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The ins and outs of microbial-electrode electron transfer reactions

Microbial-electrode electron transfer is a mechanism by which microbes make their living coupling to electronic circuits, even across long distances. From a chemistry perspective, it represents a model platform that integrates biological metabolism with artificial electronics, and will facilitate the fundamental understanding of charge transport properties within these distinct chemical systems and particularly at their interfaces. From a broad standpoint, this understanding will also open up new possibilities in a wide range of high impact applications in bioelectrochemical system based technologies, which have shown promise in electricity, biochemical, chemical feedstock production but still require many orders of magnitude improvement to lead to viable technologies. Here we review opportunities to understand microbial-electrode electron transfer to improve electrocatalysis (bioelectricity) and electrosynthesis (biochemical and chemical production). We discuss challenges and the ample interdisciplinary research opportunities and suggest paths to take to improve production of fuels and chemicals at high yield and efficiency and the new applications that may result from increased understanding of the microbial-electrode electron transfer mechanism. Bio-electrochemical system (BES) can be expressed as the bidirectional electron transports between biotic and abiotic components, where the redoxactive microorganisms or bio-macromolecules act as the catalysts that facilitate the exchange process 1 . A glossary of important terms is provided in box 1. A model system of BES that has been widely studies is the Microbial

Fuel Cell (MFCs). Similar to the conventional fuel cell, the microorganisms can transport electrons to the anodes of MFC after oxidizing the electron donors, thus generating the electrical flow toward the cathode 2 . Meanwhile, certain microorganisms are also known for their capability to reduce the electron acceptors such as nitrate, perchlorate or metals in the cathodes 3 . Other BESs such as Microbial electrolysis cells (MEC), Microbial electrosynthesis (MES), Microbial solar cells (MSCs), and Plant microbial fuel cells (PMFCs) also share similar electron transport strategy. These direct electron transport processes created a novel and promising possibility to bridge the fundamental researches in microbiology, electrochemistry, environmental engineering, material science and the applications in waste remediation & resource recovery, sustainable energy production, and bio-inspired material development. The basic working principles and the applications of these different BESs have been comprehensively reviewed by many different groups [4][5][6][7] .

Bioelectrochemcial systems

Enzymatic electron transport process is one of the earliest BES models which received extensive attention due to the interests in development of amperometric biosensors and enzymatic fuel cell in late 20 th century [8][9][10][11][12] . In this system, the electrons generated from specific enzymatic reactions can be either directly (tunneling) or indirectly (via foreign mediators) transported to the solid-state electrode and therefore be detected. The direct electron transport of enzyme can only occur within electron tunneling distance of a few nanometers if no foreign mediator is involved 9 . In most cases, the redox centers of enzymes are deeply embedded in the insulated protein matrix which limited the electron transport toward solid-state electrode. Therefore the electron transport efficiency is largely restricted by this less-than-effective electrical coupling. Specific strategies to immobilize enzymes to electrodes are inevitable to facilitate direct electron transfer for practical applications 13 . Furthermore, the three-dimensional structure is essential to the catalytic activity of the enzyme. However, these structures are vulnerable which are very sensitive to the variation of temperature, pH, and chemical components of the surrounding environment 14 . Although the many immobilization techniques (enzyme-electrode; enzyme-conductive support-electrode;

enzyme-cofactor-mediator complexes-electrodes) do extend the active time of enzymatic electron transport, the maximum lifetime of the effective enzymatic electron transport system is hours up to day 10,15 . All of these limitations prohibit the application of this BES model in its applications in both energy generation and biosensor.

Unlike isolated enzymatic molecules, certain microorganisms, usually named as electrochemically active bacteria (EAB), are able to self-amend to overcome the incompatibilities between the biological/ inorganic interfaces and achieve effective, long-term, and wide-range electron transport. Extracellular Electron Transfer (EET) is the key process that links the solid state electron donors/acceptors and the microorganisms. In the circumstance that soluble electron acceptors, oxygen in most of case, are depleted, EAB are able to transport the metabolism-generated electrons to external acceptors outside the cell. The concept of EET is brought up in early 19's when Potter 16 and

Cohen 17 demonstrated the electricity harvested from the metabolism of microorganisms. In 1960's, the growing demands in sustainable energy augment the interest in understanding the fundamentals of EET 6 . Following this development, in early 2000's, several different mechanisms have been proposed which suggest that microorganisms can naturally transport electrons to the electron acceptor through both direct and indirect pathways. The direct EET relies on outer membrane cytochromes to couple the internal metabolism with external charge transport, and generally requires direct contact between cell membrane and the solid-state electron acceptors. Additionally, certain EAB are also known for their capability to generate conductive Pili or pilus-like structures under acceptor limited conditions, which serve as an alternative electron pathway to extend the direct EET distance and maximize the transport efficiency. These pili or pilus-like structures are usually referred as microbial nanowires 18,19 . In the case of indirect EET, some EAB are able to secreted redox materials such as phenazines, flavins, and quinones 1,20,21 to carry the inner electron to diffuse toward the electron acceptor outside. These redox materials first diffuse into the cell to be reduced which carry the electron to the solid state electron acceptor and then be oxidize thus complete the electron transport and transfer back to original form for next duty. Ideally, these redox materials can be utilized repeatedly thus been named as "electron shuttles. 1 " While significant progress has been made in understanding and exploiting EET, the detailed mechanisms, e.g. protein-protein interaction 22 , electron transport inside microbial nanowires 23 and bacterium-solid state material interaction 24 are still vague and actively debated. The purpose of this review is to provide an overview of the current state-of-art understanding in bioelectrochemical systems and EET and present the obstacles that need be overcome to accomplish a comprehensive, unambiguous understanding of BES. Some earlier works in applying micro-/nano-technologies in single cell measurements are also introduced in this article which may bring some additional insights to current EET research. These efforts are expected to open whole new possibilities for researchers to design and optimize the BES, thus maximizing the EET efficiency for future applications.

Extracellular Electron Transfer at Bioanodes

For EET microorganisms, outward EET (electron transfer from microorganisms to extracellular electron acceptor) is a natural process for microorganisms to complete the respiration when there is limited access of soluble electron acceptor in the environment. In the artificial bioelectrochemical systems, most for energy harvest (e.g. MFC), microorganisms performing this outward EET act as the catalyst in the fuel cell anode; therefore, they are named as -

Bioanodes.

The bioanode studies primarily focus on the dissimilatory metal reducing bacteria (DMRB). The DMRB can colonize on the inert electrode surface (carbon-based or gold) with positive potential bias (to serve as the electron acceptor). After colonization, DMRB start the metabolism and EET process for proliferation and form electrical connections between both bacteria-bacteria and bacteria-electrode. These connections can eventually construct an electrically conductive biofilm comprised of cells and extracellular substances that can exceed 100 μm. Recently, this extraordinarily long range of biological electron transport (i.e electron transports (respirations) in other biological systems are limited to molecule-length scales 25 ) attracts enormous attentions.

Many studies have suggested that the redox protein such as c-type cytochrome (c-cyt) and iron sulfur protein presented in the EET system of DMRB are the key elements to link the electron transport across multiple length scales 1,23,26 [START_REF] Gregoire | Enrichment of a high-current density denitrifying microbial biocathode[END_REF] . As mentioned in previous sections, researchers concluded three possible models for EET (Fig. 1): i) EET through outer membrane redox protein c type cytochromes (c-cyts) and other redox proteins, such as multi-copper proteins (OmpB and OmpC); ii) EET through pilus-like structures (nanowires) and iii) EET by utilizing extracellular or self-excreted small molecule as the electron shuttles 20,21,28,29 .

Both Geobacter and Shewanella use c type cytochromes (c-cyts) to transport electron to electron acceptor. C-cyts are the multi-heme containing proteins.

Geobacter sulfurreducens contains 111 genes encoding c-cyts. 73 of these ccyts contain two or more heme groups, with one containing as many as 27 heme groups. Similarly, Shewanella oneidensis has 39 genes encoding c-cyts and 14 of them contain 4 or more hemes. The detailed structures of these ccyts have been discussed in previous reviews 30 OMCs. These outer membrane proteins then transport electron to electron acceptors or electron shuttles to finish the EET process. MtrC is considered as one of the most important outer membrane proteins in the EET process of Shewanella, deletion of MtrC can lead to >90% of current decrease [START_REF] Coursolle | The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis[END_REF] . Detailed functions of each c-cyts involved in the outer membrane EET and the characterization methods are recently reviewed by different groups 22,26,[START_REF] Breuer | Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities[END_REF]37 .

The effective range of direct EET through outer membrane c-cyts is generally limited to nanometer scale 38 , which is similar to enzymatic systems. For long range EET, Shewanella can self-excrete some small molecules such as flavin and other quinone-type molecules to mediate wide range transport, which cannot be achieve by Geobacter 20,21,38,39 . However, the function of these small molecules in Shewanella EET remains unclear and several hypotheses have been proposed. including i) flavin serves as the EET cofactor which facilitate EET process of c-cyts 40 ; and ii) flavin is the electron shuttle which directly perform EET on outer membrane 20 .

Interestingly, both Geobacter and Shewanella are able to perform direct long range EET via self-assemble the c-cyts and form conductive pilus-like structures which can grow up to tens of micrometers. In Geobacter, the microbial nanowires (type IV pili) are found directly connecting the inner membrane to the outer electron acceptor. Other protein like OMCs may transport electron to electron acceptor 22 through type IV pili. The presence of type IV pili is found to be critical for biofilm to maximize the EET efficiency 19 .

However, the underlying mechanisms of charge transport are still controversial and actively debated 41,42 . The "metallic like model" was proposed by Malvankar et al. 43 , which suggest that the electron are transported through the π-π interactions of aromatic structures in type IV pili similar to the synthetic conducting polymers [43][44][45] . Their results demonstrated that the conductivity of type IV pili is both temperature and gate voltage dependent which is similar to the nanostructured organic semiconductors 44 . However, other results of electrochemical characterizations of Geobacter biofilm suggested that electron is transported through the electron hopping mechanism. Researchers developed a "superexchange model" based on this mechanism -similar to the redox polymers, electron is transported through a series of redox reactions of the discrete redox cofactors contained inside the type IV pili such as heme of c-cys 46,47 . Cyclic voltammetry (CV) of the Geobacter biofilm supports this mechanism by: i) at slow scan rate, the sigmoidal shape of CV curve demonstrates that the electrochemical activities on the biofilm follow the electrode catalytic (EC) reaction scheme which shows that the EET is coupled with redox cofactors 48,49 ; (ii) in the absence of electron donor condition, the distinguishable symmetric CV peaks in both forward and backward scanning indicate the EET is a charging-discharging (pseudocapacitance) reactions of redox cofactors in the biofilm [START_REF] Richter | Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[END_REF][49][50][51] ; iii)

Multiple peaks on the CV curve indicate there may be multiple cofactors involved in the electron transport [START_REF] Richter | Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[END_REF]51 . Other sophisticated bio-electrochemical characterizations 52,53 and charge storage measurements also support this hypothesis 54 .

In Shewanella, the microbial nanowire is first observed and electrically characterized using scan tunneling microscopy in 2006 by Gorby et al. 18 Generally, these emerging cell-measurement techniques are expected to open up new possibilities for precisely probing and regulating electron transport at bioanode interface 74 and elucidate the fundamental limits and factors determining bioelectrical power extraction, which will in turn help the design of more efficient BES.

Microbial biocathode

Lithotropic microbes have long been known to exploit iron oxidation for growth (1). Certain sulphate-reducing microbes, for example, use electrons, or electron carrier intermediates, harvested from solid iron as reducing equivalents for energy generation (2). This process, commonly referred to as 'biocorrosion', presents a considerable challenge to the maintenance of ironbased installations, such as gas pipelines, located in suboxic sulfur rich environments (2). Although a comprehensive understanding of biocorrosion remains elusive, three metal oxidising mechanisms are proposed; i) microbial consumption of 'cathodically generated' H2 at the metal surface ii) chemical corrosion by biogenic H2S, and iii) direct uptake of electrons from the metal (2). The third, and arguably, most interesting mechanism from an ET point of view, was proposed for sulphate-reducing Delsulfobacterium-and Methanobacterium-like microbes which were shown to accept electrons from solid iron at a rate unachievable by H2 scavenging alone (3). Although a more direct route for electron uptake is thus implied, the complete ET mechanism remains unsolved as the exclusion of H2 involvement in this process has yet to be verified (2).

At about the same time that biocorrosive 'DET' mechanism was first proposed, Geobacter sp. dominated biofilms were shown to accept electrons directly from a solid graphite electrode for respiration (4). Subsequent

Geobacter sp. (4) and Shewanella sp. (5) pure culture studies showed that both organisms, whilst forming thinner films than their bioanodic counterparts (6), could directly harvest electrons from electrodes. Genomic analysis revealed that a periplasmic monoheme cytochrome, PccH, is essential for electron uptake by G. sulfurreducens (6), though gaps remain in the identification of additional proteins required for ET across both membranes.

Significantly, PccP is not required for EET to electrodes showing that two distinct ET pathways are utilised by G. sulfurreducens for inward and outward electron flow (6). In contrast, the OmcA-MtrABC respiratory pathway of Shewanella sp. is capable of facilitating electron flow in both directions (5).

The ability of microbial biocathodes to reduce low value, or polluting, reactants to higher value, or less-harmful, products is of great economic and environmental benefit (7). Reduction of nitrates (4), chlorinated solvents (8) and toxic metal ions (9, 10), by Geobacter sp. (4, 8, 10) and Shewanella sp.

(9) biocathodes has highlighted their potential application in the treatment of contaminated environments (11). The inability of heterotrophic Geobacter sp.

and Shewanella sp. to fix carbon, however, limits their application in microbial electrosynthesis (12). Autotrophic microbes, on the other hand, which utilise energy from inorganic chemical reactions (chemotrophs) or light (phototrophs)

for carbon fixation, and can adapt to use an electrode as an electron source for growth (electrotrophs) are much more amenable. Cathodic biofilms of acetogenic bacterium Sponosa ovata, for example, were shown to convert CO2 and electrons, supplied solely from an graphite electrode, to acetate with a > 85 % electron conversion efficiency (13). Other identified acetogenic electrotrophes include various Sponosa (14) and Clostridium (14, 15) species and Mororella thermoacetica (14). However, little is known about the electroaceteogenic ET pathways utilised by such microbes. Conversion of electrons and CO2 to methane by Methanobacterium sp. dominated biocathodes has also been demonstrated (16). Although DET from the electrode to the biofilm was initially speculated as the underlying ET mechanism, recent evidence shows that Methanobacterium sp., secretes proteins which can catalyse H2 formation at the electrode surface which may be rapidly consumed by the organism (17). Biocathodes composed of Rhodopseudomonas palustris, a natural Fe(II)-oxidising prototroph, have been shown to fix CO2 under both light and dark conditions (18). The operon PioABC, encoding an OM porin, a periplasmic cytochrome and Fe-S cluster protein, was essential for R. palustris electrode growth (18). It is likely that numerous other, so far unharnessed, Fe(II)-oxidising autotrophs may be utilised at biocathodes for carbon fixation.

Although much progress has been made in microbial electrosynthesis, a deeper understanding of EET pathways is necessary to improve rates and yields. Many microorganisms which induce iron corrosion have also been shown to harvest electrons from electrodes, either directly (19) or indirectly (17). Whist detrimental to solid iron, such corroding biofilms, if harnessed at an electrode, may sustain rapid formation of added value products indefinitely.

In addition, mechanistic insights gained from biocorrosion studies may benefit the advancement of microbial electrosynthesis applications, particularly with regard to ET pathways necessary for rapid electron uptake (17).

Advancements in bio-engineering of autotrophs to produce bulk chemicals and biofuels form syngas (20), may be extended to electrotrophs, with an initial report showing the potential of an engineered Clostridium ljungdahlii strain for butyrate production (21). Whilst in their early stages of development, microbial biocathodes, due to their self-generating properties, may also overcome the stability limitation of more traditional enzyme electrodes as electrocatalysts for reduction reactions (22). However, for successful implementation of microbial biocathodes as alternatives to existing technologies, improvements in the substrate diversity, turnover rate and product yield is essential.

Surface chemistry in Microbial BES design

Understanding the fundamental chemistry of cell attachment, interconnection, and charge transport at electrode interface is essential to achieve rational optimization of BES technologies and represents a rich multidisciplinary research frontier. The physico-chemical property of a surface, such as composition, roughness, charge density, or hydrophobic/hydrophilic and lipophobic/lipophilic nature, is known to influence biofilm formation [START_REF] Gallaway | Kinetics of redox polymermediated enzyme electrodes[END_REF] .

Furthermore, the molecular structure of the surface functional groups could be closely associated with electron transfer rate at biofilm-electrode interface and further interfere with the natural EET process. Although un-modified carbon-based electrodes are the most widely used substrates for formation of electrocatalytically active biofilms, researchers have recently begun to probe the effect of surface treatments on biofilm performance in an effort to enhance the biofilm-electrode interaction. As noted previously Shewanella, will not form an electrocatalytic biofilm on gold, highlighting the importance of the nature of the electrode surface with respect to microbial BES applications.

An important and easily addressable factor for promoting biofilm development is increased surface roughness, as near-atomically flat surfaces generally take more time to be colonized than those with roughness at least on the order of magnitude of the average bacterium size (ca. 1 micrometer) [START_REF] Marsili | Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed potential[END_REF] .

Highly porous rough electrode materials thus show significantly improved biomass concentrations (mass of cells and extracellular substances per unit projected/geometric surface area) and current generation compared to smooth and planar electrodes [START_REF] Dumas | Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes[END_REF][START_REF] Erable | Marine aerobic biofilm as biocathode catalyst[END_REF] The first test of this effect for BES involved grafting of aminophenyl functional groups onto graphite and subsequent use of these modified graphite electrodes as anodes in microbial fuel cells, with variations to this grafting approach shown in Figure 5. This electrode modification results in reduced colonization time and improved electrocatalytic performance observed over un-modified electrodes 37,[START_REF] Picot | Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[END_REF] . The reason for the beneficial effect is not unequivocally established, but can be inferred in part to the tuning of the charge and hydrophilicity of the carbon electrode surface. Electrodes grafted with negatively charged carboxylate surface groups result in decreased colonization and improved electrocatalytic performance of bioanodes, presumably due to electrostatic repulsion between the charged electrode surface and the similarly charged Geobacter bacterial surface. In contrast, triphenylphosphonium functional groups on electrode surfaces proved beneficial with respect to colonization and electrocatalytic performance, producing denser biofilms that are enriched in Geobacter species. This result is intriguing since effect of surface modification appears not to be confined to the biofilm/electrode interface but propagates into the biofilm itself. The triphenylphosphonium group is widely used as a drug carrier functionality as its positive charge and lipophilicity is suitable for solubilization within and thus crossing cell or mitochondrial membranes [START_REF] Smith | Delivery of bioactive molecules to mitochondria invivo[END_REF] . It is thus likely that the effect of surface chemistry on biofilm response is a complex combination of electrostatic interaction and lipophilicity. Additional studies demonstrate phenylboronic acid group on electrodes, presumably through specific binding with carbohydrates on the outer membrane of cells [START_REF] Lapinsonnière | Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances[END_REF] , significantly diminishes the time required for biofilm colonization in a mixed culture inoculum. The resulting bioanodes perform better than unmodified electrodes, consistent with the carbohydrate-boronate affinity hypothesis, although a more subtle combination of interactions with outer membrane of bacteria and exopolymeric biofilm scaffold cannot as yet be ruled out. A recent study confirms enhanced current produced by Shewanella loihica biofilms formed on modified indium tin oxide electrodes with increased degree of wettability. This is attributed to a shift in the redox potentials of outer membrane cytochrome heme(s) brought about by the more polar environment thus resulting in increased current at the same applied potential for the biofilms [START_REF] Ding | wettability-regulated extracellular Electron transfer from the Living organism of Shewanella loihica PV-4[END_REF] .

Beyond cell attachment, a more promising and less well explored area are surface modifications specifically intended to improve electron transfer rates between biofilms and the electrodes. There is a wealth of information on controlling protein interactions with surfaces [START_REF] Parameswaran | Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances[END_REF] and on optimizing electron transfer between isolated redox proteins, particularly c-Cyt, and various electrode materials [START_REF] Cracknell | Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis[END_REF] . It has been shown that, for c-Cyt, not only is the distance between the heme and the electrode important but also the orientation of the heme group relative to the electrode 19,[START_REF] Wang | Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability[END_REF] . Heme groups orientated parallel to the surface display greater ET rates compared to perpendicular heme groups, suggesting that ET pathway through the heme axial ligand is preferential compared to ET through the porphyrin ring [START_REF] Song | Characterization of cytochrome c/alkanethiolate structures prepared by selfassembly on gold[END_REF] .

Surface wettability was identified as a key parameter for heme orientation with parallel orientation favored on a hydrophilic surface whilst perpendicular orientation favored on a hydrophobic surface. This observation may partially account for the enhancement of electrocatalytic biofilm performance observed on hydrophilic surfaces and highlights the potential mechanistic insights that may be gained from such studies. In addition to modifying electrode surfaces, use of redox and/or conducting polymers [START_REF] Hasan | Electrochemical communication between microbial cells and electrodes via osmium redox systems[END_REF][START_REF] Ghach | Solgel based 'artificial'biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator[END_REF] and/or nanomaterials could also be explored to electrically wire microorganisms to electrodes, including connecting metabolic processes inside cells to electrodes outside cells in a manner analogous to that used to wire redox enzymes to electrode surfaces 92- 93 . This is an under-exploited approach to engineering microbial BES which may expand the scope of useable microorganisms to those with interesting/useful catalytic properties but that lack ability to electrically wire themselves to electrodes [START_REF] Hasan | Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes[END_REF][START_REF] Hamidi | Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes[END_REF] .

Although the EET mechanisms may be different, surface modifications that promote biofilm formation on anodes tend to benefit biofilm formation on cathodes as well. For instance, introduction of positive charged functional groups at carbon cloth electrodes significantly improves formation and performance of Sporomusa ovate films used for electrosynthetic production of acetate in a microbial electrolysis cell [START_REF] Nie | Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells[END_REF][START_REF] Zhang | Improved cathode materials for microbial electrosynthesis[END_REF] . Carbon nanotube (CNT) modified electrodes prove superior to planar electrodes for mixed consortia biofilm formation and acetate production rates 75 . This improvement was attributed to more favorable microbial adhesion provided by the CNT network and not simply due to increased surface area.

An important issue in developing surface engineering approaches to optimization of microbial BES will be clarification of the effect of surface modification on the physico-chemical properties of the electrode and the impact on biofilm development and its subsequent electrical/catalytic properties. To this end, studies on ET to redox proteins on such surfaces will continue to provide mechanistic insights into the effect of surface modifications. Approaches to effectively 'wire' microbial layers to the electrode surface through the use of chemical modifications and addition of redox mediators to surfaces should be investigated. This represents a significant challenge as defined surface modifications capable of specifically binding such

species have yet to be identified.

Chemistry considerations of other BES components

Microbial bioanodes need to be partnered with a cathode to operate as a microbial fuel cell or microbial electrolysis cell. 

  . The conductivity of the nanowire and the main contributing component -c-cytsis also confirmed in the same work. The mutants deficient in c-cyts can only produce poorly conductive nanowires. To date, evidences have suggested that in the Shewanella nanowire, electron transfer via electron hopping through a cytochrome network23,[55][56][57] . Recent study ofPirbadian et al. further demonstrated that the Shewanella nanowire is the outer membrane and periplasmic extensions but not the pilin-based structures which also support the electron-hopping (cyts redox reactions) electron transport mechanism56 .The application of bioanodes to date has been largely limited by its very low power density, which can be attributed to (a) the limitation of the natural metabolic rate of DMRB; (b) the restriction of cytochrome based cross membrane EET and (c) the ineffective EET within the evolutionally developed electron transport pathways, especially at large length-scales. Several strategies have been proposed to overcome this key limitation: i) exploiting synthetic biology: the expression of specific genes which regulate the production of electron shuttles or electron transfer protein can be in the DMRB thus promoting the EET efficiency. For example, the synthetic flavin biosynthesis pathway from Bacillus subtilis was expressed in Shewanella MR-1 which lead to 25.7 times more flavin secretion than wild-type Shewanella and consequently 13.2 times increasing in current production58 . Similarly, the expression of five riboflavin synthesis genes in E. coli BL-21 was reported to induce a 9.5 times increase in EET outcome59 and the overexpression of the NAD synthetase gene in P. aeruginosa enhanced the current production for more than three times60 . ii) Facilitating cross membrane EET by conjugated oligoelectrolytes (COE): COEs are the water-soluble oligomers with πdelocalized electronic structure and pendant groups. Certain COEs are able to spontaneously "insert" and align within the bacteria membranes which facilitate the electrons to transfer through this lipid bilayer. 4, 4'-bis (4'-(N, N-bis (6″-(N, N, N-trimethylammonium) hexyl) amino)-styryl) stilbene tetraiodide (DSSN) is one of the most common used conjugated oligoelectrolytes in bacterial EET studies which shows negligible toxicity effects to bacteria65 . Previous research suggested that both cytochrome-based direct electron transfer and flavin-based mediated electron transfer of Shewanella MR-1 can be promote by the addition of DSSN65 . Moreover, a 25-fold improvement in E-Coli based MFC power density can also be obtained by adding the DSSN66 . However, the functions of COE in the facilitation of bacterial EET are under debate67 . iii) Facilitating EET through hybrid electron pathways. Various nanoscale conducting/semiconducting materials, including carbon nanotubes61 , graphene62 , Fe2O363 and FeS64 nanoparticles, have been formulated and seamlessly integrated with the natural biofilms, which have shown significantly improved EET at both cell/electrode and cell-cell interfaces.In summary, there are many milestones of bioanode researches are accomplished in last decades as summarized in box 2. The genetic engineering approaches provide extensive scientific evidences of the functions of individual proteins in EET processes. The applications of novel microscopies such as scanning electron microscope (SEM), atomic force microscopy (AFM) and scanning tunneling microscope (STM) revealed the unique structural, morphological and electrical properties of key EET components such as whole biofilm, outer membrane cytochromes68 , and microbial nanowires. The electrochemical studies concluded the possible mechanisms of how the electrons are transported in the bacterial EET system. The recent advancement of micro-/nano-technologies has provided additional insights about EET under controlled microenvironment and across multiple biological length scales (Figure2). Li et al. demonstrated the measurement of Geobacter cultured in microfluidic device (L=20 mm, W=0.5 mm, H=0.1 mm). This small size Geobacter biofilm demonstrated rapid respond (21 minutes) to ambient environment changes as compare with bulk biofilm (6 hours). This allows relatively high-throughput experiments in study the effect of various stimuli (e.g. O2 and anthraquinone disulfide (AQDS)) in current generation of Geobacter biofilm. Their results further confirm the finding at biofilm levels that i) the minor toxicity of short term oxygen exposure to Geobacter; and ii) AQDS can be used as the electron shuttle for Geobacter EET69 . Following the similar strategy, many micro-scale MFC and biosensors are developed70 . Gross et al. achieve the measurement of EET current of single Shewanella in vivo by their sophisticate device which combined infrared optical tweezers, indium tin oxide (ITO) microelectrodes71 . Their measurements suggest that the EET current of single Shewanella is in the range between 15 -100 fA as well as confirming the important role of c-cyts in Shewanella EET. This approach not only provides the information of the current generation of single Shewanella EET which can be used to determine the maximum current output of Shewanella biofilm; but also, it brings the in situ studies of the electron transport mechanism down to single bacterium level which is expected to solve some current debates such as the functions of Flavin and nanowire. Jiang et al. exploited a nanotechnology-enabled platform and a bottom-up approach to tackle EET at single-through multi-bacterium levels72,73 . Nanostructured electrodes with controlled cellular interfaces have been designed to unambiguously demonstrate EET mechanism in both Geobacter and Shewanella. The real-time longitudinal monitoring of localized current generation and cell-electrode interaction further provided alternative insight about EET that is difficult to achieve in population-level experiments, such as the quantized current "steps" as individual cells initially attach to electrode, as well as the dramatic current increase as cells get closely packed and form into electrically-connected networks.

Fig. 1 .

 1 Fig. 1. Schemes of EET in (a) Geobacter and (b) Shewanella; in (a) Geobacter, type iv Pili can directly transport electron from inner membrane to electron acceptor. OmcZ mainly contributes to the outer membrane EET while other OMCs support the EETs of both type iv Pili and OmcZ. In (b) Shewanella the electron generated on inner membrane is transport by CymA to outer membrane then be transported to electron acceptor by MTRs and OMCs to complete EET. The nanowires are considered as the extension of outer membrane and perform EET by electron hopping. Self-excrete Falvin also involved in the EET process as the electron shuttle or cofactors.

Fig. 2 73 Figure 3 .

 2733 Fig. 2 Micro-scale EET studies: (a) optical tweezers entrapped single Shewanella for in situ EET current measurement: (a1) experimental setup of optical tweezers, perfusion chamber, and electrochemical measurement, (a2) image of entrapped single Shewanella and the EET current measurements (15 -100 fA); (b) Probing EET mechanisms of both Shewanella and Geobacter in microscale; (b1) is the images of bacteria on electrodes with nanoholes and window, respectively (Scale bar, 1 μm); (b2) and (b3) are the simultaneously

Figure 4 .

 4 Figure 4. Proposed electron transfer pathways utilised by microbes for extracellular uptake of electrons; (a) scavenging of cathodically generated H2 at electrode surface, (b) uptake of H2 generated by secreted redox proteins e.g. hydrogenases and (c) direct uptake of electrons by outer membrane bound redox proteins e.g. cytochromes.

Figure 5 .

 5 Figure 5. Surface engineering of the microbe-electrode interface alters microbial-electrode interactions for acetate-oxidizing bioanodes. A functional group, R (where R is boronic acid, triphenylphosphine, carboxylate, amine, dimethylamine, hydroxyl or methyl groups from top to bottom on the engineered electrode), is grafted over the electrode surface via in-situ diazotization of an arylamine and subsequent electrochemical reduction, providing an engineered electrode with physico-chemical characteristics that can alter microbial-electrode interactions, as described in the text.
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