole
study. A rapid dimensional analysis then shows that
R∞

b /R is a function of the capillary number C = ηav/γ
and the Weber number We = ρav

2R/γ, two dimension-
less quantities based on gas properties (ρa and ηa) and in-
corporating surface tension. In other words, this analysis
predicts that R∞

b /R varies as WeαCβ where α and β are
two numerical constants to determine. As demonstrated
below, the formation of bubbles is in fact controlled by
either a visco-capillary (α = 0) or an inertio-capillary
(β = 0) mechanism.

We expect the mechanism comparing gas inertia and
surface tension to control the response when the Reynolds
numbers Re = We/C is large. This is the case for the
regime seen at speeds above vc in Fig. 3; Re ≈ 1000
for R = 50 mm and v = 0.3 m s−1. When v > vc,
the film in its reference frame encounters a uniform air
flow of constant speed v that creates a dimple of mean
curvature κ in it. Using Bernoulli’s principle, this trans-
lates to ρav

2/2 = 4γκ so that κ−1 = 8R/We. We as-
sume the dimple to be a spherical cap whose volume
is that of the produced bubble. Then, using geomet-
ric considerations to write a first-order approximation of
the function R∞

b /R around We = 0, one readily finds

R∞

b /R ≃ 31/3

4 We1/3; in our experiments, We = 10−5–3.
Figure 4 shows that this physical model concurs well with
experiments when v > vc as it collapses data onto a sin-

gle curve and the predicted prefactor 31/3

4 ≈ 0.36 is close
to the experimental one (≈ 1). Also shown in Fig. 4 and
already mentioned when discussing the results reported
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FIG. 5. Schematic (not to scale) of film dimpling as a ring
reaches the pool surface. Defined are the geometric variables.

in Fig. 3, when the Weber number is larger than about
1.33, R∞

b /R gets near to or larger than 1, the data flat-
ten out and our model written around We = 0 fails to
rationalize experiments.

When v < vc, film dimpling originates from the viscous
flow of the air squeezed under a film as a ring reaches the
pool. One can model this radial flow with a lubrication
approximation of the Stokes equation:

∂pa(r, t)

∂r
∼ ηa

∂2ur(r, t)

∂z2
(1)

where ur is the radial component of the air velocity, z
is the vertical direction and pa is the air pressure (see
Fig. 5). The pressure difference across a dimpled film
∆pa is a function of the film mean curvature κ(r, t):

∆pa(r, t) = pa(r, t)− p0 = 4γκ(r, t) (2)

with p0 the atmospheric pressure. κ(r, t) and the film’s
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FIG. 6. Shown is R∞

b /R vs. C
1/12. Symbols are identical to

those of Fig. 4. The line with slope 1 is a guide for the eyes.

profile ε(r, t) (see Fig. 5) are related by the geometry:

2κ(r, t) =

[

1 +

(

∂ε(r, t)

∂r

)2
]

−3
2









∂2ε(r, t)

∂r2
+

∂ε(r,t)
∂r

[

1 +
(

∂ε(r,t)
∂r

)2
]

r









.

(3)

The lubrication equation describing the gas flow under-
neath the film closes the problem:

∂H(r, t)

∂t
=

1

r

∂

∂r

(

rH(r, t)3

12ηa

∂pa(r, t)

∂r

)

, (4)

where H(r, t) = h(t) + ε(r, t) is small compared to the
other flow direction, i.e. H(r, t) ≪ R, h(t) being the
distance between ring and pool at time t (see Fig. 5).

Using these basic elements modeling the flow, we now
rationalize our findings for v < vc at the level of scal-
ing. An order-of-magnitude analysis of Eq. (1) and mass
conservation give ∆pa ∼ ηa

Rur

H2 and ur ∼ vR
H , respec-

tively. Hence, ∆pa ∼ ηa
vR2

H3 . Assuming the dimple to

be a spherical cap of radius κ−1
i when the ring meets

the pool, i.e. when h = 0, the maximum deflection of
the film at impact εi ≪ R can be written εi ∼ R2κi

(see Fig. 5). The increase of pressure in the gas layer
under the film yields film dimpling, whereas capillary
forces tend to maintain the film flat. This translates to
a balance between pressure in the gas and Laplace pres-
sure, which provides εi ∼ RC1/4; as in our experiments
C1/4 ≈ 0.03–0.18, our approximation εi ≪ R is reason-
able. From volume conservation between the spherical
cap and the created bubble, εiR

2 ∼ R∞

b
3, we then obtain

a prediction for the variations of the normalized bubble
size R∞

b /R ∼ C1/12. As shown in Fig. 6, these physi-
cal arguments allow us to understand our results when
v < vc as this prediction concurs with experimental data.

Equating the two expressions found for
R∞

b

R in the two
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formation regimes, one derives the threshold speed:

vc ∼

(

ηaγ
3

ρ4aR
4

)1/7

, (5)

which mirrors the measured one (see Fig. 7). Besides the
nature of the fluid density in Eq.(5), it may be noted
that the expression of vc is similar to that of the speed
at which a bubble size is maximum for drop impact on
solids12. Also, non-dimensionalization of Eq.(5) gives
the transition between regimes in terms of dimension-
less quantities: the creation of a bubble is controlled by
the inertio-capillary mechanism when (We4/C)1/7 > 1 or
the visco-capillary mechanism otherwise.

Conclusion. We conclude with three remarks. Firstly,
within the limit v → 0, we expect the formation of a bub-
ble to be solely controlled by geometric variables. Within
this quasistatic limit, a film should indeed remain flat

enough for the volume of entrapped air to be that of a
cylinder having height b/2 and radius R. We then antic-

ipate that R∞

b /R ∼ ( 3b
4R )

1
3 ; in our experiments, this qua-

sistatic limit bubble radius is in the R∞

b = 3.3–13.4 mm
range. Unfortunately, validating this simple prediction is
a difficult task since slight variations in the horizontal-
ness of the ring at very small speeds cause large varia-
tions of the measured bubble size. Secondly, for speeds

larger than
√

8γ
ρaR

(1.3–4 m s−1 in our experiments), the

air dynamic pressure ρav
2

2 overcomes the Laplace pres-

sure 4γR−1 required to transform the liquid film into a
bubble of radius R41–43, bubbles should therefore form.
We have not observed this regime because of the lim-
ited maximum speed (1 m s−1) imposed by our motor
stage. Lastly, one might suppose that a bubble could
form before a ring reaches a stationary velocity, i.e., dur-
ing the acceleration phase. This would occur when the
dynamic pressure ρℓv

2

2
e
da

caused by the fictitious force
acting on an accelerating film overcomes the threshold
in capillary pressure 4γR−1. Hence, bubbles should be
produced during the acceleration phase for speeds larger

than
√

8γ
ρaR

√

ρa

ρℓ

da

e ; interestingly, in contrast with bub-

bles formed by blowing on soap films42,43, it is worth
noting that this threshold speed for making bubbles is a
function of the film thickness. Since in our experiments
this threshold speed is in the range 1.3–12 m s−1, we
have not observed the creation of bubbles during the ac-
celeration phase either. To validate the predicted thresh-
olds at high speeds, measurements should be conducted
for speeds larger than the maximum speed of our mo-
tor which would require developing a new experimental
setup. Designing such a setup would be a challenging
task since it should offer the same specifications as our
vertical linear motor stage (precise control of the speed
of a moving frame, the acceleration needed to reach this
velocity and the deceleration required to stop the mov-
ing frame) so that previous data can be compared to new
ones.
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