Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. - Université de Rennes Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2017

Coherent structural trapping through wave packet dispersion during photoinduced spin state switching.

Résumé

The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3](2+) compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Fichier principal
Vignette du fichier
2017-073.pdf (859.34 Ko) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01538614 , version 1 (30-07-2020)

Identifiants

Citer

Henrik T. Lemke, Kasper S. Kjær, Robert Hartsock, Tim B. van Driel, Matthieu Chollet, et al.. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching.. Nature Communications, 2017, 8 (1), pp.15342. ⟨10.1038/ncomms15342⟩. ⟨hal-01538614⟩
340 Consultations
51 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More