
HAL Id: hal-01517504
https://univ-rennes.hal.science/hal-01517504v1

Submitted on 24 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Waves and rays in plano-concave laser cavities: II. A
semiclassical approach

A. Pascal, S. Bittner, B. Dietz, A. Trabattoni, C. Ulysse, Marco Romanelli,
Marc Brunel, J. Zyss, M. Lebental

To cite this version:
A. Pascal, S. Bittner, B. Dietz, A. Trabattoni, C. Ulysse, et al.. Waves and rays in plano-concave
laser cavities: II. A semiclassical approach. European Journal of Physics, 2017, 38 (3), pp.034011.
�10.1088/1361-6404/aa609d�. �hal-01517504�

https://univ-rennes.hal.science/hal-01517504v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

70
1.

00
11

8v
1 

 [
ph

ys
ic

s.
op

tic
s]

  3
1 

D
ec

 2
01

6

Waves and rays in plano-concave laser cavities,

Part II: a semiclassical approach.

A. Pascal1, S. Bittner2, B. Dietz3, A. Trabattoni1, C.

Ulysse4, M. Romanelli5, M. Brunel5, J. Zyss1, and M.

Lebental,1

1 Laboratoire de Photonique Quantique et Moléculaire, CNRS UMR 8537,
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Abstract. This second paper on the Fabry-Perot cavity presents a semi-classical
approach, which means that we consider the transition from wave optics to
geometrical optics. The basic concepts are the periodic orbits and their stability.
For the plano-concave Fabry-Perot cavity in the paraxial approximation, the
derivation of the trace formula demonstrates that the spectrum is based only
on the axial periodic orbit and its repetitions. Experiments with micro-lasers
illustrate the relation to periodic orbits. The methods presented in this paper are
not limited to laser cavities and can be applied to a large range of wave systems.

PACS numbers:
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1. Introduction

In this second contribution on the Fabry-Perot cavity, we propose to develop a com-
plementary approach, called semi-classical physics, which turns out to be of broad
validity and applicability [1, 2]. These techniques were developed in the early birth
of quantum physics [3] and were extended to almost all domains where a transition
from a wave description to geometrical concepts makes sense, from nuclear physics [4]
to acoustics [5] and hydrodynamics [6], and even in quantum gravity [7]. In electro-
magnetism, it simply corresponds to the transition from wave optics to geometrical
optics.

http://arxiv.org/abs/1701.00118v1
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In this article, we illustrate these methods on the well-known Fabry-Perot cavity
and describe its features from an unusual perspective. The theory is compared with
experiments based on microcavity lasers [8, 9]. These microlasers are not to be viewed
simply as downscaled versions of large laser cavities, such as studied in Part I [10], but
are also permit a wealth of quasi-unlimited cavity shapes, which are defined by their
external boundary. Such shapes can be tailored to any geometry of interest, either in
a planar two-dimensional geometry as studied in this article or in three dimensions,
the latter an emerging field beyond the scope of this article [11]. Optical microcavities
have been studied in great depth over the last two decades by means of a dual per-
spective based on ray optics and wave optics, in the same spirit as for the macroscopic
cavities discussed in Part I. This dual approach has led to a confrontation of the two
points of view, as in Part I, driven by the need to ensure compatibility and to explore
the relevant connections between these two approaches. The main differences to Part
I are, first, that the relations between the spectrum of the cavity and periodic orbits
are explored and, second, that modes beyond a paraxial description are observed ex-
perimentally.

The toolbox for connecting ray optics with a modal picture has been developed
since the seventies within the framework of semiclassical physics [1]. Initially triggered
by nuclear physics where statistical regularities were shown to underpin the complex-
ity of the spectra of nuclei [4], it was later applied to connect the spectra of closed
microwave cavities with the periodic orbits of classical billiards [12], and more recently
to the case of open optical cavities where radiation is only partially confined by re-
flections at the dielectric interfaces [13]. The density of states, a familiar notion in
classical as well as quantum physics, in optics and solid state physics alike, can be con-
nected to the set of all periodic orbits, which are purely classical quantities, by virtue
of the celebrated trace formula, which has been proposed in the seventies [14, 15], and
progressively extended to a broad variety of quantum- and wave-mechanical systems.

This trace formula is the cornerstone of a semiclassical approach to resonators,
but its implementation is far from obvious. Indeed the beauty and simplicity of its
formulation must not hide the technical difficulties that are met in practice, even in
the simple cases on which we will concentrate hereafter. Its ingredients are on the
one hand the solutions of Maxwell’s equations to obtain the density of electromag-
netic modes, and on the other hand geometric considerations to obtain the periodic
orbits, which are usually non-trivial, depending on the nature of the resonator shape.
A vital role is played by the stability of the periodic orbits, which determines the
expansion amplitudes and thus their weight of contribution to the trace formula. In
order to put our approach on simple but solid grounds, we start with the illustrative
case of the plane-parallel Fabry-Perot cavity, where the identification of the periodic
orbits is straightforward, allowing to concentrate on the methodology and its physical
significance. We then move on to plano-concave Fabry-Perot microcavities like those
considered in Part I.

One main result, which connects in an essential manner the two parts of this
series, is the recognition of the role of modal degeneracy, here based on the full cal-
culation of the stability-related amplitudes in the trace formula. The condition for
such degeneracy is shown to take the same form as already established in Part I [see
Eq. (39)], but is derived from a different perspective and with different tools. This
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Figure 1. (a) A photograph with an optical microscope (top view) in real colors
of a plano-concave microlaser. The width of the cavity is L = 125 µm and the
radius of the concave boundary R = 250 µm in this example (ρ = 1/2). The
far-field observation angle is θ. (b) Scheme of the optical characterization setup
(side view, not to scale).

connection is easily generalized to other systems and thus of broad relevance. In that
light, the dips in Fig. 10 of Part I are interpreted as a local change of stability of the
repetitions of the axial periodic orbit.

The outline is the following. The experiments are sketched in Sec. 2, so as
to introduce the main issues which are discussed in this paper. The theoretical
background is then introduced in Sec. 3 with the simplest example of the plane-parallel
Fabry-Perot cavity, then applied to the specific case of plano-concave cavities. The
experimental results are finally presented and compared to the theory in Sec. 4.

2. Experiments and main issues

The plano-concave Fabry-Perot cavities consist of a plane mirror within a distance
L from a convex mirror of radius R. A microscope image of such a cavity and the
notations are presented in Fig. 1(a). In this paper, as in Part I, we focus on the case
L/R ≡ ρ < 1, corresponding to a stable periodic orbit along the principal axis. The
question of stability will be discussed in Sec. 3.3.

2.1. Microlaser experiments

The microlasers are made of a single polymer-doped layer, which is spin-coated on
a silica-on-silicon wafer. The passive polymer host is poly(methyl methacrylate)
(PMMA) which is transparent for visible light. It is doped at a concentration of
5 weight % with the commercial laser dye DCM ‡. The 2 µm silica buffer layer has
a lower refractive index than the 650 nm thick polymer-doped layer. It thus ensures
that the laser light propagates in two dimensions within the plane of the polymer-
doped layer [16]. The cavities are then patterned by electron beam lithography, which
provides a nanoscale etching quality.

‡ [2-[2-[4-(dimethylamino)phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile, DCM,
provided by Exciton.



Waves and rays in plano-concave laser cavities, Part II: a semiclassical approach. 4

Figure 2. Plane-parallel Fabry-Perot micro-laser. (a) Photograph with an
optical microscope in real colors. The only periodic orbit is indicated in red. (b)
Experimental spectrum of a plane-parallel Fabry-Perot cavity with L = 250 µm.
(c) Fourier transform of the spectrum in (b).

The microlasers are pumped individually with a frequency doubled Nd:YAG laser
(532 nm, 500 ps, 10 Hz). The pump beam is incident from the top as shown in Fig. 1(b)
and uniform at the cavity scale. The emission is collected in the substrate plane and
transmitted to a spectrometer coupled to a cooled CCD camera with a spectral res-
olution of about 0.03 nm. For example, considering the plane-parallel Fabry-Perot
laser of Fig. 2(a), one can measure the typical experimental spectrum of Fig. 2(b). It
features a single comb of quasi-equidistant peaks.

These are not table-top experiments, since a (short) pulsed laser is required for
pumping solid-state dye lasers, and the fabrication of the devices involves electron-
beam lithography to ensure the verticality of the cavity walls. However these facilities
are conveniently affordable by an average laboratory.

2.2. Main issues

In some respects, a laser can exhibit intriguing and counter-intuitive features. However
we will see that most of its properties can be simply explained by studying fundamen-
tal issues of the passive cavity, without gain.

Which modes are lasing ? Why these modes and not others, since there are so
many modes in the passive cavity ?
For cavities much larger than the wavelength, the wave properties are based on the
periodic orbits of the passive cavity, which are closed periodic geometrical trajectories
[13]. If the gain is enhanced on a specific periodic orbit, the lasing modes tend to
localize on this orbit [17].

What does it mean that a cavity is called stable or unstable ?
The stability property does not refer to the whole cavity, but to a single periodic orbit.
In general, the Fabry-Perot cavities are used in paraxial conditions and the gain is
localized along the principal axis. Hence, we must consider the axial periodic orbit,
which is drawn with a continuous red line in Fig. 3a. It is stable if 0 < L/R < 1, which
means that the potential is confining and that rays tend to remain in its vicinity. A
precise definition of stability is given in Sec. 3.3.
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Figure 3. Several examples of periodic orbits in a plano-concave cavity. (a)
Cavity with ρ = 0.7. The continuous red line indicates the axial orbit and the
dotted blue line the C-orbit. Both orbits are isolated and exist for a wide range of
ρ. (b) Cavity with ρ = 0.5. One example of the family of the W -orbit is indicated.
This family of marginally stable orbits only exists for ρ = 0.5.

In Fig. 10 of Part I, why do the lasing modes present such a different behavior
for specific ratios L/R ?
As explained in Part I, these specific ratios correspond to a degeneracy of modes in
the paraxial approximation. From a ray-dynamical point of view, the potential is not
perfectly confining at these specific ratios L/R and some repetitions of the axial peri-
odic orbit are only marginally stable, which means that the light can explore a larger
area around the axial orbit.

The aim of this paper is to give precise answers to each of these questions.

3. Wave vs classical mechanics: the trace formula

The trace formula was developed in the seventies [14, 15] and stands out due to its
ability to express a spectrum, which is a notion that intrinsically belongs to wave me-
chanics alone, in terms of geometric entities which are pertaining to classical physics.
It is hence an important connection between wave physics and the geometrical world.

Sec. 3.1 gives an overview of the trace formula, while the simplest case of the
plane-parallel Fabry-Perot cavity is derived in Sec. 3.2. Since the stability of periodic
orbits is of fundamental importance for the trace formula, the stability of orbits is
discussed in detail in Sec. 3.3. Finally Sec. 3.4 and Sec. 3.5 deal with the plano-
concave cavity and discuss its periodic orbits and the trace formula for the axial orbit.

3.1. Trace formula: Generic case

The density of states (i.e., the spectrum) is defined as

d(k) =
∑

j

δ(k − kj) (1)

where the {kj} are the eigen-wavenumbers of the system. In the semiclassical limit

or geometrical-optics limit – which means ka ≫ 1 for a a typical length of the system
– d(k) tends to a sum over the periodic orbits (po) of that same system,

d(k) ∝
∑

po

Cpo cos(kLpo + φpo) . (2)
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A periodic orbit is a classical, closed, and periodic trajectory. Figure 3 shows different
periodic orbits in a plano-concave cavity. The summation in Eq. (2) is performed
over all the periodic orbits, with the amplitude Cpo depending only on geometric
parameters of the orbit such as its stability and its length Lpo. Likewise, φpo is a
phase term which only relates to classical quantities as well. This expression has been
established for integrable [14] and chaotic [15] cases in the semiclassical limit. The
microlasers considered here have kL ∼ 1000 and are thus well within the semiclassical
regime where the trace formula applies. A pedagogical derivation of the trace formula
is proposed in [18] for integrable systems (§3) and chaotic systems (§4).

3.2. Trace formula for the plane-parallel Fabry-Perot cavity

Let us consider the simplest example of a plane-parallel Fabry-Perot cavity. There
exists a single periodic orbit, see Fig. 2(a), and all its repetitions. It should be noted
that this orbit is not isolated but actually belongs to a continuous family of parallel
orbits, all of which have the same properties, but in the following we will only refer
to it as single periodic orbit for simplicity’s sake. The lengths of the primitive orbit
and its repetitions are LQ = Q 2L, with Q ∈ N

⋆ being the number of repetitions.
Their corresponding amplitudes CQ are smooth functions of Q, see Sec. 3.3, and their
phases φQ = 0 [2π]. Therefore the trace formula (2) reduces to

d(k) ∝
∑

Q∈N⋆

cos(2QLk) ∝
∑

Q∈Z⋆

e2iQLk (3)

which is equivalent to a Dirac comb. This is also observed experimentally: in Fig. 2(b),
the peaks are indeed equidistant, and the comb is modulated at a larger scale by the
gain curve of the laser dye. The Fourier transform of expression (3) is also a Dirac
comb, which is peaked at every multiple of L = 2L, as shown in Fig. 2(c)§. For this
experiment, L = 250 µm, so the first peak in the Fourier transform is expected at
2L = 500 µm, while it is observed at (795± 20) µm. In fact, the refractive index must
be taken into account as the light travels through a dielectric medium. The trace
formula is modified for dielectric resonators in a natural manner [13],

d(k) ∝
∑

po

rpo Cpo cos(nkLpo + φpo) . (4)

The weighting factor is supplemented by rpo, the product of the Fresnel reflection
coefficients corresponding to the reflections of the periodic orbit. It has a modulus of
|rpo| = 1 for a periodic orbit which is confined by total internal reflection. For the
orbit in the plane-parallel Fabry-Perot cavity, rpo = (n − 1)2/(n+ 1)2 = 0.04 due to
two reflections at perpendicular incidence with n = 1.5 being the refractive index of
the polymer cavity. The geometrical length of the periodic orbit is replaced by its
optical length nL = 1.5 · 500 = 750 µm. This value is actually slightly lower than
what is observed experimentally since the dispersion of the refractive index also needs
to be taken into account [16]. Including all corrections, we use n = 1.63 for the data
presented in this article.

§ In practice, the Fourier transform is calculated from the spectrum expressed as a function of the
wavenumber, and not of the wavelength, in consistency with formula (3).
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δsi

δsfαi

αf

Figure 4. Effect of a small perturbation on the axial periodic orbit (red). The
blue trajectory starts from a position slightly displaced transversely by δsi and in
a direction deviating by δαi. It arrives with a displacement δsf and a deviation
δαf after one round trip.

A more usual – and equivalent – way to calculate the spectrum in Fig. 2(b) is the
phase loop condition after a round trip of the light along the periodic orbit,

eik nL = 1 ⇒ kq =
2π

nL q q ∈ N
⋆ . (5)

3.3. Stability of periodic orbits

In the trace formula (2), the factor Cpo controls the weight of different periodic or-
bits in the spectrum. Its functional form depends on the stability of the considered
periodic orbit, i.e., how the trajectory reacts to a small perturbation of the initial po-
sition or propagation direction. This stability can be calculated with the monodromy

matrix, which is equivalent to the ABCD matrix used in geometrical optics and in the
framework of the paraxial approximation.

The theory of the monodromy matrix is described in [1, 18]. Here we focus
on the calculation of the stability of the periodic orbits. As shown in Fig. 4, the
monodromy matrix M describes the effect of a small perturbation of the initial
conditions, (δsi, δαi), after one round trip along the orbit at the linear order,

(

δsf
δαf

)

= M
(

δsi
δαi

)

. (6)

In the case of two-dimensional cavities considered here, the monodromy matrix M is
a 2 × 2 matrix of determinant 1. It can be calculated as the product of elementary
matrices

Π(L) =

(

1 L
0 1

)

(7)

for the propagation in a straight line of length L and

R(R,χ) =

( −1 0
2

R cos(χ) −1

)

(8)

for the reflection with an angle of incidence χ with respect to the surface normal on a
surface with radius of curvature R. For instance, for the isolated periodic orbit along
the axis of a concave-concave Fabry-Perot cavity of length L, the monodromy matrix
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is M = Π(L)R(R1, 0)Π(L)R(R2, 0), where R1 and R2 are the radii of curvature of
the mirrors.

As the monodromy matrix M is a 2×2 matrix of determinant 1, there are three
possible cases for its two eigenvalues Λ+ and Λ−.

• Λ+ and Λ− are real. Since the determinant is 1, their product Λ+Λ− = 1 and so
Λ+ = 1/Λ− > 1. The Lyapunov exponent λ of the orbit is defined via Λ+ = eλ.
The larger λ, the more unstable is the periodic orbit. In this case, the amplitude
is

Cpo ∝ 1

sinh(λ/2)
. (9)

• Λ+ = Λ− = 1. The periodic orbit is marginally stable. This is for instance the
case of the periodic orbit of the plane-parallel Fabry-Perot cavity.

• The eigenvalues are complex conjugated with a modulus 1: Λ+ = 1/Λ− = eiΦ.
In this case, the periodic orbit is stable and the amplitude is

Cpo ∝ 1

sin(QΦ/2)
(10)

where Q ∈ N
⋆ is the number of repetitions of the periodic orbit.

Actually, there are two other cases for Λ+ and Λ− both having negative signs. Then
their amplitudes Cpo are slightly different (see Ref. [1] Table 5.1).

Because the monodromy matrix M is a 2 × 2 matrix of determinant 1, its
characteristic polynomial equals Λ2 − Λ tr(M) + 1. Therefore, for a stable periodic
orbit, the stability condition is equivalent to

− 2 < tr(M) < 2 . (11)

For the axial periodic orbit of a concave-concave Fabry-Perot cavity, tr(M) =
4g1g2 − 2, with the usual definition gi = 1 − L/Ri, which leads to the well-known
stability condition

0 < g1g2 < 1 . (12)

In a given plano-concave Fabry-Perot cavity, there are many different periodic orbits
beyond the axial orbit, with different stabilities. The following paragraph gives a few
examples.

3.4. Periodic orbits in plano-concave cavities

Some periodic orbits in a plano-concave Fabry-Perot cavity are drawn in Fig. 3. For
the axial periodic orbit [continuous red line in Fig. 3(a)], the stability criterion (12)
yields the condition

0 <
L

R
< 1 . (13)

For L = R, this orbit is marginally stable, while it is unstable for L > R. In this
article, we consider only the case L < R where this orbit is stable.

The dotted blue periodic orbit in Fig. 3(a), called C-orbit, exists for L/R = ρ >
1 − 1/

√
2 ≃ 0.29 and is unstable until ρ = 1 −

√
2/4 ≃ 0.65. At ρ ≃ 0.65, it is

marginally stable, and it becomes stable for ρ > 0.65. This orbit is not included in
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the paraxial approximation, but it actually plays a prominent role in the microlaser
experiments, see Sec. 4.1.

The periodic orbit in Fig. 3(b), called W -orbit, exists only for ρ = 1/2 and is
marginally stable. It exists and has the same length L = 8L for each angle α between
0◦ and 60◦, i.e., it belongs to a continuous family.

Many other periodic orbits of the plano-concave Fabry-Perot cavity are presented
in Ref. [19].

3.5. Trace formula for plane concave Fabry-Perot cavities

In the framework of paraxial approximation, the eigenfrequencies of the plano-concave
Fabry-Perot cavity are known explicitly. These can be used to explicitly derive the
corresponding trace formula, i.e., express the density of states as a sum over periodic
orbits like in Eq. (2).

The eigen-wavenumbers are written [see Ref. [20] Eq. (19.23), and Part I Eq. (28)]:

kq,p,p′ =
π

L
q + (p+ p′ + 1)

arccos(
√
1− ρ)

L
(14)

They depend on three natural numbers, q, p and p′ where q corresponds to the
longitudinal excitation and p, p′ to the transverse ones. For convenience, we consider
p′ = 0 which is equivalent to a bi-dimensionnal approximation, consistent with the
microlaser experiments. The density of states is

d(k) =

∞
∑

p=0

∞
∑

q=0

δ(k − kq,p) . (15)

if we take an infinite number of transverse excitations into account. The calculation is
then not straightforward and the interpretation of the results requires concepts from
the theory of dynamical system which are beyond the scope of this paper. Moreover,
it is not meaningful to consider transverse excitations of arbitrarily high order since
the paraxial approximation breaks down at some point. In real experiments like those
presented in Part I and in this article, q is greater than 1000 whereas p is of the order of
unity. Hence we consider only a finite number of transverse excitations p = 0 . . . pmax

which also greatly simplifies the calculations. We now compute the density of states
(15), where we use the Poisson formula (see Appendix A) for the summation over q,
yielding

d(k) =

pmax
∑

p=0

∞
∑

Q=−∞

∫ ∞

0

dq δ(k − kq,p) e
2iπQq (16)

=
L

π

pmax
∑

p=0

∞
∑

Q=−∞

e2iQ[Lk−(p+1)β] (17)

with β = arccos
√
1− ρ. The summation over p is then performed as a geometric

series, with pm = pmax + 1, the total number of p values:

d(k) =
L

π

∞
∑

Q=−∞

e2iQ(Lk−β)

pmax
∑

p=0

(

e−2iQβ
)p

(18)
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=
L

π

∞
∑

Q=−∞

e2iQ(Lk−β) 1− e−2iQβpm

1− e−2iQβ
(19)

=
L

π

∞
∑

Q=−∞

eiQ(2Lk−β−βpm) sin(Qβpm)

sin(Qβ)
(20)

The term Q = 0, so-called Weyl term, describes the mean density of states. From
Eq. (20), it is

dweyl =
L

π
pm (21)

We do not consider it anymore to focus on the fluctuating part of the spectrum, i.e.
with Q 6= 0

d̃(k) =
L

π

∑

Q>0

2 cos(2LQk −Qβ −Qβpm)
sin(Qβpm)

sin(Qβ)
(22)

Using the elementary formulas 2 sin a cos b = sin(a + b) + sin(a − b) and sin a =
cos(a− π/2), the final expression is

d̃(k) =
L

π

∑

Q>0

cos(2LQk −Qβ − π/2)

sin(Qβ)
+
cos(2LQk −Qβ − 2Qβpm − π/2)

sin(Qβ)
(23)

which is more or less similar to formula (2). If β = 0, the expression of the trace
formula for the plane-parallel Fabry-Perot cavity Eq. (3) is recovered. The first term
in the numerator, 2LQk, corresponds to the Qth repetition of the axial periodic orbit
of length L = 2LQ. The second term in the numerator, Qβ = Q arccos(

√
1− ρ), is

connected to the Gouy phase.

The denominator of expression (23) is equivalent to expression (10). Actually,
for a stable periodic orbit, the coefficient of the trace formula is given by cpo ∝
1/ sin(QΦ/2), the phase Φ being defined via the trace of the monodromy matrix:

tr(M) = Λ+ + Λ− = eiΦ + e−iΦ = 2 cosΦ . (24)

We have seen that for the axial periodic orbit tr(M) = 4g1g2 − 2 = 2 (1− 2ρ), which
means that

cosΦ = 1− 2ρ ⇒ Φ = arccos(1− 2ρ) = 2 arccos(
√

1− ρ) (25)

where the last identity comes from elementary trigonometric calculations. Then the
denominator of expression (23) is strictly equivalent to the general expression (10) for
a stable periodic orbit.

Hence we have demonstrated, that, within the paraxial approximation, the
fluctuating part of the density of states can be expressed as a sum over the Q
repetitions of the single axial periodic orbit. It should be noted, however, that other
periodic orbits of the plano-concave cavity do not appear since our calculation is based
on the paraxial approximation. They would be recovered if the full spectrum of the
cavitiy, i.e., including modes beyond the paraxial approximation, was considered.
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3.6. The degeneracy condition

According to expressions (10), the Qth repetition of the axial orbit is weighted by a
coefficient cpo ∝ 1/ sin(QΦ/2), which diverges if

QΦ

2
= Qβ = mπ m ∈ N . (26)

This yields the divergence condition

ρ = sin2
(

mπ

Q

)

(27)

which is identical to the degeneracy condition given in part I, Eq. (39). There is
actually no divergence. In the trace formula Eq. (20), if Qβ = mπ, then the ratio of
the geometric series over p equals 1:

pmax
∑

p=0

(e−2iQβ)p =

pmax
∑

p=0

1 = pm (28)

The amplitude of the Qth repetition of the axial periodic orbit is then maximum, and
not diverging. Moreover, from the analysis of Sec. 3.3, the Qth repetition of the axial
periodic orbit is a marginally stable periodic orbit. In experiments, the Qth harmonic
of the Fourier transform is enhanced, as it will be shown in the next section.

Conclusion The stability criteria were defined from the monodromy matrix, which
reduced to the usual ABCD matrix in the paraxial approximation. The trace formula
of the plane-concave cavity was then analytically derived from the eigenfrequencies
in the paraxial approximation. It involved only the axial periodic orbit and its
repetitions. It is enhanced for specific ratios ρ = L/R, where there is a degeneracy
in accordance with the terminology of Part I. From a geometrical point of view, the
axial periodic orbit is stable in the range 0 < ρ < 1 and some of its repetitions are
marginally stable at these specific ratios.

4. Experimental results

To illustrate the above theoretical issues, this section deals with plano-concave micro-
lasers with several ratios ρ = L/R. It must be pointed out that the non-linearities due
to lasing are not prominent close to the lasing threshold. Hence the model developed
above remains valid even though it is based only on calculations of the passive cavity
resonances. The polarization of the pump beam can play a role [21], however, for the
sake of clarity, this issue is not mentioned hereafter.

The first case, ρ = 0.55, is generic, while the two other cases, ρ = 1/2 and
ρ = 3/4, correspond to cavity sizes where an enhancement is expected according to
formula (27). From the point of view of Part I, ρ = 1/2 and 3/4 present a degeneracy,
but not ρ = 0.55.

4.1. Generic case: L/R = 0.55

First, we consider the ratio ρ = 0.55, which does not fullfill the degeneracy condition
(27). The lasing emission is recorded along the axis, i.e., in the θ = 0◦ and 180◦

directions [see Fig. 1(a) for notations].
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Figure 5. Plano-concave Fabry-Perot microlaser with ρ = 0.55. (a) Photograph
with an optical microscope in real colors. (b) Experimental spectrum for L =
125 µm in the direction 0◦ with a pump polarization orthogonal to the optical
axis. The bell-shaped baseline is due to the high density of peaks that is beyond
the spectrometer resolution. (c) Fourier Transform of the spectrum in (b).

Figure 5(b) presents a comb-like spectrum. Its Fourier transform in Fig. 5(c)
evidences a first peak at a length‖ L = 250 µm, which corresponds to the length of
the axial periodic orbit, 2 ·L = 250 µm. In Fig. 5(c), the 4th harmonic is greater than
the other ones, which is consistent with formula (10). Actually, the following table
indicates the relative amplitude of the repetitions of the axial orbit, and the fourth
repetition dominates clearly:

Repetition of the periodic orbit, Q 1, fundamental 2 3 4 5
Relative amplitude from formula (10) 0.67 0.50 0.84 2.21 0.58

From this table, we could expect the 5th harmonic to be as high as the 2nd harmonic,
but the amplitude of the harmonics decreases in general quite fast with their order,
due to the finite linewidth of the resonances [cf. the typical example of the plane-
parallel Fabry-Perot cavity in Fig. 2(c)].

When looking into the direction 180◦, the spectrum shown in Fig. 6(a) is also
comb-like, but dramatically different otherwise. Its Fourier transform in Fig. 6(c) is
peaked at a length of 876 µm, in good agreement with the length of the C-orbit shown
in Fig. 3(c), L = 877 µm. This periodic orbit emits only in the direction 180◦ since
the two reflections on the rounded part of the boundary are confined by total internal
reflection. From the monodromy matrix theory presented in section 3.3, it follows
that this orbit is unstable for ρ = 0.55.

Being clearly beyond the paraxial approximation, this orbit does not appear in
the model of Section 3.5. But it exists and, according to this experiment, it appears
that modes are able to localize on it. The photo of Fig. 6(b) is registered close to the
cavity plane and in the direction 180◦. The two lateral spots are precisely localized
where they are expected, i.e., at points A and B in Fig. 3(a). Following the semi-
nal paper Ref. [22], these modes localized on an unstable periodic orbit are called scars.

‖ In section 4, all the x-axis of the Fourier transform are normalized by 1.63, the global refractive
index for these samples. Then, the x-axis corresponds to the geometrical length.
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Figure 6. Plano-concave Fabry-Perot microlaser with ρ = 0.55. (a) Experimental
spectrum for L = 125 µm in the direction θ = 180◦ with a pump polarization
parallel to the axis. (b) Photograph of the lasing cavity in the cavity plane and
in the direction 180◦. The boundary is not visible. The lasing emission is red.
The weak green spots stem from the scattering of the pump beam. (c) Fourier
transform of the spectrum in (a).

To summarize the results for the generic case ρ = 0.55, two main periodic orbits
are identified that sustain lasing modes: the axial orbit the harmonics of which have
amplitudes according to formula (10), and the C-orbit which is unstable and beyond
the paraxial approximation.

4.2. Case L/R = 1/2

The ratio ρ = 1/2 corresponds to a resonator shape where a degeneracy is expected
according to formula (27).

The C-orbit is still lasing, like in Sec. 4.1, but not the axial orbit. For this ratio,
Eq. (10) predicts that the 4th repetition of the axial orbit is enhanced. The W -orbit
of Fig. 3(b) is marginally stable and reduces precisely to four times the axial orbit for
α = 0. The refractive losses of the W -orbit are smaller than those of the axial orbit
if α is large enough such that the reflections on the plane cavity boundary [points A
and B in Fig. 3(b)] are totally reflected. Two bright spots are indeed observed in the
directions θ ≃ ± 50◦ as shown in Fig. 7(c). The corresponding spectra are comb-like
and their Fourier transform is peaked at L = 999 µm, as presented in Fig. 7(b), which
is fully consistent with the length of the W -orbit, L = 4 · 2 · L = 1000 µm.

4.3. Another degenerate case: L/R = 3/4

The observations for ρ = 1/2 are in agreement with the theory presented in this paper,
but they are not generic since the W -orbit exists only at this particular ratio. This
section deals with the case of L/R = 3/4, which corresponds to a degenerate cavity
as discussed in Part I, and is generic.

According to formula (10), the third harmonic of the axial orbit is expected to
be enhanced for this case. In Fig. 8(c), the Fourier transform of the spectrum along
the direction θ = 0◦ is peaked at 755 µm, which agrees very well with the theoretical
length of L = 3 · 2 · 125 = 750 µm.

The three examples considered in the Section (ρ = 1
2 ,

3
4 , and 0.55) demonstrate
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Figure 7. Plano-concave Fabry-Perot microlaser with ρ = 1/2. (a) Spectrum
collected in the direction θ = 50◦. (b) Fourier transform of the spectrum in
(a). (c) Photograph of the lasing cavity from the direction θ ≃ 50◦. The curved
boundary is slightly visible due to the scattering of the red lasing light.

Figure 8. Plano-concave Fabry-Perot microlaser with ρ = 3/4. (a) Photograph
with an optical microscope in real colors. (b) Experimental spectrum for L =
125 µm in the direction θ = 0◦. (c) Fourier transform of the spectrum in (b).

a good agreement between experiments and the theory based on the trace formula.
Each prediction which can reasonably be checked is indeed confirmed experimentally.

5. Conclusion

This paper illustrates the potential of semi-classical physics with the example of the
well-known Fabry-Perot cavity. The periodic orbits are the basis of any semi-classical
description. Here, the derivation of the trace formula demonstrates that only the ax-
ial periodic orbit and its repetitions are involved in the paraxial approximation. On
the contrary, experiments evidence that lasing modes can be localized on the C-orbit,
which is unstable and not included in the paraxial approximation.

The semi-classical physics aims at highlighting the correspondence between the
wave and the geometrical points of view. Here, the trace formula makes the connection
between the mode degeneracy discussed in Part I, and the change of stability of the
repetitions of the axial periodic orbit. These techniques are but a part of the powerful
toolbox of semi-classical physics, which is relevant in various domains, especially for
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laser cavities.
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Appendix A. Poisson summation formula

The usual Poisson summation formula is
∞
∑

q=−∞

f(k − kq) =

∞
∑

Q=−∞

∫ ∞

−∞

dq f(k − kq) e
2πiQq (A.1)

where f is a function or a distribution and the sum in the left hand term starts from
q = −∞. However, in the case we are considering, the longitudinal number q is only
positive. The Poisson formula is then accordingly modified to

∞
∑

q=0

f(k − kq) =

∞
∑

Q=−∞

∫ ∞

0

dq f(k − kq) e
2πiQq +

1

2
f(k − k0) (A.2)

following Eq. (2.157) in Ref. [1]. The second part of the right hand term corresponds
to a longitudinal number q = 0, and hence to minor corrections which are discarded
here.
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