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25-Gb/s Transmission Over 2.5-km SSMF by
Silicon MRR Enhanced 1.55-µm III-V/SOI DML

Valentina Cristofori, Francesco Da Ros, Oskars Ozolins, Mohamed E. Chaibi, Laurent Bramerie, Yunhong Ding,
Xiaodan Pang, Alexandre Shen, Antonin Gallet, Guang-Hua Duan, Karim Hassan, Ségolene Olivier,

Sergei Popov, Gunnar Jacobsen, Leif K. Oxenløwe, Christophe Peucheret

Abstract—The use of a micro-ring resonator (MRR) to enhance
the modulation extinction ratio and dispersion tolerance of a
directly modulated laser (DML) is experimentally investigated
with a bit rate of 25 Gb/s as proposed for the next generation
data center communications. The investigated system combines a
11-GHz 1.55-µm directly modulated hybrid III-V/SOI DFB laser
realized by bonding III-V materials (InGaAlAs) on a silicon-
on-insulator (SOI) wafer and a silicon MRR also fabricated on
SOI. Such a transmitter enables error-free transmission (BER<
10

−9) at 25 Gb/s data rate over2.5-km SSMF without dispersion
compensation nor forward error correction (FEC). As both laser
and MRR are fabricated on the SOI platform, they could be
combined into a single device with enhanced performance, thus
providing a cost-effective transmitter for short reach applications.

Index Terms—Photonic integrated circuits, Resonators filters,
Optical transmitters.

I. I NTRODUCTION

T HE traffic in data centers has been steadily growing to
fulfill the ever increasing customer demand and this has

pushed research towards finding energy- and cost-effective
solutions capable of reaching modulation speeds higher than
the current standard of10 Gb/s. Transmission at25 Gb/s over
standard single mode fiber (SSMF) has been proposed as next
target to be included in the IEEE 802.3 standard [1]. Further-
more, physical space in data centers being a scarce resource,
the focus has been directed towards finding integrated and
compact solutions that could still satisfy the energy and cost
requirements. In this perspective, directly modulated lasers
(DMLs) have been recognized as good candidates to address
these needs [2].
DMLs are, in fact, considered as promising alternatives to
external modulation for short reach applications due to their
lower cost and power consumption. High-speed DMLs have
already been demonstrated, showing their capability to operate
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beyond10 Gb/s [3], [4]. However, the major challenges to the
deployment of DMLs are the low modulation extinction ratio
(ER) and the frequency chirp induced by the direct modulation
of the laser current, which decreases the dispersion tolerance.
A potential solution to the latter consists in operating in the
O-band (1300 nm). However, the higher fiber loss decreases
the power budget of the system. Operation in the C-band
(1550 nm), instead, would be highly desirable.
To overcome these challenges and thus allow operation in the
C-band, several techniques have been proposed and success-
fully demonstrated, such as the use of passive filtering for
chirp management [5] or simply ER and dispersion tolerance
enhancement by either a delay interferometer [6] or by a
micro-ring resonator (MRR) [7]–[10]. An advantage of using
MRRs as notch filters for ER enhancement is that they can
be fabricated on the silicon on insulator (SOI) platform in a
compact way. Furthermore, it has already been demonstrated
that, by using the drop port of the MRR, the laser emission
wavelength and the MRR resonance can be locked in an
effective way [11]. Additionally, thanks to the progress in
integration of III-V materials on the SOI platform [12], it has
been recently shown that hybrid DFB lasers can be integrated
on the same chip with a silicon MRR, resulting in a significant
improvement of the DMLs performance [10]. The combination
of hybrid III-V lasers on SOI and MRR is, therefore, a
promising technique for the cost-effective implementation of
compact transmitters for short reach applications.

In this letter, we report on an all-on-silicon transmitter
operating at the target bit rate of25 Gb/s. This is achieved
by combining a directly modulating III-V/Si hybrid DFB laser
and an optimized silicon MRR filter. Error-free (BER< 10−9)
direct detection of on-off keying (OOK) signals after transmis-
sion over2.5 km of SSMF is demonstrated without need for
dispersion compensation nor forward error correction (FEC).

II. D ESIGN AND FABRICATION

A. III-V SOI DFB Laser

The structure of the hybrid III-V/SOI DFB is shown in
Fig. 1. The fabrication makes use of a200-mm CMOS line,
starting with SOI wafers having a silicon top layer thickness of
typically 440 nm. A phase-shifted Bragg grating is etched on
the top silicon waveguide layer, then a passive rib waveguide
is formed by etching the top silicon layer. The waveguide is
optimized for coupling with a III-V waveguide that will be
aligned on top of the silicon waveguide in a later step. After
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Fig. 1. Hybrid III-V/SOI DFB laser structure.

Fig. 2. MRR optimization procedure based on comparison of theOMA at
the DML output (OMATx) to the OMA after filtering at the through port of
the MRR (OMAthr) for different values of peak-to-peak adiabatic chirp and
MRR power coupling coefficientκ2.

this etching step, the remaining silicon layer has a thickness
of 220 nm. For the passive circuitry, additional etching steps
are applied to form the strip waveguides and other elements
such as the vertical output coupler. A silica layer is deposited
and a chemical-mechanical polishing is applied in order to
planarize the surface of the SOI wafer. In parallel, a2′′ InP
wafer containing multiple quantum well layers is grown and
bonded onto the SOI wafer. After wafer bonding and InP
substrate removal, a combination of wet and dry etching is
used to etch through the InGaAlAs contact layer and the
InP p-doped waveguide cladding layer. The active waveguide
is then encapsulated with benzocyclobutene (DVS-BCB). A
Ti/Pt/Au alloy is used for metallization of both p- and n- type
contacts. Finally, the fabricated laser is ready for wafer level
probe testing using the vertical grating coupler as access for
the optical probe.

B. Silicon Micro-ring Resonator

The MRR parameters were optimized numerically, as il-
lustrated in Fig. 2. The optimization target was to maximize
the optical modulation amplitude (OMA) of a25-Gb/s signal
affected by transient and adiabatic chirp after filtering it with
the in-to-through transfer function of a MRR having a free-
spectral range (FSR) of100 GHz. The FSR value was chosen
to potentially allow for simultaneous filtering of multiple FSR-
spaced WDM channel in aN × 25 Gb/s laser array. For
a given silicon waveguide structure (hence group indexng)
and fabrication technology (hence loss value, taken here equal
to 1 dB/cm), the only free parameter is the power coupling
coefficientκ2 between the ring and the straight waveguides,
taken equal at the through and drop ports. An ideal non-return-
to-zero (NRZ) OOK signal with extinction ratio of2 dB was
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Fig. 3. Relative OMA as a function of MRR power coupling coefficient
κ
2 and peak-to-peak adiabatic chirp of the DML: negative values show the

improvement provided by the MRR. The calculations have been performed
here withα = 2, but since the peak-to-peak adiabatic chirp depends on the
productακc, the actual value of the linewidth enhancement factor does not
significantly impact the results.

generated, and its frequency chirp was modeled according to
[13]

∆ν =
α

4π

[

dP (t)

dt
+ κcP (t)

]

, (1)

whereα is the linewidth enhancement factor of the laser,κc

its adiabatic chirp coefficient, andP (t) is the emitted power.
A 2-dB extinction ratio is a typical value for a DML operated
at high bias currents in order to benefit from the enhanced
bandwidth of the laser and reduced impact of relaxation
oscillations, which are damped for high laser driving currents.

Some typical results of the optimization process are repre-
sented in Fig. 3, where the relative OMA, defined as the ratio
of the OMA at the DML output to the OMA after filtering, i.e.
10 log (OMATx/OMAthr) according to the notations of Fig. 2,
was calculated as a function of MRR power coupling coeffi-
cientκ2 and peak-to-peak adiabatic chirpακcOMATx/4π. In
order to account for signal distortion due to filtering, the OMA
is evaluated in a conservative way by considering the height of
a rectangle of width1/2Rb, whereRb is the bit rate, that fits
within the filtered eye diagram. It can be seen in Fig. 3 that,
for a given adiabatic chirp value, the OMA can be improved
over a wide range of MRR power coupling coefficient values.
The peak-to-peak adiabatic chirp measured when modulating
the hybrid DFB laser at25 Gb/s is approximately13 GHz,
resulting in an optimum value ofκ2 of approximately0.4. This
value is therefore the target for the power coupling coefficient
when designing the MRR. These optimal MRR parameters are
translated into physical dimensions for the fabrication of the
MRR by modeling it through the coupled mode theory [14].
The desired FSR of100 GHz is obtained by choosing a ring
diameter of120 µm.
The MRR fabrication started from an SOI wafer with a top
silicon thickness of250 nm over a3-µm buried silicon dioxide
layer. Electron-beam (EB) lithography and inductively coupled
plasma reactive ion etching were used to define the micro-ring
structure shown in Fig. 4 (a). Note that the use of EB lithogra-
phy is not strictly necessary for the dimensions of the device;
deep-UV lithography could also be employed facilitating the
fabrication of the device in a standard CMOS process. Plasma-
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Fig. 4. (a) MRR cross-section and (b) MRR microscope picture.
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Fig. 5. (a) Optical spectra of the hybrid DFB laser for different bias currents
and (b) the corresponding small-signal amplitude modulation responses.

enhanced chemical vapor deposition (PECVD) was then used
to deposit a silica cladding top layer. The rib waveguide
has a depth of160 nm and its width is450 nm. The gap
width between the straight waveguide and the ring waveguide
is 300 nm, corresponding to an estimated power coupling
coefficient κ2 = 0.45. A microscope picture of the device
is shown in Fig. 4 (b). Apodized grating couplers [15] are
implemented at the in, through and drop ports to couple light
in and out of the MRR and the in-to-through total insertion
loss of the MRR away from resonance is9 dB. A significant
part of the loss could be avoided by integrating the MRR with
the laser. The main loss contribution is indeed due to the loss
in the grating couplers estimated to be approximately 4 dB
per coupler. The measured MRR Q-factor is3.8× 104.

III. H YBRID DFB LASER STATIC CHARACTERIZATION

First a static characterization of the laser is performed and
the optical spectra of the hybrid DFB and its small-signal
frequency responses for different bias currents between50 mA
and 140 mA are measured and shown in Fig. 5 (a) and (b),
respectively. From the spectra in Fig. 5 (a), a side mode
suppression ratio above40 dB is estimated, showing good
single mode performance. The3-dB modulation bandwidth
is extracted from theS21 curves in Fig. 5 (b) and measured to
be approximately11 GHz for bias currents between130 mA

SSMF
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DML transmitter
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Receiver

MRRDC

Fig. 6. Experimental setup for dynamic characterization of the DFB laser at
25 Gb/s.
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Fig. 7. Optical spectra of the DFB laser modulated at25 Gb/s with and
without the MRR filtering. The measured MRR transfer function is also
represented by the dashed line.

and140 mA.

IV. DYNAMIC CHARACTERIZATION

The dynamic characterization setup is shown in Fig. 6. The
hybrid III-V/Si DFB laser was biased at138 mA and directly
modulated at25 Gb/s with a27-1 non-return-to-zero (NRZ)
pseudo-random binary sequence (PRBS) generated by a bit
pattern generator with a peak-to-peak voltage of3.4 V. After
direct modulation, the optical signal was coupled to the silicon
MRR for ER enhancement through optical filtering. The laser
bias current was adjusted to match the MRR resonance for
suppression of the low-frequency content of the modulated
optical spectrum, as shown in Fig. 7. Thermal tuning of the
MRR with heaters could lead to the same result [11]. After ER
enhancement by the MRR, the optical signal was transmitted
over up to2.5 km of SSMF and received by a standard pre-
amplified receiver connected to an error analyzer for bit-error-
ratio (BER) measurements and to a sampling oscilloscope for
eye diagram monitoring.
The recorded eye diagrams are shown in Fig. 8. Considering
first the back-to-back (B2B) scenario, it is possible to observe
how the modulation ER is enhanced by the suppression of the
signal ‘0’ level by the MRR. The ‘0’ level decreases getting
closer to the yellow dashed line showing the oscilloscope
ground level. This corresponds to an enhanced eye opening
and an improvement in the ER from3.8 dB to 6.8 dB.
Furthermore, considering eye diagrams after transmission, it
is clear how the MRR filtering also enhances the signal
dispersion tolerance. In fact, even if the dispersion effects
are visible in all the eye diagrams, for the MRR filtered
signal the eye remains open for a transmission distance up
to 2.5 km. Without MRR filtering, instead, the eye is almost
closed already after transmission over1 km of SSMF and
becomes completely closed after2 km.
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Fig. 8. Eye diagrams of the25 Gb/s signal for back-to-back and after
transmission over1, 2 and2.5 km of SSMF with and without MRR filtering.
The yellow dashed line highlights the oscilloscope ground level.
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Fig. 9. Bit-error-ratio curves of the25-Gb/s signal for back-to-back and after
transmission over1, 2 and2.5 km of SSMF with and without MRR filtering.

These results are confirmed by the BER curves shown in
Fig. 9. Considering first the B2B scenario, the receiver
sensitivity, defined as the received power required for a
BER= 10−9, is improved by approximately5 dB as a conse-
quence of the ER enhancement provided by the MRR. After
transmission over SSMF, the accumulated dispersion degrades
the quality of the received signal both with and without MRR
filtering. However, with MRR filtering, error free performance
(BER< 10−9) can be achieved for a transmission reach up to
2.5 km of SSMF. Without MRR filtering, instead, the BER
curves for transmission over1-km and2-km SSMF show that
error-free performance cannot be achieved and error floors are
measured above a BER= 1 × 10−6 and BER= 5 × 10−3,
respectively. FEC could be employed at the receiver side,
however, at the expense of increasing both latency and energy
consumption.
In the case of2.5-km SSMF transmission with the MRR,
the measured power penalty at BER= 10−9 is approximately
10 dB and4 dB compared to the back-to-back BER values
with and without MRR filtering, respectively. Even if such
power penalty is significant and highlights the detrimental
impact of dispersion, a receiver sensitivity as low as−8 dBm
could still be achieved for a distance not reachable without
the use of the MRR.
From Fig. 9, it is possible to notice that the performance for
2.5-km SSMF is slightly better than for2 km. This behavior
may be associated to instabilities in the measurement setup,
including some drift in coupling the light out of the hybrid

DFB laser, which, through reflections, creates feedback into
the laser cavity. This problem will clearly be solved by the
integration of the DFB laser and MRR in a single device.

V. CONCLUSION

A transmitter for short reach application based on a hybrid
III-V/SOI DFB DML operating at25 Gb/s was demonstrated
by enhancing the DML modulation ER and dispersion toler-
ance through offset filtering using a silicon MRR. Error-free
transmission (BER< 10−9) over 2.5-km SSMF was achieved
without the use of electronic equalization techniques, FEC
or dispersion compensation. As both DFB laser and MRR
have been fabricated on the SOI platform, combining the two
devices can provide a compact all-silicon transmitter suitable
for data center applications.
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