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Abstract. The aim of the present article is to derive an exact integral equation for

the Green function of the Hubbard model through an equation-of-motion procedure,

like in the original Hubbard papers. Though our exact integral equation does not

allow to solve the Hubbard model, it represents a strong constraint on its approximate

solutions. An analogous sum rule has been already obtained in the literature, through

the use of a spectral moment technique. We think however that our equation-of-motion

procedure can be more easily related to the historical procedure of the original Hubbard

papers. We also discuss examples of possible applications of the sum rule and propose

and analyse a solution, fulfilling it, that can be used for a pedagogical introduction to

the Mott-Hubbard metal-insulator transition.
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1. Introduction

Since its introduction in 1963 [1], the Hubbard model has been commonly used to

describe strongly-correlated electron systems in narrow-energy bands. The reason is

that when the Coulomb repulsion (U) is bigger than the electron bandwidth (W ), the

atomic-limit approach followed by Hubbard in his original papers[1, 2, 3] is justified.

This approach has been found very fruitful, giving rise to several subfields of application

still on fashion (more than 150 articles per year published on the subject in recent

years[4]). The model owes its fame to the fact that it represents a ‘minimal’ hamiltonian

to study electron correlations in crystal materials. However, in spite of its relative

formal simplicity (see Eq. (1) below), the Hubbard model can be solved exactly only

in one [5] and infinite [6, 7] dimensions. The behaviour of its ground-state phase

diagram in the most important cases of two and three dimensions is rather deduced

by approximate solutions, usually determined by the competing actions of the Coulomb

electron repulsion U and of the kinetic energy of the electrons in the periodic field of the

nuclei (hopping-energy, t). A general overview of the formal properties of the Hubbard

model can be found in Ref. [8] and a review of several approximate solving schemes in

use today can be found in Ref. [9].

However, an old-standing lesson about the Hubbard model [10] is that the model

itself should not be confused with any of its approximate solutions. For example, the first

approximate solution historically found (Hubbard I[1]) was known to have the drawback

of being insulating for whatever value of U 6= 0 (even U ≪ W ), whereas, physically, one

would expect a finite critical value Uc (of the order of the bandwidth W ), above which

the insulating solution is stabilized and below which the material is a metal (except

for the one-dimensional case, see the discussion in Section III). Drawbacks like this are

due to the lack of control of the approximations performed and they might be cured, at

least partially, by the specification of proper constraints on the solution, as we shall see

below.

Historically, the model had been attacked by Hubbard through a Green function

formalism, based on the equation-of-motion approach [1, 2, 3, 11, 12, 13, 14, 15]. Within

this approach a succession of coupled equations of motion for the Green functions is

written down. However, the set of equations of motion turns out to be infinite so that

some decoupling procedures must be introduced to simplify it. The usual decoupling

procedure consists in expressing a Green function of the set in terms of another (or more).

In this way, the specific decoupling procedure that is adopted determines the subsequent

dynamics of the system, as it was the case for the original Hubbard I [1] and Hubbard

III [3] solutions (as well as for several others during the next years [12, 13, 14, 15]).

In spite of the historical importance of the equation-of-motion decoupling procedure,

such an approach, as sketched above, could not guarantee a proper control on the kind

of approximation performed, mainly because of the lack of exact constraints for the

obtained Green functions.

The aim of the present paper is to partially fill this gap and derive an exact integral
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equation for the Green function of the Hubbard model, Eq. (9) below. Mathematically,

the key features allowing us to derive the exact sum rule are 1) a limiting procedure in

the time domain, together with 2) the time translation invariance of all Green functions

G(t − t′), so that their derivative with respect to t is equal to the opposite of the one

with respect to t′. Unfortunately, this sum rule does not allow to recover the full Green

function, but it can be used as a constraint on the approximate solutions. For example,

as shown in Appendix A, we can check, among all approximated solutions proposed

in the literature, like the mean-field, Hubbard I or Hubbard III solutions, which one

respects the exact constraint imposed by Eq. (9) and which one should be instead

discarded. An anonimous Referee remarked that two recent publications [16, 17] show

that it is possible to apply the momentum sum-rules to out-of-equilibrium conditions,

thereby suggesting that the constraint on time-translation invariance can be relaxed. A

brief description of this idea in our case is given in Appendix B.

It should be noticed that our final result is not completely new, because the

imaginary part of Eq. (9) can be found equivalent to a given linear combination of

the exact sum rules for spectral momenta obtained in Ref. [18]. This is detailed

at the end of Appendix A. Yet, we can highlight two original features in our result.

Firstly, the solution that we propose in Section III, as detailed below, can be a useful

pedagogical complement to the original approximations, allowing to highlight some of

their drawbacks, like in the Mott-Hubbard metal-insulator transition. In second place,

the procedure that we used to derive it is based on the same equation-of-motion approach

as in the original Hubbard articles that are usually studied by PhD students. For this

reason, differently from Ref. [18], our approach can be taught to young researchers in

the field, in parallel to the original articles[1, 2, 3] introducing to the Hubbard model.

The plan of the paper is the following: in section II we remind the basic features of

the equation-of-motion approach for the Green functions, with a direct reference to the

historical Hubbard articles. We then derive our sum rule, Eq. (9), by applying the trick

described above of deriving with respect to t′, instead of t. In doing this, we describe

carefully the mathematical derivation of the limiting procedure for a distribution. In

section III we discuss a solution compatible with the sum rule, characterized by a

real-self-energy. This solution can be considered as an improvement of the Hubbard I

solution, and therefore can be used in its place as a toy-model by students to investigate

the non-Fermi liquid character of the solution. Finally, in Appendix A some exact

mathematical implications of the sum-rule are reported. In particular, the constraint

implied by Eq. (9) is applied to well-known approximate solutions of the Hubbard

model (atomic limit, mean-field, Hubbard I and Hubbard III). Appendix B shows how

to apply the sum rule in out-of-equilibrium conditions, following Ref. [17].

2. Derivation of the sum rule

The Hubbard Hamiltonian on a crystal lattice, in its simplest version with one orbital

per site [1], can be expressed as:
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ĤH =
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ (1)

Here ĉ†iσ (ĉjσ) represents, in standard notation, the creation (annihilation) of an

electron of spin σ at site i (j), tij is the energy associated to the hopping from site j

to site i (supposed translationally invariant) and U is the on-site Coulomb repulsion.

The term tii ≡ ε0 represents the local energy at site i and it can be put equal to zero

without any loss of generality.

Following Ref. [19], we can define the retarded Green function: ih̄G
(R)
ijσ (t − t′) ≡

θ(t − t′)〈
{

ĉiσ(t), ĉ
†
jσ(t

′)
}

〉, by introducing the Heaviside function θ(t − t′) = 1 if t ≥ t′

and 0 if t ≤ t′. The {..., ...} represents the anticommutator of the fermion operators.

We have chosen the retarded Green function in keeping with the original Hubbard

articles [1, 2, 3]. However, all what is reported below is equally valid for the advanced

Green function, ih̄G
(A)
ijσ (t−t′) ≡ −θ(t′−t)〈

{

ĉiσ(t), ĉ
†
jσ(t

′)
}

〉, and the time-ordered Green

function, ih̄G
(T )
ijσ (t − t′) ≡ θ(t − t′)〈ĉiσ(t)ĉ

†
jσ(t

′)〉 − θ(t′ − t)〈ĉ†jσ(t
′)ĉiσ(t)〉. We remark,

however, that it is not valid for two other Green functions often in use [20], the greater,

ih̄G>
ijσ(t − t′) ≡ 〈ĉiσ(t)ĉ

†
jσ(t

′)〉, and the lesser, ih̄G<
ijσ(t − t′) ≡ −〈ĉ†jσ(t

′)ĉiσ(t)〉, whose

analytical properties are different [17], in particular they lack the time-discontinuity

leading to the delta-function in their derivative, as in Eq. (2) below.

All expectation values can be calculated either at T = 0 or, for finite temperature,

through the grand-canonical statistical weight, e−β(ĤH−µN̂), where N̂ is the number

operator and µ the chemical potential, as in [19].

If we write the equation of motion of the Green function in the time-domain, instead

of the frequency (ω)-domain as in Hubbard papers, we get (we omit the label (R) in

what follows):

ih̄∂tGijσ(t − t′) = ih̄δijδ(t − t′) − µGijσ(t−t′) +
∑

l

tilGljσ(t−t′) + UΓijσ(t−t′) (2)

where Γijσ(t− t′) ≡ θ(t− t′)〈
{

n̂iσ̄(t)ĉiσ(t), ĉ
†
jσ(t

′)
}

〉.

Here we have used the Heisenberg formula for the time-derivation of Heisenberg

operators: ih̄∂tĉiσ(t) = [ĉiσ(t), ĤH ], where [..., ...] represents a commutator. We remind

that all the creation and annihilation operators in the Green functions defined above

are taken in the Heisenberg representation [19], i.e., their time-evolution is governed by

the full Hamiltonian HH . We also used the well-known relation, valid for distributions:

∂tθ(t− t′) = δ(t− t′).

In the original Hubbard article and in all the subsequent developments [1, 2, 3, 11,

12, 13, 14, 15], the chain of equations of motion is continued by deriving Γijσ(t − t′)

with respect to t [21]. However, by using the time-translational invariance of the Green

functions due to the dependence on the time-difference (t − t′), we can instead derive

with respect to t′ and write, after Eq. (2):
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An exact sum-rule for the Hubbard model: an historical approach. 5

ih̄∂tΓijσ(t− t′) = −ih̄∂t′Γijσ(t− t′) = δijniσ̄δ(t− t′)− µΓijσ(t− t′)

+
∑

l

tilΓljσ(t− t′) + UMijσ(t− t′) (3)

The main difference with the Hubbard original approach is that the hopping term

on the right-hand side of Eq. (3) does not lead to a new set of functions as in

the usual chain [1, 3], but to the same function
∑

l tilΓljσ(t − t′), that can be easily

diagonalised by a Fourier transform. This time, the unknown is the new Green function

M
(R)
ijσ (t− t′) ≡ θ(t− t′)〈

{

n̂iσ̄(t)ĉiσ(t), n̂jσ̄(t
′)ĉ†jσ(t

′)
}

〉 (for the retarded case). Of course

writing down the equation of motion for Mijσ(t − t′) would continue the infinite set in

a different way from the usual one. This would lead to an infinite set of exact relations

amongst higher-order Green functions, that can be left as an exercise to the interested

reader.

We shall however proceed differently. In order to derive the sum rule for Gijσ(t−t
′),

we notice that it is possible to find a point in space-time where Mijσ(t− t′) = Γijσ(t− t′)

exactly: this happens for i = j and t − t′ → 0±. Mathematically, we have, for the

retarded Green function:

lim
t−t′→0+

Miiσ(t− t′) = 〈
{

n̂iσ̄(t)ĉiσ(t), n̂iσ̄(t)ĉ
†
iσ(t)

}

〉 = 〈
{

n̂iσ̄(t)n̂iσ̄(t)ĉiσ(t), ĉ
†
iσ(t)

}

〉

= 〈
{

n̂iσ̄(t)ĉiσ(t), ĉ
†
iσ(t)

}

〉 = lim
t−t′→0+

Γiiσ(t− t′) (4)

In the second equality of the equation, we have used the commutativity at equal

times of n̂iσ̄(t) and ĉiσ(t) or ĉ
†
iσ(t) (opposite spin) and in the third equality the projection

property of the number operator n̂iσ̄ = n̂2
iσ̄. A similar derivation can be easily derived

for the advanced and time-ordered Green functions as well.

Physically, this property is easily understandable: Mijσ(t − t′) represents the

probability that an electron (or a hole), created at site j at time t′ (making the site

j doubly occupied) is destroyed at a site i that is also doubly occupied at time t.

Instead, Γijσ(t − t′) represents the probability that an electron (or a hole), created at

site j at time t′ (making site j either singly or doubly occupied) is destroyed at time

t at a site i that is (again) doubly occupied. Clearly, if i = j and t − t′ → 0±, we are

dealing with the same site at the same time. So, if this site is doubly occupied for the

destruction process, it must be made doubly occupied by the creation process, thereby

leading to the equality of the two Green functions, Γ and M .

By inserting Eq. (4) into Eq. (3), by taking i = j and performing the limt−t′→0+ of

both the left-hand-side and the right-hand-side, we can derive the sum rule. The safest

way to handle the limit procedure on distributions, like the delta function, characterized

by a discontinuity at t = t′, is to move to the Fourier transform first, and then perform

the limt−t′→0+ by keeping track of the convergence factor e−(t−t′)η. In fact, as shown,
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An exact sum-rule for the Hubbard model: an historical approach. 6

e.g., in Ref. [19], the time-frequency (t ↔ ω) Fourier transform of Green functions is not

properly defined unless a convergence factor e±(t−t′)η+ is introduced, where η is a small

imaginary part of the frequency and η → 0 at the end of the calculation. For GR, η is

a small positive quantity forcing the displacement of the poles in the complex-ω plane

out of the real ω axis, thereby allowing the integrability of the Fourier transform[19].

We notice here that the advanced and time-ordered Green functions have a different

analytical structure than the retarded one (η has the opposite sign for G(A) and the

opposite sign below the chemical potential for G(T ), see [19]). However, an analogous

sum-rule can be written for these two Green functions as well. With this in mind, we

can continue from equation (3) with i = j:

lim
t−t′→0+

(

ih̄∂t

∫

ds~k

(2π)s

∫

dω

2π
Γ~kσ(ω)e

−i[ω(t−t′)]

)

= lim
t−t′→0+

niσ̄

∫

ds~k

(2π)s

∫

dω

2π
e−i[ω(t−t′)]

+ lim
t−t′→0+

(

(U − µ)

∫

ds~k

(2π)s

∫

dω

2π
Γ~kσ(ω)e

−i[ω(t−t′)]

+
∑

l

til

∫

ds~k

(2π)s

∫

dω

2π
Γ~kσ(ω)e

−i[ω(t−t′)−~k·(~Rl−~Ri)]

)

(5)

where ~k-integrals are extended over the Brillouin zone, ω-integrals from −∞ to +∞

and s represents the dimensionality of the system (the present derivation is valid for

any dimensions). We notice that niσ̄ appearing in Eq. (5) is no more an operator, but a

number: it is the expectation value niσ̄ ≡ 〈n̂iσ̄〉. If we first perform the time-derivative

of the left-hand-side and then the limit of both sides, we obtain an integral expression

for Γ~kσ(ω):

∫

ds~k

(2π)s

∫

dω

2π

[

(h̄ω+µ−t~k−U)Γ~kσ(ω)−nσ̄

]

= 0 (6)

where we have supposed an homogeneous system, so that niσ̄ = nσ̄. This position

excludes the possibility of antiferromagnetic solutions (we refer to, e.g., [22] for an

explicit antiferromagnetic calculation with inhomogeneous niσ̄, for the simpler mean-

field solution of the Hubbard model). We can now Fourier transform the equation (2)

for the Green function:

(h̄ω + µ− t~k)G~kσ(ω) = 1 + UΓ~kσ(ω) (7)

solve for Γ~kσ(ω):

Γ~kσ(ω) =
1

U
(h̄ω + µ− t~k)G~kσ(ω)−

1

U
(8)

and replace in (6):
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An exact sum-rule for the Hubbard model: an historical approach. 7

∫

ds~k

(2π)s

∫

dω

2π

[

(h̄ω+µ−t~k−U)(h̄ω+µ−t~k)G~kσ(ω)− (h̄ω + µ− t~k − U(1− nσ̄))
]

= 0

(9)

This is the main result of our work, an exact integral equation for G~kσ(ω), to be

used with the appropriate boundary conditions. Though it does not allow for a full

determination of the Green function, our integral equation acts as a constraint that

must be fulfilled by the exact solution. We remind again that, in order to derive it, we

used the following two ingredients: (a) contrary to what is done in the Hubbard papers

and in the literature, we have written the equation of motion of Γ(t − t′) with respect

to t′ instead of t. Using the translational invariance of any Green function due to the

dependence on (t− t′), we have ∂tΓijσ(t− t′) = −∂t′Γijσ(t− t′); (b) we performed a limit

procedure in the time-domain for the on-site Green functions Miiσ(t−t′) and Γiiσ(t−t′).

From now on, to simplify notations, we shall measure the energy from the chemical

potential, thereby replacing t~k − µ with t~k.

3. Discussion.

Among all possible solutions of Eq. (9), the simplest one is obtained by imposing the

integrand function equal to zero. This implies, e.g., for the retarded Green function:

GR
~kσ
(ω) =

1− nσ̄

h̄ω − t~k + iη
+

nσ̄

h̄ω − t~k − U + iη
(10)

Equation (10) represents a two-pole Green-function with real self-energy (infinite

time-life of the two quasiparticles). The self-energy Σ~k(ω) associated to this solution

can be obtained from its definition: GR
~kσ
(ω) = [h̄ω − t~k − Σ~k(ω) + iη]−1. By comparing

the latter to Eq. (10), we obtain: Σ~k(ω) = U
(h̄ω−t~k)nσ̄

h̄ω−t~k−U(1−nσ̄)
.

Such a solution represents non-mixing Hubbard quasiparticles, i.e., electrons

moving in a singly occupied band and electrons moving in a doubly occupied band,

respectively, without intercrossing. Equation (10) is in fact the solution that we would

have obtained from Eq. (3) by putting Mij = Γij identically. This corresponds to

approximating the two probabilities PM and PΓ, where PM is the probability that an

electron is created at a site making it doubly-occupied and then decays at another

doubly occupied site. Instead PΓ is the probability that an electron created at a site

with any filling decays at a doubly occupied site. These processes are depicted in

Fig. 1. Such an approximation becomes true in the limit where nσ̄ = 1: in this case

any σ-electron would fall on a singly-occupied site, making it doubly occupied. The

behaviour of the density of states ρσ(ε), in the specific case of a square-lattice band,

t~k = 2t[cos(kxa) + cos(kya)], with a the lattice unit, is represented in Fig. 2, and is

given by the equation: ρσ(ε) = 1
N

∑

~k

{

(1− nσ̄)δ
[

ε− εLHB
~k

]

+ nσ̄δ
[

ε− εUHB
~k

]}

. Here
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An exact sum-rule for the Hubbard model: an historical approach. 8

Figure 1. Visualization of the probabilities PM and PΓ described in the text. In (a),

PM , an electron ↑ is created at site j, already occupied by an electron ↓. Instead,

in (c), PΓ, an electron ↑ is created at site j independently of its occupancy. The

annihilation process is the same for both PM and PΓ: the electron is annihilated from

a doubly-occupied site i, as in (b) and (d).

εLHB
~k

= t~k and εUHB
~k

= t~k+U are the lower Hubbard band and the upper Hubbard band,

respectively, as deduced from the imaginary part of Eq. (10) [22].

As shown in Fig. 2(a), at half-filling, i.e., when nσ = nσ̄ = 0.5, the Fermi energy

is within the gap and the system is a Mott insulator when U/t is above a critical value

(U/t)c = 8 (or (U/W )c = 1, as the bandwidth W , for a 2D square lattice, is W = 8t). If

instead U/W is below the critical value, the two bands merge and the system behaves

like a metal (this is shown in Fig. 2(a) for the value U/W = 3/8). It is useful to remind

that, even in the metallic state, an important feature of the atomic behaviour is still

present: each ~k point has a spectral weight (1 − nσ̄) in the LHB and nσ̄ in the UHB,

differently to the one-to-one correspondence of a Fermi-liquid behaviour. So, even in the

metallic state, the solution (10) does not represent a ‘normal’ metal, i.e., a Fermi liquid.

In fact, it does not fulfill the Luttinger’s theorem [23], which necessarily characterizes

Fermi liquids when the interaction is adiabatically switched on from the Fermi gas. It

is interesting to notice that, though at a qualitative level the Hubbard model is often

described to have these features, we could not find any derivation of Eq. (10) in the

literature through the approximation Mij = Γij.

Equation (10), having a real self-energy leads to an infinite lifetime for the two

sub-bands quasiparticles, analogously to the Hubbard I solution. However, Eq. (10)
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Figure 2. Density of states at half-filling (nσ = nσ̄ = 0.5) corresponding to: (a)

Eq. (10); (b) Eq. (11). The Mott-Hubbard metal-insulator transition is present for

U/W ∼ 1 in both cases. The extra peak shown in (b) around the Fermi energy (ε = µ)

is not of dynamical origin (see main text for further remarks).
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An exact sum-rule for the Hubbard model: an historical approach. 10

has the advantage of not suffering from the same drawbacks as the Hubbard I solution,

because it respects our sum-rule Eq. (9). In particular, contrary to the Hubbard I metal-

insulator transition, found even for an infinitesimal value of U/W , which is unphysical

in more than one spatial dimensions, our solution more realistically gives U/W ∼ 1.

An interesting, different, behaviour appears when we consider a solution of Eq. (9)

more general than Eq. (10):

GR
~kσ
(ω) =

1− nσ̄ + g~k(ω)

h̄ω − t~k + iη
+

nσ̄ − g~k(ω)

h̄ω − t~k − U + iη
(11)

where g~k(ω) is not determined by Eq. (9) except for having a null integral in the

Brillouin zone:

∫

ds~k

(2π)s
g~k(ω) = 0 (12)

The self-energy associated to this solution is: Σ~k(ω) = U
(h̄ω−t~k)(nσ̄−g~k(ω))

h̄ω−t~k−U(1−nσ̄+g~k(ω))
. In

this case, provided that Eq. (12) is fulfilled, the function g~k can be ω-dependent. We

remark that, in spite of the ω-dependent self-energy, the density of states obtained

from Σ~k(ω) has a two-pole structure (as derivable also from the imaginary part of Eq.

(11)), with ω-dependent spectral weight, so as to have spectral-weight transfer within

the two bands, but not damping. This can be seen if we write the retarded Green

function as: GR
~kσ
(ω) = [h̄ω − t~k − Σ~k(ω) + iη]−1. In this case the density of states is:

ρσ(ε) = − π
N

∑

~k ℑG
R
~kσ
(ω) = 1

N

∑

~k δ
[

ε− t~k − Σ~k(ω)
]

. This expression can be written as:

ρσ(ε) =
1
N

∑

~k δ
[

(ε−t~k)(ε−t~k−U)

ε−t~k−U(1−nσ̄+g~k(ω))

]

. By reminding that δ(h(x)) =
∑

i δ(x− xi)/h
′(xi),

where xi are the zeros of h(x), it is easy to derive, from the previous expression, that

ρσ(ε) =
1
N

∑

~k

{

(1− nσ̄ + g~k(ω))δ
[

ε− t~k
]

+ (nσ̄ − g~k(ω))δ
[

ε− t~k − U
]}

.

We might have a hint for g~k, limiting to a ω-independent form, on the basis of

the following concept. If we consider a frozen configuration (no hopping, t = 0), the

probability that a spin-σ electron put randomly in the lattice falls on an unoccupied

site (so as to give single occupancy) is proportional to 1 − nσ̄ and the probability that

it falls on a σ̄-occupied site (so as to give double occupancy) is proportional to nσ̄. This

corresponds to the two numerators of Eq. (11) when g~k(ω) = 0. However, when t 6= 0,

the hopping changes these assignements, by allowing intersite motion. The changes in

the spectral weights (numerators) of Eq. (11) determined by the function g~k(ω) are

a measure of this motion. If we suppose, as it appears plausible, that this motion is

proportional to both the filling nσ̄ and the hopping t~k then a possible form for g~k(ω),

independent of ω, is g~k = nσ̄t~k/W , that satisfies condition (12). At half-filling, we

obtain the density of states represented in Fig. 2(b), as a function of the ratio U/W .

Compared to Fig. 2(a), there is a shift in spectral weight from the UHB to the LHB (and

vice-versa), around the Fermi energy (ε = µ) close to the metal-to-insulator transition.

For U/W = 15/16, this shift in spectral weight gives rise to an extra peak in the density
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of states at the Fermi energy, leading to a strong increase in all the physical properties

(like the specific heat, Pauli paramagnetism or the electric conductivity) that linearly

depend on ρ(µ), the value of the density of states at the Fermi energy. Interestingly, a

peak in the density of states at the Fermi energy close to a metal-insulator transition

is usually considered a signature of a ‘strange-metal’ behaviour [24]. However, in this

case, the origin of this peak is not dynamical, as we have neglected the ω-dependence of

g~k: its origin is rather due to a ~k-redistribution of the spectral weight determined by the

function g~k. So, it does not share the same origin as the central peak in the density of

states of dynamical mean-field theory [24, 6]. We remark that neither our approximate

solution Eq. (10) nor Eq. (11) describes correctly the one-dimensional limit. In fact,

both Eqs. (10) and (11) provide the uncorrect result (U/W )c ∼ 1 even in this limit,

instead of the correct one-dimensional result, (U/W )c = 0.

We would like to end this section by moving from an academic approach to actual

research, and highlight that our real self-energy solution, Eq. (10) shows an interesting

complementarity with the well-known LDA+U method [25, 26] in density-functional

theory. The latter is a multiorbital unrestricted mean-field approach that advantages

orbital (and charge) separation, compared to a bare LDA calculation, because of the

U -term: once the average Coulomb energy is subtracted from a LDA calculation, an

energy shift U is attributed, compared to the LDA band t~k, to doubly occupied orbitals

so as to reduce the fractional occupancy of these orbitals in favour of an integer one.

This can force the system towards an insulating state but, in order to do that, a

multiband material is needed, because the U energy shift is obtained only for doubly-

occupied orbital bands relatively to singly-occupied orbital bands. The latter is the

main difference with our approach: with Eq. (10) a metal-insulator transition is possible

within just one orbital band, as shown in Fig. 2: this is a consequence of the loss of

validity of Luttinger’s theorem (not shared by the LDA+U approach), leading to two

different quasiparticle species for a given ~k. It is the splitting of the single-orbital band

in two subbands (as shown in Fig. 2) that makes the difference with the LDA+U method

(where there is no splitting for a single band). In order to perform a more complete

comparison of the two approaches, our solution should be extended to the multiorbital

case. However, this would go beyond the scope of a pedagogical presentation and will

rather be the object of a future research work.

4. Conclusions

In conclusions, we have derived in Section II an exact sum rule (Eq. (9)) for the Green

function of the Hubbard model, and we have discussed in Section III a solution of the

model satisfying this sum rule. Previous solutions not respecting this constraint have

been highlighted. The derivation has been performed with an approach and a detail of

particulars that should be convenient to PhD students working in the field. The aim is

to use the proposed solution for the Green function, Eq. (10), as an alternative to the

first Hubbard solution (Hubbard I), without the drawbacks of the latter.
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Besides the pure academic scope, the interest of Eq. (11) with respect to actual

research work is also highlighted in the last part of Section III.
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Appendix A. Comparison of Eq. (9) with previous results

In this Appendix, we show how our exact result, Eq. (9), can be used to highlight

some weaknesses of the historical approximations Hubbard I [1] and Hubbard III [3].

However, as a first check, it is possible to verify that Eq. (9) is satisfied both in the

atomic limit, i.e., when t~k → ε0 (ε0 is the atomic on-site energy) and in the band

limit, i.e., when U = 0. In the first case, considering for example the retarded Green

function, we get G
(R)
at,σ(ω) = (1 − nσ̄)/(h̄ω − ε0 + iη) + nσ̄/(h̄ω − ε0 − U + iη) and in

the second case G
(R)

0~kσ
(ω) = 1/(h̄ω − t~k + iη). Both satisfy Eq. (9), as can be seen

by direct inspection. Even if we consider the non-local correlations that should be

present in a proper atomic limit for G
(R)
at,σ(ω) (see section IV of Ref. [12]), Eq. (9) is

still satisfied. The equation is however not satisfied by the mean-field Green function

and the Hubbard I and Hubbard III Green functions. In fact, if we replace in Eq. (9)

the mean-field retarded Green function G
(R)
~kσ

(ω) = 1/(h̄ω − t~k − Unσ̄ + iη), we get the

result iπU2nσ̄(1− nσ̄) instead of zero. The calculation is performed by reminding that

(x + iη)−1 = Px−1 − iπδ(x), where P is the integral principal part and δ is the Dirac

distribution. Therefore, though the integral of the real, principal part is zero, there

remains a contribution from the imaginary term, showing that the spectral function of

the mean-field solution (proportional to ℑG(R)) is not correct (it does not satisfy the

sum-rule Eq. (9)), unless nσ̄ = 0 (free particles) or nσ̄ = 1.

A slightly more complex calculation, because of the ~k-dependence, shows that

neither the Hubbard I nor the Hubbard III Green functions satisfy Eq. (9) (or

Eq. (A.1)). In the case of Hubbard I solution, the Green function is: G
(R)
~kσ

(ω) =
A−

~k

h̄ω−E−

~k
+iη

+
A+

~k

h̄ω−E+
~k
+iη

, where E±
~k

= (U + t~k ±
√

(U − t~k)
2 + 4Ut~knσ̄)/2 is the energy

spectrum and A±
~k
= (E±

~k
−U(1−nσ̄))/(E

±
~k
−E∓

~k
) are the spectral weights. Replacement

of this Green function in Eq. (9) gives again a non-zero imaginary part, that, in the

simplifying case nσ̄ = 1, is given by iπ(U
2

2
+
∫

ds~k
(2π)s

t2
~k

2
) 6= 0.

Finally, in the case of the Hubbard III solution, the analysis is more complex

because an explicit expression for the Green function is not available, as G~kσ(ω) in

this case is determined by means of a self-consistent calculation on five equations

(Eqs. (57) to (61) in Ref. [3]). However, it is possible in this case to compare the

limiting behaviour for ω → ∞ of the Hubbard III self-energy with a modified form of

Eq. (9). In fact, if we write the Green function in terms of its self-energy Σ~kσ(ω) as

G~kσ(ω) = 1/(h̄ω − t~k − Σ~kσ(ω)), then we can rewrite Eq. (9) as a constraint on the
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self-energy as:

∫

ds~k

(2π)s

∫

dω

2π

[

(Σ~kσ(ω)− Unσ̄)h̄ω − Σ~kσ(ω)(t~k + U(1− nσ̄)) + t~kUnσ̄

]

h̄ω − t~k − Σ~kσ(ω)
= 0 (A.1)

It should be remembered that, as from the general theory of Green functions [19]

limω→∞G~kσ(ω) = 1/(h̄ω), then it follows that limω→∞Σ~kσ(ω) is a constant. Such a

constant can be determined from Eq. (A.1), as in order to have a finite integral, it

implies that in the limit ω → ∞ the coefficient of h̄ω at the numerator must be zero.

This gives the following constraint on the self-energy: limω→∞Σ~kσ(ω) = a~kUnσ̄ + b~k,

where
∫

ds~k
(2π)s

a~k = 1 and
∫

ds~k
(2π)s

b~k = 0. This constraint is not fulfilled in the Hubbard

III solution: in the notation of Ref. [3] the self-energy is Σ~kσ(E) = E − F σ(E), with

E = h̄ω, the energy, and F σ(E) is given by Eq. (59) of Ref. [3]. The previous constraint

is fulfilled if limE→∞F σ(E) = E − Unσ̄ is true, and a direct calculation from Eq. (59)

of Ref. [3] (we remind that Hubbard U was called I by Hubbard) shows that this is

not the case. Interestingly, if we suppose the self-energy ~k-independent, as in the case

of DMFT [6], then limω→∞Σσ(ω) = Unσ̄, ie, dynamical mean-field exactly reduces to

static mean-field in the infinite-frequency limit, as it should [27]. It is important to

remind that having the correct limit for the high-energy region allows reproducing the

right behaviour for the formation of the upper and lower Hubbard bands, as shown in

[27], so that the former constraint, though usually neglected, should always be verified

in DMFT calculations.

We finish this section by reminding that the imaginary part of Eq. (9) is equivalent

to a linear combination of three sum rules for the first three momenta of the spectral

function (zeroth-, first- and second-momentum sum rule). However, our full Eq. (9)

(real + imaginary parts) is not just a special case of the zeroth-, first- and second-

momentum sum rule, because their knowledge does not allow to derive the real part by

means of Kramers-Kronig transformations, as in this case the imaginary part over the

whole frequency range is needed and not just its zeroth-, first- and second-momentum.

We report below an explicit calculation of the above statement, by taking, e.g. the

zeroth-, first- and second-momentum sum rules of the spectral function from Ref.

[28]. Setting ℑG
(R)
~kσ

(ω) = −πS~kσ(ω), where S~kσ(ω) is the spectral function, we can

write the three sum rules as:
∫ +∞

0
dωS~kσ(ω) = 1;

∫ +∞

0
dωωS~kσ(ω) = t~k + Unσ̄/2 and

∫ +∞

0
dωω2S~kσ(ω) = t2~k + t~kUnσ̄ + U2nσ̄/2. If we take the imaginary part of Eq. (9), we

get (we put here h̄ = 1):
∫

ds~k
∫

dω
[

(ω − t~k − U)(ω − t~k)
]

S~kσ(ω) = 0. This ω-integral

can be written as:
∫

dωω2S~kσ(ω)− (2t~k + U)
∫

dωωS~kσ(ω) + t~k(t~k + U)
∫

dωS~kσ(ω). By

replacing the above three sum rules in the latter expression, we get: t2~k + t~kUnσ̄ +

U2nσ̄/2− (2t~k + U)(t~k + Unσ̄/2) + t2~k + t~kU , which is identically zero, thereby showing

that the imaginary part of Eq. (9) is equivalent to the above linear combination of the

three sum-rules.
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Appendix B. Generalization to non-equilibrium conditions.

The aim of this Appendix is to briefly show how the constraint on the time-translation

invariance might be relaxed, as remarkably suggested by an anonimous Referee. We

follow the idea and the notation of [17], where it is shown that the momentum

sum-rules for the Hubbard model can be extended to nonequilibrium conditions, and

rewrite the arguments of the Green function as t1 and t2: ih̄G
(R)
ijσ (t1, t2) ≡ θ(t1 −

t2)〈
{

ĉiσ(t1), ĉ
†
jσ(t2)

}

〉. We do not suppose time-translation invariance. Yet, as in [17],

we can define the two new variables: average time, T = (t1 + t2)/2 and relative

time t = t1 − t2. The Green function depends on both of them: ih̄G
(R)
ijσ (T, t) ≡

θ(t)〈
{

ĉiσ(T + t/2), ĉ†jσ(T − t/2)
}

〉, where we used the inverse transformations: t2 =

T − t/2 and t1 = T + t/2. Because of the opposite t-dependence of t1 and t2, if we derive

G
(R)
ijσ (t1, t2) with respect to t1 and t2 with the constraint of a fixed value of T (say, T0),

we get:

∂G
(R)
ijσ (t1, t2)

∂t2
=

∂G
(R)
ijσ (T0, t)

∂T
−

1

2

∂G
(R)
ijσ (T0, t)

∂t
= −

1

2

∂G
(R)
ijσ (T0, t)

∂t
(B.1)

∂G
(R)
ijσ (t1, t2)

∂t1
=

∂G
(R)
ijσ (T0, t)

∂T
+

1

2

∂G
(R)
ijσ (T0, t)

∂t
=

1

2

∂G
(R)
ijσ (T0, t)

∂t
(B.2)

Here we used ∂T/∂t2 = ∂T/∂t2 = 1 and ∂t/∂t1 = −∂T/∂t2 = 1/2. Moreover,
∂G

(R)
ijσ (T0,t)

∂T
= 0, because we fixed the T0 instant of time for the Green function. Therefore,

with this constraint, we are again in the conditions described in Section II (the derivative

with respect to t1 is opposite than with respect to t2). We can perform the limiting

procedure (t → 0) and then Fourier transform with respect to the variable t, only, so

as to obtain the sum-rule following the same steps as in section II, except that now

the Green function depends on the specific time-instant T0: G(T0, ω). This implies

that the sum-rule depends on the time-instant, at variance with the main result of the

text when time-translation invariance is imposed. In spite of the remarkable result of

this section, the latter point is, after all, obvious: in equilibrium conditions the result

is independent of the time-instant by construction (so, no dependence on T should

be expected), whereas this is not the case in out-of-equilibrium conditions, where the

solution of Eq. (9) explicitly depends on the value of T0.
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