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Abstract 

The present study reports the photocatalytic degradation of aldehydes using TiO2 

impregnated polyester (PES) and glass fiber (GFT)-TiO2 addressing the 

photocatalytic degradation aldehydes (air-solid interface). The PES-TiO2 optical 

absorption was determined by  diffuse reflectance spectroscopy (DRS). By X-ray 

diffraction (XRD), the formation of TiO2 anatase on the PES surface was detected. 

The photocatalytic oxidation (PCO) of butyraldehyde and isovaleraldehyde was 

carried out in a batch photo-reactor equipped with a UV-mercury Philips 9W lamp 

and mediated by glass fiber GFT-TiO2 and PES-TiO2 surfaces. The removal of these 

two aldehydes was found to be a function of pollutant concentrations. The stable 

catalytic reuse of both catalysts reported. A Langmuir Hinshelwood (L-H) model 

describes the degradation kinetics on PES-TiO2 and on GFT-TiO2. The aldehyde 

degradation by-products were analyzed by gas chromatography mass spectrometry 

(GC-MS). Three organics intermediates identified during the aldehyde degradation 

were: acetones, alcohols and fatty acids.  

Keywords: 

TiO2-PES; batch photo-reactor; kinetics; intermediate by-products, GC-MS, L-H 
isotherms, degradation kinetics 
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Introduction: 

VOCs have been found to be hazardous to the human health and introduce 

collateral environmental damage. VOCs are discharged into the atmosphere by 

households and industry, and found in the exhaust gases from animal quartering, 

and residential cleaning agents. Damaging health effects have been reported on the 

eyes, nose and throat. They also lead to headaches, loss of coordination and 

nausea, damages to the liver, kidney and the central nervous system [1]. Moreover, 

they can induce cancer in animals; and can cause cancer in humans [2]. The 

technologies developed until now to remove VOCs have not been entirely successful 

and do not meet the regulatory levels becoming more demanding during the last 

decade. Recently studies report the aldehyde removal by adsorption [3], biological 

treatment [4] and advanced oxidation processes (AOP’s).  

Photocatalytic TiO2 materials have been widely used during the last four decades 

due to their low cost, photo-activity and stability [5]. TiO2 is widely used in catalytic 

processes occurring at the air-solid interface at room temperature and atmospheric 

pressure [6–8]. TiO2 (titania) stands out as one of the most active photocatalyst [9] 

under UV-radiation. The electrons in the valence band of TiO2 under light move to the 

conduction band generating electron (e-)-hole (h+) pairs. These electrons in contact 

with air are able to reduce the O2 forming superoxide ions. Moreover, the holes 

oxidize water adsorbed on the TiO2-surface generating hydroxyl radical (HO°) [10-

11]. The later radical species oxidize organic compounds to produce CO2 [12,13-15]. 

TiO2 has been also used in chemical synthesis [16,17] and energy conversion [18]. 

Many research groups studied the photocatalytic oxidation for indoor and outdoor 

cleaning under UV and/or solar light. The reaction rate of a photocatalytic reaction 

depends on the catalyst, the applied light intensity, the concentration of reactants (in 

our case gaseous effluents), the flow rate and the type of reactor used (batch or 

continuous) [9,12]. 

This paper presents the optimization for the TiO2 impregnation on two supports: 

polyester (from now PES) and Glass Fiber Tissue (from now GFT). It reports some 

properties of these surfaces [19] along the Langmuir Hinshelwood (L-H) isotherm 

followed during the photocatalytic degradation of the two aldehydes. The first 
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evidence for the degradation kinetics for gas-phase PCO of aldehydes is presented 

on PES-TiO2 and GFT-TiO2. Butyraldehyde and isovaleraldehyde were chosen as 

probes due to their abundant presence in exhaust gases from animal 

process/quartering [20]. 

2. Experimental Section 
2.1. Chemical reagents 
Chemicals were Sigma–Aldrich (USA). The isovaleraldehyde (≥ 98%) and 

butyraldehyde (≥99%) were p.a. reagents and used as received. Both aldehydes 

belong to the priority group of VOCs pollutants: aromatics (one, two or three rings) 

alkanes, ketones, alcohol, and chloro-carbons by the French Environment and 

Energy Management Agency (ADEME). 

2.2. Apparatus and Analysis: 

The batch reactor used was approximately 400 mm high and was able to contain a 

volume of 1.5 L. The catalytic samples used presented a surface of 330 cm2 and 

were attached to the inner wall of the cylindrical reactor. The fluorescent UV-lamp in 

the photo-reactor was Philips PL-S 9W/10/4P. The outside wall of the reactor was 

covered with Al-foil during the irradiation experiments to prevent the lamp UV-

emission to reach the outside of the reactor. A magnetic stirrer and a magnetic barrel 

allowed the homogenization of the gas phase. 

 
Figure 1. Schematic of the batch photo-reactor with the central co-axial mercury 9W 

mercury UV-light source 
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During the course of this study a aldehyde samples were injected into the 

reactor. A magnetic stirrer and some glass spheres were used to homogenize of the 

inlet gas phase. When the equilibrium was reached, the UV lamp was turned on. 

Samples were taken regularly from the reactor for analysis. 

The main reaction intermediates present in gas phase were analyzed to suggest 

at later stages during this study a reaction mechanism. Carbotrap compositions were 

used to concentrate the pollutiants: Carbopack Y, is used for the selective retention 

of the C12 to C20 compounds. By way of Carbopack B C5 to C12, compounds were 

trapped while the lighter compounds C2 to C5 were adsorbed with Carboxen 1003. 

The initially concentrated aldehydes on different Carbotrap (Supelco) were   then 

pumped by a a Gillian LFS-113 pump under a flow rate of 50 mL/min. Subsequently, 

a Turbomatrix Perkin Elmer unit was used to thermally desorb these concentrated 

compounds. Then the gases were analyzed through a transfer line to the GC/MS 

Perkin Elmer Clarus 500 equipped with a Quadrupole mass spectrometer detector. 

The GC/MS column consisted of a capillary column FFAP-CB Chrompact 25 m long, 

0.15 mm in diameter and a stationary phase’s thickness of 0.25 µm. The temperature 

in the oven, the injection chamber and the detector were 100, 120 and 200 °C 

respectively.  

2.3. Catalyst 

2.3.1. Glass Fiber Tissue (GFT) 

The glass-fiber(GFT) was provided by Ahlstrom Research/Services [12]. This 

material contained colloidal silica, a variable percentage of titanium dioxide, 

manganese dioxide nanoparticles and inorganic fibers as shown in Figure 2a. TiO2 

was deposited on the inorganic fibers by impregnation using an industrial-size press 

as shown in Figure 2b. A mixture of 50-wt% colloidal silica and different wt% of TiO2 

nanoparticles (PC500 Millennium) and manganese dioxide is suspended in pure 

water. In order to ensure the deposition of 13 g/m2 of dry TiO2 on the GFT support. 

The suspension was composed of 40% of dry powder and 60% of pure water. The 

PC500 TiO2 nanoparticles consisted of anatase 5-10 nm in diameter with and TiO2 

SSA nanoparticles of 300 m2/g as shown in Figure 2a.  
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Figure 2a. Scanning electron micrographs (SEM) of the glass fibers (GFT). 

An industrial type press was employed to impregnate fibers with the TiO2 suspension, 

followed by the drying cstep arried out by Ahlstrom Research and Services. 

 
Figure 2b. Diagram of the impregnation technique for GFT synthesis "size press" 

2.3.2. TiO2 impregnated PES: TiO2 loading, spectral absorption and 

isoelectric point. 

PES-TiO2 samples were prepared hydrothermal (HT) preparation treatment 

method. During the HT-preparation, the TiO2 colloidal suspension was prepared 

dissolving titanium tetra-isopropoxide (TTIP, Sigma Aldrich) in isopropanol in a 1:3 

volume ratio. Then, the solution was transferred into a beaker with 50 ml of 0.1M 

HNO3. This way of preparation lead to a substantial TiO2 aggregation. To study the 

effect of these aggregations on the photocatalytic activity, some samples were ultra-

sonicated for 10 min prior to the PES impregnation; these samples will be called US-

TiO2-PES along the manuscript. The polyester samples 10x10 cm was immersed into 

the acid TiO2 precursor suspension and heated under stirring in a reflux condenser 
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for 2 hours at 80°C. The PES fabric was removed from the suspension, rinsed with 

demineralized water and treated in ultrasound bath for 2 min to remove the 

unbounded TiO2 particles. The last operation was repeated three times and the TiO2-

polyester fabric dried for 2 hours in air at 70°C. 

The low surface energy of polyester led to poor TiO2 nanoparticles adhesion. In 

order to fix a higher amount of TiO2 on PES, the PES was pretreated by UVC-light to 

induce a higher density of functional polar groups able to bind TiO2 nanoparticles 

[21]. UVC pretreatment enhances the polarity, roughness and hydrophilicity of 

polyester improving its bondability and interfacial adhesion. The UVC pre-treatment 

induced negatively charged functional groups, e.g., carboxylic, percarboxylic, epoxide 

and peroxide groups due to the atomic and excited-O*. The polyester negative sites 

bind the slightly positive deposited Ti4+/(TiO2) by electrostatic attraction involving 

chelation/complexation [23]. The TiO2 was deposited immediately after the UVC-

pretreatment due to the short lifetimes of the polar radical species. 

To determine the TiO2 isoelectric point (IEP), a Colloidal Dynamics Acousto Sizer 

II (Sydney, Australia) instrument was used. The zeta potential is calculated from the 

widely used Smoluchowski equation [23, 24] for thin double layers (ka >20). The 

electro-acoustic determines the dynamic mobility, of the suspensions in 150 ml KNO3 

(0.01M). The pH adjusted with HNO3 to around 3 and then titrated up to pH 10 or 11 

by addition of KOH (0.01 M) 25°C. The colloid was dispersed under vigorous 

agitation and ultrasonic treatment for 5 minutes (150 watts, 20 kHz). 

The Ti-content of the TiO2-PES samples was determined in an Orbis PC Micro 

EDXRF analyzer equipped with a Rh micro-focus X-ray tube (50 kV and 1 mA) and 

X-ray multiple optic turret with 30 µm poly-capillary X-Ray optics/collimator.  

Diffuse reflectance spectroscopy (DRS) was carried out in a Varian Analytical 

Instruments Cary 5 UV-VIS-IR spectrophotometer (controlled by the Cary Win UV 

software) within the wavelength range of 300-800 nm and a resolution of one nm. 

The spectral absorption of the samples was plotted in the Kubelka-Munk (KM) units 

vs. wavelength. 

2.4. Pollutants degradation conditions 

Degradation of isovaleraldehyde and butyraldehyde in the photocatalytic reactor was 

evaluated for several influent pollutant concentrations (Table 1).  
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Table 1. Experimental Conditions used during the degradation of aldehydes in the 
batch photo-reactor. 

Parameter Value & domain 

Gas Temperature Ambient (293 K) 
Gas Pressure Atmospheric pressure (1 atm) 
Volume of reactor 1 L 
Isovaleraldehyde Inlet Concentration  
[Isoval] 

1 to 22 g/m3 

Butyraldehyde Inlet Concentration [Buty] 1 to 20 g/m3 
Relative humidity 40-50 % 
Intensity of UV lamp 30 W/m2 

3. Results and discussion 

3.1. TiO2 loading, IEP and spectral absorption 

By X-ray fluorescence (XRF), HT PES-TiO2 samples were found to have a 0.61 

wt%TiO2 / wt PES loading and the US PES-TiO2 samples presented a TiO2 loading of 

0.39 wt%TiO2 / wt PES. The quantity of TiO2 was not very high as to affect the PES 

flexibility and/or other mechanical properties.  

Figure 3 shows the spectral absorption of TiO2-impregnated polyester prepared by 

both preparation methods HT or US.  

 
Figure 3. Diffuse reflection spectroscopy (DRS) absorption of PES-TiO2. 

The diffuse reflectance spectra (DRS) in Figure 3 show a higher optical 

absorption for the samples prepared by the HT-method compared to the samples 

prepared by the US-method. The higher TiO2 loading on the HT-samples explains 

these DRS results as determined by (XFR) and can be explained by the different 
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aggregation of the TiO2 clusters on the polyester surface. This leads to light 

reflectance in all directions increasing the signal registered in the optical integration 

sphere. 

The rough UV-Vis reflectance data cannot be used directly when accounting for 

the absorption coefficient of the TiO2-impregnated polyester due to the large 

scattering contribution. Normally, a weak dependence is assumed for the scattering 

coefficient S on the light diffusion.  

In agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of 

colloidal stability, nanoparticle aggregation sets in at pH close to the TiO2 IEP 6-7 

used during the preparation of the TiO2 colloidal suspensions due to the attractive 

Van der Waals forces. The TiO2 single particles present sizes between 40-60 nm. 

The hydrodynamic diameter of the aggregates was found to be 170-240 nm and is 

approximately equivalent to 3-6 primary TiO2 particles [19], aggregates involve a 

higher mass of TiO2 but a lower surface per particle active intervening in the 

photocatalytic process.  

3.2. Pollutant degradation 

To separate the effects of photocatalysis and adsorption, the VOC with a 

concentration of several g/m3 were mixed with air and stirred for 30 min in the dark to 

reach adsorption-desorption equilibrium at time zero. Subsequently, the mixture was 

irradiated under UV-light for 180 min to test the photo-activity of PES-TiO2. After the 

experimental conditions became stable, the PCO reaction was initiated and the VOC 

injected. Under steady-state conditions samples were taken to evaluate the 

degradation rate and the generation of by-products 

Figure 4a and b show the variation of isovaleraldehyde) and butyraldehyde 

concentrations versus time at different inlet concentrations. The degradation rate first 

increased with the inlet concentration, due to the availability of the photocatalytic 

sites at a low concentration range [9, 11].  

The concentrations of both aldehydes shown in Figures 4a/4b decreased with 

increasing irradiation time, going from 10 to 3 g/m3 and from 9 to 0.8 g/m3 within 15 

min irradiation, at inlet concentration values of 10 and 9 g/m3 respectively. These 

rates were similar to the values reported for some VOCs [11-14]. We suggest that the 

degradation mechanism of the aldehydes on supported-TiO2 involve TiO2 electrons in 

the conduction band (cb) reacting with adsorbed O2 on the TiO2 yielding HO2° 
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radical-anions and other highly oxidative protonated radicals leading to the oxidation 

of the aldehydes [10, 21-23]. 

 

 
Figure 4a. Butyraldehyde degradation on PES-TiO2 as a function of the initial 
aldehyde concentration) under a Philips UV 9W mercury lamp irradiation (I=30W/m2).  

 

 
Figure 4b. Isovaleraldehyde degradation on PES-TiO2 as a function of the initial 
aldehyde concentration under a Philips UV 9W mercury lamp (I=30W/m2) irradaition.  

3.3. Comparison with other photocatalyst (GFT) 
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The PES-TiO2 and the (GFT)-TiO2 samples presented a similar TiO2 loading as 

determined by XRF of 0.61 wt%/wt-PES and 0.57 wt%/wt-GFT. PES and GFT did not 

led to aldehyde degradation in the dark or under light irradiation. Butyraldehyde, 

removal on GFT was about twice faster compared to PES, it reaches 90% removal in 

30 minutes on GFT-TiO2 as seen in Figure 5a. On PES-TiO2 about 90% of 

butyraldehyde was removed within 60 min. The TiO2 accessibility to lower depths in 

the GFT glass-wool containing TiO2 dispersed nanoparticles offer a higher number of 

active sites per nanoparticle in the glass wool compared to the PES support. [14]. 

 

 
Figure 5a. Butyraldehyde photodegradation kinetics on GFT-TiO2 and PES-TiO2 

samples under a Philips UV 9 W mercury lamp irradiation (I=30W/m2). 
 

To understand the kinetic and the adsorption process of butyraldehyde 

degradation on the two catalysts under investigation, the Langmuir-Hinshelwood (L-

H) model was used according to the equation: 

 

Where r0 (mmol/gcatxm3xs) is the initial photocatalytic degradation rate, [VOC] is the 

initial butyraldehyde concentration (mmol/m3), K is the adsorption constant (m3/mmol) 

and  kc is the kinetic constant (mmol.m-3xsxgTiO2) at maximum coverage for the 

experimental conditions used could be expressed as: 
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where I is the light intensity (W/m2), k0 is a rate constant independent of the light 

intensity and  is the order of I (0 <  < 1). 

 

 The linearized L-H equation reads: 

 

The plot of 1/r0 versus 1/[VOC]0 allows to determine kc and K values by the plot 

presented in Figure 5b. 

 
Figure 5b. Linear regression using L-H model for the butyraldehyde degradation and 

isovaleraldehyde alone and in the presence of GFT-TiO2 

According to the values reported in Figure 5b, the values of the L-H constants (kc and 
K) are shown in the Table 2. 
 

Table 2. L-H constants (kc and K) at different catalysts tested 

Catalyst 

tested 
Target pollutant 

kc: Kinetic constant of 

L-H 

(mmol.m-3.s.gTiO2) 

K: Adsorption Constant of 

L-H 

(m3.mmol-1) 

Isovaleraldehyde 0.2953 1.8285 
PES-TiO2 

Butyraldehyde 0.1513 5.5545 

GFT-TiO2 Butyraldehyde 0.4134 3.2769 
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 Table 2 shows that GFT-TiO2 leads to a faster butyraldehyde degradation 

compared with the PES-TiO2. Anatase crystals are formed at around 300°C and rutile 

at around 600°C when heating TiO2 colloids in the absence of a structure-forming 

surface like polyester [19,28]. These temperatures are significantly higher compared 

to temperatures of around 80°C used in the preparation of TiO2-polyester surfaces 

(see section 2.3.2). This can lead to different crystallographic structures influencing 

the photocatalytic activity as recently reported [10,19]. These support materials 

present: a) a different catalytic site accessibility for the aldehyde and b) a distinct light 

exposure of the TiO2 sites to the incoming UV-light [14].  

3.4. By-products Identification  

The by-products detected during the photocatalytic degradation of butyraldehyde 

on PES-TiO2 were determined by GC-MS. The degradation by-products detected 

were: methanol (2) acetone (3), ethyl acetate (4), acetic acid (5) and propionic acid 

(6). Butyraldehyde (1) was also present after 30 minutes. These results are similar to 

those reported by Assadi et al. [25, 26], reporting acetic, propionic, and butyric acids. 

Assadi el al., used GFT-TiO2 for the isovaleraldehyde photodegradation and detected 

propionic acid, acetone, acetic acid and CO2  as the degradation products. 

 

 

OUT

IN

Figure 6. By-products observed during butyraldehyde degradation by GC–MS on 
PES-TiO2 
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4. Catalyst recyclability 

The reusability of the used catalyst is an important factor to investigate since it is a 

measure for its practical application potential degrading pollutants in the gas phase 

[27-28]. The repetitive use of the GFT-TiO2 photocatalyst up to the 5th cycle leading 

to butyraldehyde degradation is shown below in Figure 7. No loss of activity was 

detected by the photocatalyst during its repetitive recycling as shown in Figure 7. The 

catalyst was thoroughly washed after each photodegradation cycle and reused. The 

results reported in Figure 7 show the potential of the GFT-TiO2 samples for 

application in air treatment.  

 

 
Figure 7. Repetitive degradation of butyraldehyde on a GFT-TiO2 sample under 9W 

Philips mercury light. Further experimental conditions: I=30W/m2, butyraldehyde 
concentration = 5 g/m3. 

 

5. Conclusion 

Butyraldehyde and isovaleraldehyde degradation mediated by PES-TiO2 and GFT-

TiO2 under mercury UV-light have been reported in this study. The by-products 

during the photocatalytic degradation of butyraldehyde on PES-TiO2 were identified 

by GC-MS. The GFT-TiO2 presented a larger photo-activity compared to PES-TiO2 

and this comparison was quantified by the kc values found during in the L-H 

treatment of the experimental data. A stable degradation performance of the 
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aldehydes by the GFT-TiO2 samples was observed during repetitive recycling under 

UV-light irradiation. This catalyst presents an application potential for application in 

air treatment. 

 

 

References: 

[1] Peter J. O'Brien, Arno G. Siraki & Nandita Shangari, Aldehyde Sources, 
Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human 
Health, Critical Reviews in Toxicology 35 (2005) 609-662.   

 
[2] d'Henry A. Heck, Mercedes Casanova & Thomas B. Starr, Formaldehyde 

Toxicity—New Understanding, Critical Reviews in Toxicology 20 (2008) 397-426. 
 
[3] G. Gabrielson, Adsorption of aldehydes and ketones on anion exchangers in 

cyanide form, J. Chemical Technology and Biotechnology,  7 (1957) 533-535. 
 
[4] P.M. Huck, W.B. Anderson, S.M. Rowley, S.A. Daignault, Formation and removal 

of selected aldehydes in a biological drinking-water treatment process, Aqua 39 
(1990) 321-333. 

 
[5] A.A. Assadi, A. Bouzaza, C. Vallet, D. Wolbert, Use of DBD plasma, 

photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular 
reactor for isovaleraldehyde elimination–synergetic effect and byproducts 
identification, Chem. Eng. J. 254 (2014) 124-132. 

 
[6] Y. Boyjoo, H.i Sun, J. Liu, V. K. Pareek, S. Wang, A review on photocatalysis for 

air treatment: From catalyst development to reactor design, Chemical Engineering 
Journal 310 (2017) 537-559. 

 
[7] M. Robotti, S. Dosta, C. Fernández-Rodríguez, M.J. Hernández-Rodríguez, I.G. 

Cano, E. Pulido Melián, J.M. Guilemany, Photocatalytic abatement of NOx by C-
TiO2/polymer composite coatings obtained by low pressure cold gas spraying, 
Applied Surface Science, 362, 2016, 274-280. 

 
[8] M. S. Curcio, M. P. Oliveira, W. R. Waldman, B. Sánchez, M. C. Canela, TiO2 sol-

gel for formaldehyde photodegradation using polymeric support: photocatalysis 
efficiency versus material stability, Environ Sci Pollut Res (2015) 22:800-809  

 
[9]  L. Zhong, F. Haghighat, C-S. Lee, N. Lakdawala, Performance of Ultraviolet 

Photocatalytic Oxidation for Indoor Air Applications: Systematic Experimental 
Evaluation, Journal of Hazardous Materials 261 (2013) 130-138. 

 
[10] S. Rtimi, R. Sanjines, M. Andrzejczuk, C. Pulgarin, A. Kulik, J. Kiwi, Innovative 

transparent non-scattering TiO2 bactericide thin films inducing increased E. coli 
cell wall fluidity, Surface and Coatings Technology 254 (2014) 333-343. 

14 
 



 
[11] T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO2 photocatalyst 

and its app,ications for environmental purification, J. Photochem. Photobiol. C: 
Photochem. Rev. 13 (2012) 247-262. 

 
[12] L. Zhong, Haghighat, F. Photocatalytic air cleaners and materials technologies  

abilities and limitations, Building and Environment, 91(2015) 191-203. 
 
[13] A. A. Assadi, A. Bouzaza, D. Wolbert, P. Petit, Isovaleraldehyde elimination by 

UV/TiO2 photocatalysis: comparative study of the process at different reactors 
configurations and scales, Environmental Science and Pollution Research, 21 
(2014) 11178-11188. 

 
[14] GL. Puma, V. Puddu, HK. Tsang, A. Gora, B. Toepfer, Photocatalytic oxidation of 

multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-
ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: photon 
absorption, quantum yields and rate constants independent of photon absorption. 
Applied Catalysis B Environ 99 (2010) 388-397. 

 
[15] AY. Shan, TIM. Ghazi,SA. Rashid, Immobilisation of titanium dioxide onto 

supporting materials in heterogeneous photocatalysis: a review. Applied Catalysis 
A: General 389 (2010) 1-8. 

 
[16] R C. Suciu, E. Indrea, TD. Silipas, S. Dreve, MC. Rosu, V. Popescu, G. 

Popescu, HI. Nascu, TiO2 thin films prepared by sol-gel method. J. Phys. Conf. 
Ser. 182 (2009) 012080. 

 
[17] TK. Tseng, YS. Lin, YJ. Chen, H. Chu, A review of photocatalysts prepared by 

sol-gel method for VOCs removal. Int.  J. Mol. Sci. 11 (2010) 2336-2361. 
 
[18] T. Ochiai, T. Hoshi, H. Slimen, K. Nakata, T. Murakami, H. Tatejima, Y. Koide, A. 

Houas, T. Horie, Y. Moritobe, A. Fujishima, Fabrication of a TiO2 nanoparticles 
impregnated titanium mesh filter and its application for environmental purification, 
Catal. Sci. Technol, 1  (2011)  1324-1327.  

 
[19] J. Nesic, S. Rtimi, D. Laub, G. Roglic, C. Pulgarin, J. Kiwi, New evidence for TiO2 

uniform surfaces leading to complete bacterial reduction in the dark: Critical 
issues, Colloids and Surfaces B: Biointerfaces 123 (2014) 593-599.  

 
[20]  International Programme on Chemical Safety (IPCS), OECD screening 

information databases 3-methyl butanal, UNEP Canadian Centre for Occupational 
Health and Safety (CCOHS), 2004. 

 
[21] S. Rtimi, C. Pulgarin, R. Sanjinesb, J. Kiwia, Novel FeOx–polyethylene 

transparent films: synthesis and mechanism of surface regeneration, RSC 
Advance 5 (2015) 80203-80211. 

 

15 
 



16 
 

[22] H. Ourrad, F. Thevenet, V. Gaudion, V. Riffault, Limonene photocatalytic 
oxidation at ppb levels: Assessment of gas phase reaction intermediates and 
secondary organic aerosol heterogeneous formation, Applied Catalysis B: 
Environmental, 168–169 (2015) 183-194 

 
[23] S. Rtimi, Indoor light enhanced photocatalytic ultra-thin films on flexible non-heat 

resistant substrates reducing bacterial infection risks, MDPI-Catalysts 7 (2017) 
57. 

 
[24] A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface 

phenomena, Surf. Sci. Repts. 63  (2008)  515-582. 
 
[25] A.A. Assadi, A. Bouzaza, D. Wolbert, Photocatalytic oxidation of Trimethylamine 

and Isovaleraldehyde in an annular reactor: Influence of the Mass Transfer and 
the relative humidity. Journal of Photochemistry and Photobiology A: Chemistry 
236 (2012) 61-69. 

 
[26] A. A. Assadi, J. Palau, A. Bouzaza, J. Penya-Roja, V. Martinez-Soria, D. 

Wolbert, Abatement of 3-methylbutanal and trimethylamine with combined plasma 
and photocatalysis in a continuous planar reactor, Journal of Photochemistry and 
Photobiology A: Chemistry 282 (2014) 1-8. 

 
[27] M. Pachoalino, J. Kiwi and W. Jardim,Gas phase photocatalytic decontamination 

using polymer supported TiO2. Appl. Cat. B,  68 (2006)  68-73. 
 
[28] M. I. Mejía, J. M. Marín, G. Restrepo, L. A. Rio, C. Pulgarín, J. Kiwi, Preparation, 

testing and performance of TiO2/Polyester for the degradation of gaseous 
methanol, Appl. Catal. B. 2010, 94 166-172. 

[29] D. Farhanian, F. Haghighat, Photocatalytic oxidation air cleaner: Identification 
and quantification of by-products, Building and Environment, 72 (2014) 34-43. 


