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Antenna Selection for Array Synthesis Problems
Benjamin Fuchs, Senior Member, IEEE

Abstract— The problem of choosing a set of N antennas
from M possible radiators to optimize the performances of
antenna arrays is addressed. Solving this combinatorial problem
by evaluating all possible choices is untractable unless both N
and M are small. Convex relaxations are proposed to solve
approximately this antenna selection problem and quickly get
bounds on the performance that can be achieved over all possible
antenna combinations. Two approaches are also presented to
rapidly construct, from these approximated results, good sub-
optimal solutions, i.e. good antenna selections. For (N,K) =
(30,10), i.e. 1030 possible antenna arrays, the methods can
be carried out in a few seconds on a laptop. The proposed
approaches are applied to solve various representative numerical
instances, they provide quickly valuable information for antenna
array designers.

Index Terms— Antenna selection, array antennas, semidefinite
programming.

I. INTRODUCTION

THE selection of the best combination of antennas to
optimize the performances of an array is a problem that

arises in many practical applications. The antenna selection
problem has been addressed in MIMO systems [1], sparse
arrays design [2] and multicast beamforming problems [3].
This combinatorial problem is also of uppermost importance
for array synthesis problems where the choice among a given
set of available radiators to form an array is a frequently
encountered issue. The selection of quantized array excitations,
antenna types, and antenna’s locations in order to minimize
the sidelobes of a focused beampattern are examples of
problems considered in this paper. To formalize the selection
problem, let us consider an array composed of N antennas.
The objective is to select for each of these N antennas, one
element among K possibilities, as represented in Fig. 1, in
order to optimize the array radiation performances. Solving
this antenna selection problem by evaluating the KN possible
array combinations is untractable unless both K and N are
very small. As an example, the selection of N = 30 antennas
with K = 10 possibilities leads to 1030 possible choices. A
direct enumeration is clearly not possible. Such combinatorial
problems can be optimally solved using global optimization
techniques such as the branch and bound algorithm (denoted
BB) [4], [5]. However, in the worst case, these algorithms
require an effort that grows exponentially with problem size
but they can be used as a reference for problems with modest
values of (N,K). Evolutionary techniques, such as binary
genetic algorithm [6] or particle swarm optimization [7], can
also be applied to solve mixed integer problems and conse-
quently combinatorial problems but without any guarantee of

Manuscript received xx, 2016; revised xx, xx.
The author is with the IETR / University of Rennes I, France. (e-mail:

benjamin.fuchs@univ-rennes1.fr)

convergence towards the optimal solution.
In this paper, we propose two approaches for approximately
solving antenna selection problems. The originally combina-
torial optimization problem is relaxed to be rewritten as a
semidefinite program [8]. The so-approximated problem is
then convex and therefore efficiently solvable. For (N,K) =
(30,10), the methods can be carried out in a few seconds on a
2.8GHz personal computer. They provide quickly both a sub-
optimal selection of antennas and a bound on the performances
that can be achieved by any selection of antennas. Although
there is no guarantee that the gap between the performance
of the selected antenna array and the optimal one is always
small, numerical experiments suggest that relevant bounds are
obtained in various representative cases. The idea of using
convex relaxation as the basis for a heuristic for solving a
combinatorial problem is not new [8]–[10]. Our goal is to
show that such approaches are also of interest for antenna
selection problems.
The paper is organized as follows. The antenna selection
problem is described and formalized in Section II. Two convex
relaxation approaches are proposed and explained in Section
III to approximately solve the combinatorial problem and get
bounds on the best achievable performance. A simple heuristic
and an algorithm to derive sub-optimal solutions are detailed
in Section IV. Numerical examples are provided in Section
V to illustrate the interest of the proposed approaches and
conclusions are drawn in Section VI.
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Fig. 1. Antenna selection problem: choice of one amongK potential radiators
to form an array composed of N antennas.

II. PROBLEM FORMULATION

The goal of the antenna selection problem is to choose for
each of the N antennas of the array, one element among K
potential radiators to optimize the performances of the array.
To formalize the problem, we introduce the vector x of
dimension M = K×N that is a concatenation of N subvectors
xn of dimension K:

x = [x1T , ... , xnT , ... , xNT ]T (1)

with xnT = [xn,1 ... xn,k ... xn,K ]
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where the boolean xn,k ∈ {0, 1} encodes whether the antenna
(n, k) is to be selected. The subvector xn corresponds to the
choice for the antenna n. Only one antenna is chosen which
means that 1T xn = 1 for n = 1, ..., N , where 1 is a vector of
length K with all entries one.
Let us consider the optimization of the radiation performances
P of the array under some constraints C in order to formulate
the antenna selection problem. Both the objective function
P(x) and constraints f(x) ∈ C are assumed convex. A typical
array synthesis requirement is to maximize the power in a
given direction (objective maxx P(x)) while the sidelobes are
constrained below a predefined value (constraints f(x) ∈ C).
The problem of selecting the best subset of N antennas can
then be expressed as the following optimization problem:

max
x
P(x) subject to

 f(x) ∈ C
1T xn = 1, ∀n
xn,k = {0, 1}, ∀(n, k)

. (2)

This optimization problem is hard to solve because of the
last N × K constraints that restrict the components of xn
to be boolean. We note x∗ the optimal solution of (2) and
P∗ = P(x∗) the best achievable performance.

III. APPROXIMATE SOLUTIONS VIA CONVEX
RELAXATIONS

Two convex relaxations of the boolean optimization problem
(2) are presented. We denote x̃ the optimal solutions of these
approximated problems and P̃ the associated objective value.
The results obtained by the relaxations provide a cheaply
computable bound on the best performance P∗ that can be
achieved solving the original selection problem (2). For a
maximization problem such as (2), it means that P∗ ≤ P̃ .

A. Continuous Relaxation (CTS)

A simple upper bound on P∗ can be obtained by relaxing
the boolean constraint xn,k ∈ {0, 1} of (2) into 0 ≤ xn,k ≤
1, ∀(n, k). The optimization problem becomes convex and
can then be optimally solved efficiently using, for instance,
interior point methods. The optimal solution x̃ can (and will)
have components that are real numbers and not boolean. It is
therefore not a feasible point of (2). Nevertheless, we have
P∗ ≤ P̃ but not much can be said about the tightness, i.e. the
difference P∗ − P̃ , of this upper bound.

B. SemiDefinite Relaxation (SDR)

The boolean constraints xn,k = {0, 1} are equivalent to:

xn,k(xn,k − 1) = 0 or x2n,k = xn,k, ∀(n, k). (3)

With the notations introduced in (1), these constraints can be
rewritten:

diag(X) = x with X = xxT . (4)

We can relax (4) by replacing the non convex equality
X = xxT with a convex positive semidefiniteness constraint
X � xxT that can be formulated as a Schur complement

(see appendix A.5.5 of [11]). The antenna selection problem
becomes:

max
x,X

P(x) subject to



f(x) ∈ C
1T xn = 1, ∀n
0 ≤ xn,k ≤ 1, ∀(n, k)
diag(X) = x[

X x
xT 1

]
� 0

. (5)

The optimization problem (5) is a semidefinite program, its
optimal solution (xsdr,Xsdr) can be found efficiently. It can be
shown that xsdr is equal to x̃ the solution of the continuous and
semidefinite relaxation leads to the same performance value
P̃ . Nevertheless, the matrix Xsdr will be useful to find good
sub-optimal solutions as described in the next Section.

IV. SUB-OPTIMAL SOLUTIONS

The optimal solution x̃ of the continuous and semidefinite
relaxation have real number components. Therefore, they are
not solutions of (2) which means that they do not provide a
selection of antennas. Two approaches are proposed to derive
from x̃ and (xsdr,Xsdr) sub-optimal solutions, i.e. feasible
points of (2). The associated objective values are denoted Pcts

and P sdr respectively, they are lower bounds of P∗ and more
specifically Pcts ≤ P sdr ≤ P∗.

A. Simple heuristic

There are many ways to project an approximate solution x̃
having real number components into a boolean vector x that
is a feasible point of (2). The simplest heuristic is to enforce
the largest component of each subvector x̃n to be equal to
unity, whereas the others are all set to zero (ties can be broken
arbitrarily). It means that the components of the boolean vector
x are determined as follows:

xn,k =

{
1 if xn,k = max(x̃n)
0 otherwise ∀(n, k). (6)

Another strategy consists of keeping only the K ′ largest com-
ponents of x̃n (where 1 < K ′ < K) and solve the so-reduced
antenna selection problem. This step can be applied iteratively.
The objective reached with this sub-optimal solution is denoted
Pcts.

B. Randomized Algorithm

The semidefinite relaxation (5) has a probabilistic interpre-
tation that can be used to obtain good feasible points of (2).
If (xsdr,Xsdr) is the optimal solution of (5), then Xsdr−xsdrxsdrT

is a covariance matrix. Now if we choose z as a Gaussian
random variable of mean µ = xsdr and covariance matrix
Σ = Xsdr−xsdrxsdrT , then z will solve the original non convex
problem (2) “on average” over this distribution.
It means that z solves:

max
z

E {P(z)} subject to


E {f(z)} ∈ C
E
{
1T zn

}
= 1, ∀n

0 ≤ E {zn,k} ≤ 1, ∀(n, k)

E
{
z2n,k

}
= E {zn,k} ∀(n, k)

(7)
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where E {.} denotes the statistical expectation.
Sampling z from the distribution N ∼ (µ,Σ) does not
immediately provide a solution to (2) but a feasible point can
easily be derived using (6). Thus, a good feasible point can
be obtained by sampling z a sufficient number of times P
and keeping the best feasible one. With these observations,
we construct the randomized algorithm 1. The outputs of this
algorithm are the antenna selection xsdr and its associated
performance P sdr.
The total number of iterations P of the algorithm 1 is set to
5M as it has been empirically observed that a higher P does
not improve significantly the results.

Algorithm 1 Randomized algorithm
input: number of iterations P
1. Solve (5) to get (xsdr,Xsdr).
2. Form the covariance matrix Σ = Xsdr − xsdrxsdrT and its
Cholesky factorization LLT = Σ.
for p = 1→ P do

3. Random sampling z(p) = xsdr + Lr, where r ∼
N (0, 1) (equivalent to z ∼ N (xsdr,Σ))

4. Construct a boolean feasible point x(p) from z(p)
using (6)

5. Update the best solution: if P(xbest) > P(x(p)),
then xbest = x(p) and Pbest = P(x(p))

V. NUMERICAL APPLICATIONS

Various antenna selection problems are considered in order
to assess the proposed approaches. The goal is to find the
best antenna combination (with various quantized excitations,
element patterns or locations) in order to maximize the dif-
ference (denoted P) between main lobe and sidelobe level,
problem described in [12]. The optimal performance P∗ is
computed using a branch and bound algorithm implemented
by the optimization software Gurobi [13]. The bounds P̃ , Pcts

and P sdr are obtained solving the relaxed convex optimization
problems using the software CVX, a package for specifying
and solving convex programs [14]. All simulations are carried
out on a 2.8GHz-CPU personal computer and the computation
times to get the solution with the branch and bound algorithm,
the SDR relaxation and the continuous relaxation are denoted
tbb, tsdr and tcts, respectively.

A. Excitation Amplitude and Phase Quantification

We consider a linear array composed of 10 patches work-
ing at 10 GHz and simulated with the electromagnetic full
wave software Ansys HFSS. For each patch, the choice
between K =20, 30 and 40 complex excitations is proposed.
Specifically, the excitations can take the following values:
|wm| = m/N for m = 1, ..., 5 and ∠wn = n. 2π

K/5 for
n = 0, ...,K/5 − 1. The optimization goal is to find the best
combination of discrete excitations (among the 1020, 1030,
1040 possible choices) in order to minimize the sidelobes for
θ ∈ [−90˚, 25˚] ∪ [55˚, 90˚] of an off-centered focused
beampattern (Fig. 2(a)).

TABLE I
EXCITATION AMPLITUDE AND PHASE QUANTIFICATION - CASE OF 10

PATCHES ARRAY

(N,K) P̃ P∗ Psdr Pcts

(10,20) 19.2dB 10.9dB 10.3dB 6.9dB
- tbb/tcts=122 tsdr/tcts=5.1

(10,30) 19.2dB 14.8dB 14.6dB 13.1dB
- tbb/tcts=116 tsdr/tcts=6.3

(10,40) 19.2dB 15.9dB 14.4dB 12.5dB
- tbb/tcts=44.4 tsdr/tcts=7.7

(10,100) 19.2dB - 15.1dB 13.3dB
- - tsdr/tcts=13.6

TABLE II
ELEMENT TYPE SELECTION

(N,K) P̃ P∗ Psdr Pcts

(10,4) 20.8dB 16.0dB 15.2dB 13.9dB
- tbb/tcts=7.6 tsdr/tcts=1.9

(15,4) 33.6dB 20.7dB 19.1dB 13.9dB
- tbb/tcts=18.4 tsdr/tcts=2.2

(20,4) 24.2dB 20.6dB 18.0dB 15.4dB
- tbb/tcts=549.6 tsdr/tcts=1.5

The antenna selection results are reported in Table I. The SDR
approach provides a good selection of antenna excitations,
since the value P sdr is close to the one of reference P∗
provided by the branch and bound algorithm. Moreover, this
good antenna selection is very fast, tsdr/tcts is indeed several
orders of magnitude lower than tbb/tcts. As illustrative exam-
ple, the case (N,K) = (10, 100) is reported to show that the
computation time using the SDR approach remains reasonable
even for very large combinatorial problems. Note that the
branch and bound algorithm cannot be run with our computer
from a problem of size larger than (N,K) = (10, 50).

B. Type of Antennas
We now consider a linear array composed of N elements

uniformly spaced by 0.7λ. For each element, the choice
between four types of antennas is possible as represented in
Fig. 2(b). Classical analytical formulas, that can be found in
antenna textbooks such as [15], are used to emulate the E-
plane patterns radiated by: a λ/2 dipole, an half-wavelength
patch, a slot of thickness λ/4 on a ground plane and a
pyramidal horn of aperture 1λ. The goal is to find the best
combination of antennas in order to minimize the sidelobes
for θ ∈ [−90◦,−8◦] ∪ [8◦, 90◦] of a broadside focused
beampattern. The results and computation times are reported
in Table II. They confirm the previous observations, namely a
good selection of antennas is quickly computed using the SDR
approach. Here again, the branch and bound algorithm cannot
handle a larger combinatorial problem with (N,K) = (30, 4)
for instance.

C. Antennas’ Location
We consider a linear array composed of N isotropic ele-

ments of length L = Nλ/2. For each element, K possible
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Fig. 2. (a) Far field patterns radiated by the 10 patches array after the selection between K = 20 excitation amplitude and phase quantifications. The vertical
dotted lines represent the boundaries between main beam and sidelobe region. The achieved performances are: P∗=10.9dB and Psdr=10.3dB. (b) Choice
between K = 4 element patterns corresponding to the E-planes radiation patterns of: a λ/2 dipole, a patch of length λ/2, a slot of thickness λ/4 and a
pyramidal horn of aperture 1λ. (c) Results of the antenna location selection problem with (N,K) = (20, 5): location of the antennas.

TABLE III
ANTENNA LOCATION SELECTION

(N,K) P̃ P∗ Psdr Pcts

(10,5) 14.2dB 14.1dB 13.3dB 10.9dB
- tbb/tcts=0.75 tsdr/tcts=1.75

(20,5) 19.4dB 19.2dB 18.4dB 17.4dB
- tbb/tcts=3.11 tsdr/tcts=2.44

(30,5) 27.5dB 26.2dB 23.9dB 18.4dB
- tbb/tcts=415 tsdr/tcts=3.33

locations are proposed and more specifically KN locations
are uniformly spaced over L. Note that it is also possible to
propose antenna’s locations not uniformly spread but around
specific positions in order to ensure a minimum distance
between elements. The goal is to find the best set of antenna
locations in order to minimize the sidelobes for sin θ ∈
[−1,−0.15] ∪ [0.15, 1] of a broadside focused beampattern.
This synthesis problem amounts to design isophoric arrays,
i.e. arrays of elements with the same excitations and whose
locations are optimized from among a given discrete set in this
case. The results of this antenna location selection problem are
provided in Table III and the optimized antenna’s locations are
plotted in Fig. 2(c). Tight upper bounds are obtained via the
convex relaxations and good selections of antenna location are
also determined with the randomized algorithm in computation
times several orders of magnitude faster than the branch and
bound algorithm.

VI. CONCLUSION

The problem of selecting a combination of antennas, from
among a set of possible radiators, to optimize the array
radiation performances is a difficult combinatorial problem.
We have shown that convex relaxation followed by a proba-
bilistic interpretation of the solution enables to quickly both
obtain a bound on the best achievable array performance and
make a good antenna selection. This general antenna selection
formulation encompasses many array synthesis problems of
important practical interest. Numerical results on the selection
of quantized array excitations, antenna types, and antenna’s
locations in order to minimize the sidelobes of a focused

beampattern have been presented. The proposed approaches
do not give a prior guarantee on the tightness of the bound
and the goodness of the antenna selection but various realistic
numerical experiments show that the antenna selections are
often close to the best choices. Therefore, we believe that the
proposed approach is useful to rapidly estimate whether given
antenna array radiation requirements are achievable or not, and
if so to find a good array design.
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