Heterogeneous \& Homogeneous \& Bio- \& Nano-
 CHEMCATCHEM

 CATALYSIS

 CATALYSIS}

Supporting Information

A Triflamide-Tethered N-Heterocyclic Carbene-Rhodium(I) Catalyst for Hydroalkoxylation Reactions: LigandPromoted Nucleophilic Activation of Alcohols

Abir Sarbajna, ${ }^{[a]}$ Pragati Pandey, ${ }^{[a]}$ S. M. Wahidur Rahaman, ${ }^{[a]}$ Kuldeep Singh, ${ }^{[a]}$ Akshi Tyagi, ${ }^{[a]}$ Pierre H. Dixneuf, ${ }^{[b]}$ and Jitendra. K. Bera* ${ }^{[a]}$

cctc_201601667_sm_miscellaneous_information.pdf

Contents

Page No.

1. Experimental Section S3
2. X-Ray Data Collection and Refinements S6
3. Catalysis Studies S11
4. Computational Studies S16
5. References S28
6. Spectroscopic Characterization S30

1. Experimental Section

1.1. General procedures

All reactions with metal complexes were carried out under an atmosphere of purified nitrogen using standard Schlenk-vessel and vacuum line techniques. Glasswares were flame-dried under vacuum prior to use. NMR spectra were obtained on JEOL JNM-LA 400 MHz and 500 MHz spectrometer. ${ }^{1} \mathrm{H} \mathrm{NMR}$ chemical shifts were referenced to the residual hydrogen signal of the deuterated solvents. The chemical shift is given as dimensionless δ values and is frequency referenced relative to TMS for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Elemental analyses were performed on a Thermoquest EA1110 CHNS/O analyzer. The crystallized compounds were powdered, washed several times with dry petroleum ether, and dried in vacuum for at least 48 h prior to elemental analyses. Infrared spectra were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ on a Vertex 70 Bruker spectrophotometer on KBr pellets. ESI-MS were recorded on a Waters Micromass Quattro Micro triple-quadrupole mass spectrometer. The GC-MS experiments were performed by using an Agilent 7890 A GC and 5975C MS system.

Materials

Solvents were dried by conventional methods, distilled under nitrogen and deoxygenated prior to use. $\mathrm{RhCl}_{3} . \mathrm{xH}_{2} \mathrm{O}$ was purchased from Arora Matthey, India. All other chemicals were purchased from Sigma-Aldrich. [Rh($\mu-\mathrm{Cl})(\mathrm{COD})]_{2}{ }^{1}{ }^{1}[\mathrm{Rh}(\mu-$ $\left.\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2},{ }^{2} \quad\left[R \mathrm{RL} \mathrm{'}^{\prime}(\mathrm{COD}) \mathrm{Cl}\right]^{3} \quad\left(\mathrm{~L}^{\prime}=N, N^{\prime}\right.$-dimethylimidazoline-2-ylidene) were prepared from literature procedures.

1.2. Synthesis of LH:

Scheme S1. Schematic representation for synthesis of LH.
An oven- dried, 250 mL , round-bottomed flask was equipped with a Teflon-coated magnetic stirring bar and sealed with a rubber septum containing a needle adapter to a
nitrogen source. The flask was charged with (S)-valinol ($4.15 \mathrm{~g}, 40.25 \mathrm{mmol}$), triethylamine ($13.1 \mathrm{~mL}, 94.5 \mathrm{mmol}$) and dichloromethane $(70 \mathrm{~mL})$. The flask was placed in a $-78^{\circ} \mathrm{C}$ and, to the well-stirred solution; trifluoromethanesulfonic anhydride (15.9 mL , 94.5 mmol) was added via syringe. The resulting reaction mixture was held at $-78^{\circ} \mathrm{C}$ for 5h. The reaction mixture was transferred to a 250 mL separatory funnel containing 100 mL of 0.1 N HCl and the mixture was thoroughly shaken and the layers were separated. The organic portion was washed successively with one portion of $0.1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, two portions of saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}$ each) and one portion of brine (100 mL). The organic portion was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure on a rotary evaporator to afford 8.5 g (97\%) of N-trifluoromethylsulfonyl-2-isopropylaziridine as pale yellow oil. The (S)-N-trifluoromethylsulfonyl-2-isopropylaziridine was used in the next transformation without further purification.
N-trifluoromethylsulfonyl-2-isopropylaziridine ($1.75 \mathrm{~g}, 8.05 \mathrm{mmol}$) was refluxed with 1.49 g (8.05 mmol) 1-mesitylimidazole in 10 mL tetrahydrofuran for 24 h . The solvent was evaporated under vacuum and 20 mL of cold diethyl ether was added to furnish LH as the final product. The compund was filtered and washed with cold diethyl ether (3×10 mL) then dried under vacuum for 2 h and stored under nitrogen. X -ray quality crystals were grown by slow diffusion of petroleum ether into a saturated dichloromethane solution of LH at room temperature. Yield: 2.9 g (90%). $\mathrm{Mp}:>200^{\circ} \mathrm{C}$. ESI-MS, m / z : 404.162, ($\mathrm{z}=1$), $[\mathrm{M}+\mathrm{H}]^{+}$.

1.3. Synthesis of 1 :

Scheme S2. Schematic representation of synthesis of 1.

A suspension of $0.1 \mathrm{~g}(0.25 \mathrm{mmol})$ of $\mathrm{LH}, 0.041 \mathrm{~g}(0.25 \mathrm{mmol})$ of AgOAc , and 0.041 g (0.3 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 15 mL of THF was stirred for 16 h at $60^{\circ} \mathrm{C}$ in dark. The reaction
was cooled to room temperature and filtered through celite. The colorless filtrate was concentrated under reduced pressure and diethyl ether was added to induce precipitation. The solid obtained was washed with 15 mL of diethyl ether and dried under vacuum. X-ray quality crystals were grown by slow diffusion of petroleum ether into a saturated dichloromethane solution of 1 at $-20^{\circ} \mathrm{C}$. Yield: $0.207 \mathrm{~g}(82 \%) . \mathrm{Mp}$: $>200^{\circ} \mathrm{C}$. Anal Calcd. for $\mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{~F}_{6} \mathrm{C}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{H}_{46}$: C, 42.43; H, 4.55; N, 8.25. Found: C, 42.39; H, 4.57; N, 8.19. ESI-MS, m/z: 915.229, (z=1), [AgL2+H] ${ }^{+}$.

1.4. Synthesis of 2 and 3 :

Scheme S3. Schematic representation of synthesis of 2, 3.
0.048 g (0.098 mmol) Chloro(1,5-cyclooctadiene)rhodium(1) dimer was added to a dichloromethane solution containing $0.01 \mathrm{~g}(0.098 \mathrm{mmol}) \mathbf{1}$. The resulting mixture was stirred for 24 h in dark and subsequently filtered through a pad of celite to remove precipitated silver halide. The resulting orange solution was concentrated under reduced pressure and petroleum ether was added to induce precipitation. The solid obtained was washed with 15 mL of petroleum ether and dried under vacuum. Crystals suitable for X-ray diffraction were grown by slow diffusion of petroleum ether into a saturated dichloromethane solution of 2. Yield: 0.060 g (90%). Mp: $>200^{\circ} \mathrm{C}$. Anal Calcd. for $\mathrm{Rh}_{1} \mathrm{~S}_{1} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{C}_{26} \mathrm{H}_{35}$: C, 50.89 ; H, 5.75; N, 6.85 Found: C, $50.44 ; \mathrm{H}, 5.59 ; \mathrm{N}, 6.58$. ESI-MS, m/z: 613.146, (z=1), [M+H] ${ }^{+}$.
$0.061 \mathrm{~g}(1 \mathrm{mmol}) \mathbf{2}$ was dissolved in 10 mL dichloromethane and CO gas was bubbled through it for 30 minutes. The resulting pale yellow solution was concentrated under reduced pressure and petroleum ether was added to induce precipitation. The solid obtained was washed with 15 mL of petroleum ether and dried under vacuum. Yield: $0.050 \mathrm{~g}(90 \%) . \mathrm{Mp}:>200^{\circ} \mathrm{C}$. Anal Calcd. for $\mathrm{Rh}_{1} \mathrm{~S}_{1} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{C}_{19} \mathrm{H}_{23}: \mathrm{C}, 42.78 ; \mathrm{H}, 4.13 ; \mathrm{N}$, 7.49 Found: C, 42.54; H, 3.89; N, 7.21. ESI-MS, m/z: 562.041, (z=1), [M+H] ${ }^{+}$.

2. X-Ray Data Collection and Refinements:

Single-crystal X-ray studies were performed on a CCD Bruker SMART APEX diffractometer equipped with an Oxford Instruments low-temperature attachment. All data were collected at 100(2) K using graphite-monochromated Mo-K α radiation ($\lambda_{\alpha}=$ $0.71073 \AA$). The frames were indexed, integrated, and scaled using the SMART and SAINT software packages, ${ }^{4}$ and the data were corrected for absorption using the SADABS program. ${ }^{5}$ The structures were solved and refined with the SHELX suite of programs. ${ }^{6}$ All non hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms of ligands were included into geometrically calculated positions in the final stages of the refinement and were refined according to 'riding model'. SQUEEZE option in PLATON program was used to remove the disordered water and solvent molecules from the overall intensity data of compounds wherever necessary. ${ }^{7}$ Diamond 3.1 e software was used to produce the diagrams. ${ }^{8}$ CCDC numbers 1020182, 1020183, 1519782 contain the supplementary crystallographic data for compounds LH, 1 and 2. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S1. Molecular structure (50% probability thermal ellipsoids) of LH with important atoms labeled. Hydrogen atoms except H 2 are omitted for the sake of clarity.

Figure S2. X-ray structure (50% probability thermal ellipsoids) of compound 1. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (Å) and angles (deg): Ag2-Ag1 3.1184(7), Ag1-C2 2.071(7), Ag1-C20 2.066(6), Ag2-N3 2.071(5), Ag2-N6 2.094(5), S2-O3 1.422(7), S2-N6 1.536(6). C20-Ag1-C2 171.5(3), N3-Ag2-N6 178.6(2), N6-Ag2-Ag1 94.31(16), N3-Ag2-Ag1 87.08(15), C20-Ag1-Ag2 91.67(17), C2-Ag1-Ag2 96.8(2), O3-S2-O4 118.4(4), O2-S1-O1 121.0(5), N5-C20-N4 104.1(5), N2-C2-N1 106.4(7).

Figure S3. X-ray structure (50% probability thermal ellipsoids) of compound 2. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (Å) and angles (deg): Rh1-C2 2.012(2), Rh1-C19 2.097(2), Rh1-C20 2.120(3), Rh1-C23 2.214(2), Rh1-N3 2.227(2), Rh1-C24 2.241(3), N1-C2 1.363(3), N1-C1 1.384(3), N1-C10 1.436(3), S1-O1 1.4344(19), S1-O2 1.4423(18), S1-N3 1.552(2), S1-C9 1.854(3). C2 N1 C1 110.8(2), C2-N1C10 125.6(2), C1-N1-C10 123.5(2), O1-S1-O2 118.44(11), O1-S1-N3 110.30(11), O2-S1-N3 115.59(11), O1-S1-C9 100.38(11), O2-S1-C9 101.89(11), N3-S1-C9 108.11(12), C2-Rh1-C19 92.13(10), C2-Rh1-C20 96.29(10), C19-Rh1-C20 38.85(10), C2-Rh1-C23 161.24(10), C19-Rh1C23 97.18(10). C20-Rh1-C23 81.19(10). C2-Rh1-N3 82.42(9).

Table S1. Crystallographic data and pertinent refinement parameters for LH, 1, 2.

	LH	1	2
Empirical Formula	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{RhS}$
Formula Weight	403.46	1020.65	613.54
Crystal System	Monoclinic	Orthorhombic	Orthorhombic
Space Group	$P 2_{1}$	$P 2,2{ }_{2}{ }_{1}$	$P 2,2,2{ }_{1}$
a (Å)	10.6474(13)	8.3827(9)	10.1441(5)
b (A)	7.2736(9)	21.062(2)	12.9810(6)
$c(A)$	12.9621(16)	24.562(3)	20.3247(9)
α (deg)	90.00	90.00	90.00
β (deg)	90.557(4)	90.00	90.00
γ (deg)	90.00	90.00	90.00
$\mathrm{V}\left(\AA^{3}\right)$	1003.8(2)	4336.7(8)	2676.4(2)
Z	2	4	4
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.335	1.563	1.523
$\mu(\mathrm{mm}-1)$	0.206	1.068	0.765
F(000)	424	2064	1264
Reflections			
Collected	7334	42069	33094
Independent	3673	8305	6642
Observed [I > 2σ (I)	3123	7817	6387
No. of variables	249	515	330
GooF	1.071	1.102	1.061
$\mathrm{R}_{\text {int }}$	0.0457	0.0420	0.0268
Final R indices	$\begin{aligned} & R 1=0.0408 \\ & w R 2=0.0893 \end{aligned}$	$\begin{aligned} & R 1=0.0479 \\ & w R 2=0.1179 \end{aligned}$	$\begin{aligned} & R 1=0.0217 \\ & w R 2=0.0481 \end{aligned}$
$[1>2 \sigma(1)]^{\text {a }}$			
R indices (all data) ${ }^{\text {a }}$	$\begin{aligned} & R 1=0.0553 \\ & w R 2=0.1085 \end{aligned}$	$\begin{aligned} & R 1=0.0512 \\ & w R 2=0.1196 \end{aligned}$	$\begin{aligned} & R 1=0.0545 \\ & w R 2=0.0487 \end{aligned}$

3. Catalytic Studies:

3.1. General procedure for intermolecular hydroalkoxylation: Alkyne (1 mmol), mesitylene (internal standard, 1 mmol) and $\mathrm{MeOH}(1 \mathrm{~mL})$ were sequentially added to a 1 mL DMAc solution of the catalyst $\mathbf{3}(0.02 \mathrm{mmol})$ and the closed reaction vessel was heated at $70^{\circ} \mathrm{C}$ for 24 h . After completion of reaction, the solutions were diluted to 10 mL with $\mathrm{Et}_{2} \mathrm{O}$ and washed with LiCl solution ($0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL}$). The organic phase was dried with saturated brine solution (20 mL) and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. Products were analyzed using GC-MS and ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure S4. Reaction profile and E-Z ratios of products at different time intervals. During the initial part of the reaction (till overall yield is ca. 20\%), Z product is the major (kinetically stable). However, as the reaction proceeds, E product increases (thermodynamic product).

Table S2. Screening of catalysts ${ }^{\text {a }}$				
Entry	Catalyst	Loading (\%)	Time (h)	Yield (\%) ${ }^{\text {b }}$
1	$[\operatorname{Rh}(\mu-\mathrm{Cl})(\mathrm{COD})]_{2}$	5	24	-
2	$\left[\operatorname{Rh}(\mu-\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2}$	5	24	-
3	$\left[\mathrm{RhL}^{\prime}(\mathrm{COD}) \mathrm{Cl}\right]^{\text {c }}$	5	24	-
4	2	2	24	<5
5	3	2	24	41
${ }^{\text {aph }}$ Pheny catalys stipulat mesityl	cetylene (1 mmol) and the closed re time. ${ }^{b} \mathrm{GC}$ yields e (1 mmol). $\mathrm{cL}^{\prime}=\mathrm{N}, \mathrm{N}$	nd MeOH (1 on vessel reported in p limethylimida) were heated nce of in e-2-ylide	uentially to ${ }^{\circ} \mathrm{C}$ for the al standard

Table S3. Screening of solvents ${ }^{a}$

Entry	Co-Solvent (1mL)	Time (h)	Yield (\%) ${ }^{\text {b }}$
1	Toluene	24	41
2	THF	24	39
3	Acetonitrile	24	24
4	1,4 Dioxane	24	51
5	DMSO	24	44
6	DMF	24	59
7	DMAc	24	86
8	DMAc	48	99
9	Et3N	24	43
10	Pyridine	24	23
11	DMAc	24	12^{c}
12	-	24	<10

aPhenylacetylene (1 mmol) and $\mathrm{MeOH}(1 \mathrm{~mL})$ were sequentially added to a 1 mL co-solvent solution of the catalyst $3(0.02 \mathrm{mmol})$ and the closed reaction vessel was heated at $70^{\circ} \mathrm{C}$ for the stipulated time. ${ }^{\mathrm{b} G C}$ yields are reported in presence of internal standard mesitylene (1 mmol). ${ }^{c}$ Reaction vessel exposed to air.

3.2. Addition of benzoic acid to terminal alkyne:

Benzoic acid (1.1 mmol), phenylacetylene (1 mmol) were sequentially added to a 2 mL choloroform solution of the catalyst $3(0.02 \mathrm{mmol})$ and the closed reaction vessel was heated at $70^{\circ} \mathrm{C}$ for 24 h . GC yields using 1 mmol dodecane as internal standard showed 97:3 ratio of 1-phenylvinyl benzoate: styryl benzoate. After completion of reaction, the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (eluent: hexane: ethyl acetate $=10: 1$) to give 1-phenylvinyl benzoate in 90% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 5.21$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.63 (d, $J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.68(\mathrm{~m}, 1 \mathrm{H})$, 8.21-8.27 (m, 2H). $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,125 \mathrm{MHz}\right): \delta 102.4,125.0,128.68,128.74,129.1$, 129.6, 130.3, 133.7, 134.4, 153.3, 164.9.

3.3. Acidification Reaction:

Phenylacetylene (1 mmol) HCl in ether $(0.1 \mathrm{~mL}$) was added to a 2 mL methanolic solution of the catalyst $3(0.02 \mathrm{mmol})$ and the closed reaction vessel was heated at $70^{\circ} \mathrm{C}$ for 24 h . GC yields using 1 mmol dodecane as internal standard showed complete conversion to acetophenone.

3.4. Substrate preparation for Intramolecular Hydroalkoxylation:

To a mixture of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, $\mathrm{Cul}(38.0 \mathrm{mg}$, 0.2 mmol) and 2-iodophenol ($2.2 \mathrm{~g}, 10 \mathrm{mmol}$) in 60 mL of THF was added phenylacetylene $(1.3 \mathrm{~mL}, 12 \mathrm{mmol})$ at room temperature. A 0.5 M solution of aqueous ammonia ($40 \mathrm{~mL}, 20 \mathrm{mmol}$) was then added dropwise and stirring was continued for 10 h at room temperature. The reaction mixture was extracted with ethyl acetate, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: hexane: ethyl acetate $=10: 1$) to afford 2-(phenylethynyl)phenol. Yield ($1.88 \mathrm{~g}, 97 \%$), brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30$ $(\mathrm{m}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H})$.

To a solution of 2-iodophenol $(3.00 \mathrm{~g}, 13.6 \mathrm{mmol})$ in THF/Et3N (250 $\mathrm{mL}, 4: 1$) was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.19 \mathrm{~g}, 0.27 \mathrm{mmol})$, Cul (0.11 g , $0.55 \mathrm{mmol})$ and 1-ethynyl-4-methylbenzene ($3.16 \mathrm{~g}, 27.3 \mathrm{mmol}$) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with DCM. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by chromatography on silica gel (eluent: hexane: ethyl acetate $=95: 5$) to afford 2.82 g (99\%) of 2-(p-tolylethynyl)phenol as a yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-$ $7.32(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.7 \mathrm{~Hz} .1 \mathrm{H})$, $6.82(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.

2-((4-methoxyphenyl)ethynyl)phenol was prepared similar to the procedure followed for 2 -(p-tolylethynyl)phenol and using 1-ethynyl-4-methoxybenzene as the alkyne substrate. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.99(\mathrm{~m}, 1 \mathrm{H})$, 7.23-7.27 (m, 1H), 7.40 (dd, J=7.6, 1.6 Hz, 1H), 7.46-7.49 (m, 2H).

Imidazole (1.5 equiv, 15 mmol) was added to a mixture of 2 iodophenol (1.0 equiv, 10 mmol) and tert-butyldimethylsilyl chloride (1.1 equiv, 11 mmol) in $\mathrm{DCM}(15 \mathrm{~mL})$ at room temperature. The mixture was stirred for about 1 h (determined by TLC). Then the solvent was evaporated under vacuum, and the residue was purified by column chromatography on silica gel using hexane as the eluent to give pure tert-butyl(2-iodophenoxy)dimethylsilane as a colorless oil. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (0.01 equiv, 0.05 mmol) and Cul (0.03 equiv, 0.15 mmol) were added to solution of tert-butyl(2-iodophenoxy)dimethylsilane (1.0 equiv, 5 mmol) and 3,3-dimethylbut-1-yne (1.2 equiv, 6 mmol) in N, N-diisopropylethylamine (15 mL). The mixture was stirred at $60^{\circ} \mathrm{C}$ until the reaction was complete as determined by TLC. Then the mixture was filtered through a pad of celite. Removal of solvent under reduced pressure afforded a residue, which is purified by chromatography on silica gel (eluent: hexane: ethyl acetate $=10: 1$) to afford the corresponding TBDMS-protected 2 alkynylphenol. The TBDMS-protected 2-alkynylphenol was dissolved in DCM, and then tetrabutylammonium fluoride in DCM ($1 \mathrm{~mol} / \mathrm{L}$) was added. The resulting mixture was
stirred at room temperature for 5 minutes. Removal of solvent under reduced pressure afforded residue, which is purified by chromatography on silica gel (eluent: hexane: ethyl acetate $=4: 1$) to afforded the corresponding 2-(3,3-dimethylbut-1-ynyl)phenol. Yield: 30\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34$ (s, 9H), 5.79 (br, 1H), 6.82 (dd, 1H, $J 1=J 2=7.6 \mathrm{~Hz}$), $6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=\mathrm{J} 2=7.2 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 7.6 Hz). Adapted from Q. Wang, Y. Jiang, R. Sun, X.-Y. Tang and M. Shi, Chem. Eur. J., 2016, 22, 14739.

To a mixture of phenylacetylene (10 mmol) and o-iodobenzyl alcohol $1(10 \mathrm{mmol})$ in piperidine $(20 \mathrm{~mL})$ were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ $(70.2 \mathrm{mg}, 0.1 \mathrm{mmol})$. The mixture was stirred at $70^{\circ} \mathrm{C}$ under argon for 12 h . After that cold water (30 mL) was then added to the mixture, and the resulting aqueous mixture was extracted with ether ($20 \mathrm{~mL} \times 3$). The combined organic extract was washed with hydrochloric acid ($20 \mathrm{~mL} \times 3$), sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). The solvent was removed in vacuo. The red residual oil was purified by silica gel chromatography using eluent: hexane: ethyl acetate $=10: 1$ as eluent to give pure (2(phenylethynyl)phenyl)methanol. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.38-$ $7.19(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
3.3. General procedure for intramolecular hydroalkoxylation: Alkynol (1 mmol), mesitylene (internal standard, 1 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol})$ were sequentially added to a 2 mL choloroform solution of the catalyst $3(0.02 \mathrm{mmol})$ and the closed reaction vessel was heated at $70^{\circ} \mathrm{C}$ for 24 h . After completion of reaction, the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (eluent: hexane: ethyl acetate $=10: 1$) to give desired product.

4. Computational Studies:

Calculations were performed using density functional theory (DFT) with Becke's threeparameter hybrid exchange functional ${ }^{9}$ and the Perdew and Wang correlation functional (PW91). ${ }^{10}$ Geometry-optimized structures were characterized fully via analytical frequency calculations as minima on the potential energy surface. The double- ζ basis set of Hay and Wadt (LanL2DZ) with a small core (1s2s2p3s3p3d4s4p4d) effective core potential (ECP) ${ }^{11}$ was used for Ru. The ligand atoms $\mathrm{H}, \mathrm{N}, \mathrm{C}, \mathrm{O}, \mathrm{S}$ and F atoms were described using the $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets, were employed. ${ }^{12}$ Phenylacetylene was chosen as the model substrate and N, N-dimethylacetamide as the solvent. The mesityl group of the ligand was replaced by methyl, the isopropyl group removed to reduce the computational cost. All optimization calculations were performed with the Gaussian 09 (G09) suite of programs. ${ }^{13}$ Solvent effects were accounted using $N, N-$ dimethylacetamide $(\varepsilon=37.78)$ with a SMD model. ${ }^{14}$ Gas phase optimized structures were taken as the initial geometries for optimization in solution. ${ }^{15}$ All transition states reported were found to have a single imaginary frequency.

4.2. Energy profile for the reaction:

Figure S5. Computed reaction profile for intermolecular hydroalkoxylation catalyzed by 3 . Energies are shown in $\mathrm{kcal} / \mathrm{mol}$.

4.3. Cartesian coordinates for intermediates and transition states:

Intermediate A			
Energy =-1815.83865697 Hartree (in DMAc)			
XYZ coordinates			
N	3.269019000	-1.635952000	0.118162000
S	1.029173000	2.148961000	-0.205226000
Rh	0.305697000	-0.957123000	-0.653740000
F	0.194694000	4.670499000	-0.719001000
0	2.138162000	2.755642000	0.581328000
C	3.262574000	-1.257713000	2.305573000
H	3.484077000	-1.120205000	3.358738000
N	1.988543000	-1.086512000	1.779077000
\bigcirc	1.203244000	1.851413000	-1.649761000
C	-0.295852000	3.527862000	-0.184414000
F	-0.682275000	3.787200000	1.096564000
C	0.791795000	-0.591964000	2.465002000
H	0.979839000	-0.596718000	3.548720000
H	-0.028964000	-1.292188000	2.244575000
N	0.306536000	0.881984000	0.523510000
F	-1.397233000	3.167891000	-0.888846000
C	1.978929000	-1.307617000	0.429604000
C	4.071129000	-1.609458000	1.257640000
H	5.132567000	-1.831287000	1.223946000
C	0.420471000	0.827881000	1.990356000
H	1.177904000	1.542372000	2.353740000
C	0.329281000	-2.603651000	-1.459741000
C	3.762887000	-1.912977000	-1.231252000
H	4.600418000	-1.240450000	-1.464585000
H	2.947571000	-1.722948000	-1.938234000
H	4.091232000	-2.959746000	-1.312558000
H	-0.546555000	1.081958000	2.463218000
0	0.348660000	-3.671867000	-1.945555000

C	-1.160618000	-0.109449000	-2.072719000
C	-1.891999000	-0.557478000	-1.160130000
H	-0.811664000	0.352014000	-2.981496000
C	-2.993944000	-0.881987000	-0.295919000
C	-4.097450000	0.005945000	-0.222760000
C	-3.018514000	-2.074888000	0.465932000
C	-5.196199000	-0.302927000	0.588226000
H	-4.077122000	0.930720000	-0.802693000
C	-4.124289000	-2.374857000	1.271520000
H	-2.165856000	-2.754834000	0.411348000
C	-5.215248000	-1.491628000	1.337940000
H	-6.040311000	0.389756000	0.636861000
H	-4.134701000	-3.302485000	1.849712000
H	-6.075182000	-1.727839000	1.969690000

Intermediate \mathbf{B}

Energy $=-1815.82573601$ Hartree (in DMAc)			
XYZ coordinates			
N	2.790912000	-2.501456000	-0.103805000
S	1.987176000	1.633040000	-0.051410000
Rh	0.092011000	-0.808074000	-0.643813000
F	2.175750000	4.230384000	-0.770852000
O	3.191858000	1.836624000	0.798172000
C	2.996123000	-2.300577000	2.094990000
H	3.293534000	-2.316305000	3.138334000
N	1.821018000	-1.702907000	1.659645000
O	2.115129000	1.174823000	-1.462068000
C	1.269995000	3.394919000	-0.211006000
F	0.946161000	3.875918000	1.019643000
C	0.860826000	-0.938325000	2.461421000
H	1.089517000	-1.094329000	3.526030000
H	-0.139757000	-1.346909000	2.252762000
N	0.802899000	0.780668000	0.667433000
F	0.151977000	3.400574000	-0.976087000
C	1.683695000	-1.811618000	0.302530000
C	3.609389000	-2.808795000	0.980228000
H	4.546112000	-3.344586000	0.867766000
C	0.896307000	0.569693000	2.114760000

H	1.822421000	1.017559000	2.511488000
C	-0.461960000	-2.243110000	-1.669699000
C	3.119679000	-2.812521000	-1.495862000
H	4.083925000	-2.356756000	-1.761495000
H	2.342021000	-2.386594000	-2.138727000
H	3.168286000	-3.901584000	-1.641858000
H	0.037205000	1.039622000	2.628597000
O	-0.803578000	-3.158129000	-2.310158000
C	-1.554850000	0.056644000	-0.921114000
C	-2.766373000	0.586854000	-0.958319000
H	-2.831953000	1.445108000	-1.647340000
C	-3.989036000	0.223328000	-0.218419000
C	-5.167006000	0.982467000	-0.403354000
C	-4.026030000	-0.877189000	0.671450000
C	-6.345654000	0.653418000	0.281295000
H	-5.155000000	1.835235000	-1.087962000
C	-5.205173000	-1.202311000	1.351266000
H	-3.124378000	-1.477143000	0.819162000
C	-6.371693000	-0.439567000	1.161816000
H	-7.245755000	1.253642000	0.124393000

Energy $=-\mathbf{- 1 9 3 1 . 5 6 8 6 0 7 7 8 \text { Hartree (in DMAc) }}$			
XYZ coordinates			
N	0.593361000	3.481755000	0.738771000
S	1.954265000	-1.018315000	1.089488000
Rh	-0.405443000	0.723251000	-0.534653000
F	3.364314000	-3.139722000	1.928693000
O	2.769289000	-0.029096000	1.817503000
C	2.528452000	3.762241000	-0.311868000
H	3.488172000	4.091700000	-0.697184000
N	1.887655000	2.608405000	-0.755700000
O	0.713814000	-1.602959000	1.609948000
C	3.118291000	-2.516002000	0.764681000
F	4.290384000	-2.098168000	0.227026000
C	2.360914000	1.663836000	-1.763992000
H	3.231414000	2.101889000	-2.276835000
H	1.549164000	1.513468000	-2.494121000

		-0.387300000	-0.496014000
N	1.628402000	-3.379187000	-0.094938000
F	2.532492000	2.408233000	-0.110918000
C	0.686435000	4.317452000	0.629403000
C	1.703607000	5.221150000	1.220072000
H	1.814215000	0.313731000	-1.154417000
C	2.776463000	0.485071000	-0.402921000
C	3.559553000	1.603221000	-1.004717000
C	-1.924386000	3.701962000	1.657193000
H	-0.522431000	3.769508000	2.691227000
H	-1.201261000	2.845404000	1.568083000
H	-1.059488000	4.625889000	1.395190000
H	3.187153000	-0.329764000	-1.948702000
O	-2.854605000	2.225672000	-1.359347000
C	-1.206385000	-1.102095000	-1.117867000
C	-2.390979000	-1.742732000	-0.894666000
H	1.170749000	-1.130103000	-1.096141000
C	-0.452138000	-3.048627000	-2.467078000
H	0.465922000	-3.327722000	-3.002557000
H	-0.653401000	-3.772582000	-1.659052000
H	-1.298401000	-3.040513000	-3.174191000
O	-0.221458000	-1.729479000	-1.939157000
H	-2.612638000	-2.683493000	-1.413527000
C	-3.468042000	-1.289148000	-0.003803000
C	-4.806132000	-1.675179000	-0.273236000
C	-3.233799000	-0.517877000	1.163094000
C	-5.863078000	-1.279998000	0.557168000
H	-5.013990000	-2.282761000	-1.159930000
C	-4.292239000	-0.117902000	1.990536000
H	-2.203219000	-0.259583000	1.420415000
C	-5.614258000	-0.491040000	1.693715000
H	-6.884885000	-1.587446000	0.316226000
H	-4.081312000	0.471777000	2.887951000
H	-6.436466000	-0.185053000	2.346174000

Intermediate \mathbf{D}

Energy $=-1931.56334036$ Hartree (in DMAc)
XYZ coordinates

N	-3.459360000	0.675786000	-1.074600000
S	0.560867000	2.250730000	0.258629000
Rh	-1.073800000	-0.650580000	0.602638000
F	2.450729000	4.106315000	0.622510000
O	-0.209333000	3.070679000	-0.693334000
C	-2.557424000	0.785897000	-3.098853000
H	-2.315609000	0.941787000	-4.145356000
N	-1.684736000	0.175332000	-2.203169000
O	0.282022000	2.192593000	1.698710000
C	2.383159000	2.856627000	0.131363000
F	2.791804000	2.862486000	-1.159799000
C	-0.346514000	-0.338298000	-2.483166000
H	-0.195027000	-0.357224000	-3.573187000
H	-0.285301000	-1.368575000	-2.101071000
N	0.616196000	0.620383000	-0.357959000
F	3.189627000	2.045374000	0.842772000
C	-2.221929000	0.099591000	-0.937100000
C	-3.683422000	1.095823000	-2.384325000
H	-4.606707000	1.575060000	-2.693435000
C	0.770438000	0.507447000	-1.847192000
H	0.758939000	1.515752000	-2.282973000
C	-2.293656000	-1.798722000	1.299295000
C	-4.409338000	0.848295000	0.022759000
H	-4.727504000	1.899364000	0.081452000
H	-3.898467000	0.571052000	0.952476000
H	-5.289188000	0.203234000	-0.121564000
H	1.739704000	0.033721000	-2.062168000
O	-3.103356000	-2.546504000	1.712131000
C	0.430002000	-1.206276000	1.933449000
H	1.317827000	0.069076000	0.201817000
C	-0.746108000	-0.309773000	3.846496000
H	-0.440600000	0.029255000	4.846895000
H	-1.574561000	-1.031084000	3.943086000
H	-1.069335000	0.547359000	3.236628000
C	1.679313000	-1.632989000	1.501736000
O	0.410441000	-0.942368000	3.279796000
H	2.498084000	-1.569262000	2.232758000
C	2.026222000	-2.270376000	0.227338000
C	3.369307000	-2.216639000	-0.243844000
C	1.098881000	-3.013086000	-0.556521000
C	3.755078000	-2.835708000	-1.439753000
H	4.114756000	-1.679272000	0.351296000
C	1.488137000	-3.628911000	-1.755807000
H	0.077526000	-3.129374000	-0.184877000
C	2.814790000	-3.541114000	-2.213675000
H	4.797090000	-2.773720000	-1.767248000
H	0.753968000	-4.210617000	-2.322212000
H	3.117592000	-4.036118000	-3.140000000

		-0.854895000	4.853395000
H	1.803966000	0.374292000	3.706075000
H	2.434480000	-0.684117000	0.964410000
C	2.118795000	-0.890081000	3.036329000
O	0.888088000	-0.248537000	1.516212000
H	2.963741000	-1.437357000	-0.245041000
C	2.571064000	-1.011945000	-0.909252000
C	3.748894000	-2.566919000	-0.765362000
C	1.894303000	-1.678116000	-2.046543000
C	4.225432000	-0.148604000	-0.519431000
H	4.297535000	-3.229149000	-1.908359000
H	2.370354000	-2.928370000	-0.251554000
C	0.999732000	-2.790078000	-2.559792000
H	3.534767000	-1.328492000	-2.532515000
H	5.140723000	-4.108051000	-2.279396000
H	1.834769000	-3.315182000	-3.442554000

Intermediate \mathbf{E}

Energy $=-1931.58588545$ Hartree (in DMAc)			
XYZ coordinates			
N	-2.117978000	-3.128034000	0.382604000
S	-2.221281000	1.432786000	0.281855000
Rh	0.099463000	-0.817611000	0.358410000
F	-2.772579000	4.072493000	0.538776000
O	-3.668167000	1.228606000	-0.001268000
C	-2.934835000	-3.003970000	-1.675030000
H	-3.483978000	-3.100358000	-2.605997000
N	-1.875498000	-2.120273000	-1.513342000
O	-1.710222000	1.369419000	1.676139000
C	-1.961650000	3.268887000	-0.186563000
F	-2.236674000	3.465482000	-1.507281000
C	-1.390043000	-1.130015000	-2.474083000
H	-1.829040000	-1.348945000	-3.458913000
H	-0.296556000	-1.243950000	-2.541350000
N	-1.217449000	0.610511000	-0.701401000
F	-0.676647000	3.654206000	0.031928000
C	-1.361804000	-2.172495000	-0.244905000

		r	-0.475623000
C	-3.083152000	-3.649179000	-0.165226000
H	-3.786597000	-4.414861000	-2.042093000
C	-1.750632000	0.302881000	-2.067910000
H	-2.847107000	0.421466000	1.108397000
C	1.176620000	-2.098857000	1.782058000
C	-1.964000000	-3.523574000	2.286132000
H	-2.940330000	-3.489789000	2.262917000
H	-1.286729000	-2.808778000	1.854755000
H	-1.543975000	-4.538094000	-2.797681000
H	-1.318042000	0.986242000	1.565562000
O	1.850143000	-2.946558000	0.733109000
C	1.391871000	0.658825000	-1.282618000
H	1.448305000	1.344642000	3.122052000
C	1.220390000	0.605340000	3.896096000
H	1.454026000	1.346418000	3.337336000
H	1.721280000	-0.347994000	3.002898000
H	0.138276000	0.473970000	-0.389633000
C	2.084386000	1.415415000	1.888706000
O	1.773388000	1.159263000	-0.110979000
H	2.188054000	2.477122000	-0.662480000
C	3.461458000	0.813807000	-0.081425000
C	4.615046000	1.376424000	-1.484815000
C	3.600991000	-0.321860000	-0.326638000
C	5.881770000	0.823426000	0.560213000
H	4.520588000	2.256990000	-1.729587000
C	4.866188000	-0.876948000	-1.927461000
H	2.709523000	-0.774560000	-1.151114000
C	6.011302000	-0.305823000	0.125100000
H	6.767633000	1.277784000	-2.371493000
H	4.956893000	-1.757291000	-1.342647000
H	6.997410000	-0.736704000	

Transition State TSEF

Energy $=-1931.53664829$ Hartree (in DMAc)			
XYZ coordinates			
N	-3.907001000	0.461708000	-0.559142000
S	0.815250000	1.972393000	0.916984000

Rh	-1.102324000	-0.672628000	0.310779000
F	3.236715000	3.072714000	1.364261000
O	0.152376000	3.281440000	1.147694000
C	-3.451277000	1.524172000	-2.451960000
H	-3.448918000	2.104334000	-3.368993000
N	-2.309757000	0.916478000	-1.942216000
O	1.129140000	1.093916000	2.090335000
C	2.575843000	2.490588000	0.339311000
F	2.517953000	3.380596000	-0.689171000
C	-0.951163000	1.017137000	-2.472884000
H	-0.999416000	1.530395000	-3.444611000
H	-0.563460000	-0.001417000	-2.628810000
N	0.194710000	1.047432000	-0.265454000
F	3.289967000	1.414199000	-0.075778000
C	-2.563243000	0.258871000	-0.767335000
C	-4.464335000	1.227999000	-1.580255000
H	-5.514473000	1.500587000	-1.595228000
C	-0.031452000	1.792745000	-1.526929000
H	-0.464787000	2.792996000	-1.343907000
C	-2.113529000	-2.170326000	0.543296000
C	-4.660781000	-0.029199000	0.593751000
H	-5.329899000	0.763133000	0.957800000
H	-3.945160000	-0.290244000	1.381591000
H	-5.251691000	-0.918010000	0.326130000
H	0.923818000	1.932503000	-2.065316000
O	-2.757593000	-3.149696000	0.643930000
C	0.406752000	-1.603616000	1.509067000
H	1.180328000	-0.630691000	1.411486000
C	-0.745836000	-1.115701000	3.574146000
H	-1.053099000	-1.720173000	4.438601000
H	-1.616067000	-0.853865000	2.949718000
H	-0.246951000	-0.192978000	3.907224000
C	1.680723000	-2.072969000	1.108178000
O	0.176986000	-1.934826000	2.829515000
H	2.323216000	-2.440871000	1.922407000
C	2.247110000	-2.157216000	-0.237396000
C	3.651681000	-2.293722000	-0.372207000
C	1.446267000	-2.188815000	-1.405334000
C	4.240448000	-2.427904000	-1.634654000
H	4.278491000	-2.285011000	0.524172000
C	2.038910000	-2.328479000	-2.665449000
H	0.358551000	-2.111576000	-1.294787000
C	3.435158000	-2.444710000	-2.786518000
H	5.325454000	-2.524856000	-1.721641000
H	1.409904000	-2.367883000	-3.559078000
H	3.892457000	-2.562585000	-3.772449000

Intermediate F			
	? Q		
Energy =-1931.60355417 Hartree (in DMAc)			
XYZ coordinates			
N	-3.454441000	-0.517447000	-0.690976000
S	-0.477124000	2.149011000	0.118420000
Rh	-0.534437000	-1.062075000	0.375282000
F	0.565047000	4.524904000	0.877418000
\bigcirc	-1.370818000	2.920507000	-0.788849000
C	-3.042100000	-0.011456000	-2.812519000
H	-3.067297000	0.278334000	-3.857707000
N	-1.866779000	-0.355272000	-2.158228000
\bigcirc	-0.898515000	1.845156000	1.510957000
C	0.992179000	3.349418000	0.363946000
F	1.614248000	3.599748000	-0.820068000
C	-0.497380000	-0.303678000	-2.673838000
H	-0.535622000	-0.162660000	-3.764263000
H	-0.025713000	-1.274717000	-2.458102000
N	0.199975000	0.815066000	-0.538807000
F	1.915653000	2.827058000	1.217769000
C	-2.103801000	-0.660224000	-0.845438000
C	-4.046593000	-0.118914000	-1.887533000
H	-5.112668000	0.062652000	-1.974227000
C	0.315359000	0.835130000	-2.011353000
H	-0.025027000	1.799325000	-2.421225000
C	-1.254646000	-2.639594000	0.960873000
C	-4.174739000	-0.691489000	0.570037000
H	-4.726413000	0.227877000	0.812516000
H	-3.436555000	-0.882594000	1.356992000
H	-4.872955000	-1.538693000	0.499463000
H	1.371696000	0.688335000	-2.295746000
0	-1.736094000	-3.654617000	1.302581000
C	1.077867000	-0.811623000	2.024881000
H	1.300328000	0.253014000	1.894302000
C	0.017198000	-0.165326000	4.048468000
H	-0.149761000	-0.605599000	5.039475000

	-0.937474000	0.126929000	3.587334000	
H	0.664188000	0.722920000	4.137617000	
C	1.513031000	-1.793380000	1.127713000	
O	0.665116000	-1.192641000	3.269040000	
H	1.385159000	-2.826297000	1.466088000	
C	2.480197000	-1.620956000	0.021677000	
C	2.716091000	-2.717422000	-0.844270000	
C	3.234728000	-0.440875000	-0.182026000	
C	3.653989000	-2.634961000	-1.881970000	
H	2.152227000	-3.642882000	-0.694186000	
C	4.171126000	-0.359025000	-1.221476000	
H	3.098544000	0.413284000	0.482326000	
C	4.385521000	-1.451669000	-2.079526000	
H	3.818649000	-3.498009000	-2.532833000	
H	4.747171000	0.560990000	-1.352994000	
H	5.123704000	-1.385802000	-2.882905000	

MeOH

Energy $==-115.7222352$ Hartree (in DMAc)			
XYZ coordinates			
H	-1.041426000	-0.546804000	0.902300000
C	-0.671075000	-0.020447000	-0.000030000
H	-1.085485000	0.999337000	-0.000809000
H	1.150934000	-0.767307000	0.000318000
H	-1.041233000	-0.548578000	-0.901356000
O	0.755458000	0.123254000	-0.000034000

5. References:

1 G. Giordano, R. H. Crabtree, Inorg. Synth. 1990, 28, 90.
2 D. H. Nguyen, N. Lassauque, L. Vendier, S. Mallet-Ladeira, C. L. Berre, P. Serp, P. Kalck, Eur. J. Inorg. Chem. 2014, 326.

3 A. Bittermann, D. Baskakov, W. A. Herrmann, Organometallics 2009, 28, 5107. 4 SAINT+ Software for CCD difractometers; Bruker AXS: Madison, WI, 2000.
5 G. M. Sheldrick, SADABS Program for Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1999.
6 a) SHELXTL Package v. 6.10; Bruker AXS: Madison, WI, 2000; b) G. M. Sheldrick, SHELXS-86 and SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
7 A. L. Spek, Acta Cryst. 2009, D65, 148.
8 K. Bradenburg, Diamond, version 3.1e; Crystal Impact GbR, Bonn, Germany, 2005.

9 A. D. Becke, Phys. Rev. A 1988, 38, 3098.
10 J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
11 a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270; b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284; c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.

12 J. S. Binkley, J. A. Pople, W. J. Hehre, J. Am. Chem. Soc. 1980, 102, 939.
13 Gaussian 09, Revision C.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378. a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999; b) J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027.

6. Spectroscopic Characterization

X: parts per Million : 1 H

—— RhNTf_1 SOLID

X : parts per Million : 1H

$\begin{array}{llllllll}220.0 & 210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0\end{array}$
$160.0 \|^{150.0} 140.0$

X : parts per Million : 13C

X : parts per Million : 1H

X : parts per Million : 13C

parts per Million : 1H

