Supporting Information for

Tuning Properties of α,ω-Bis(trialkoxysilyl) Telechelic Copolyolefins from Ruthenium-

Catalyzed Chain-Transfer Ring-Opening Metathesis Polymerization (ROMP)

Table S1. Apparent physical state and thermal analysis of different homopolyolefins synthesized by ROMP/CM using CTA 1 and catalyst G2 in CH_2Cl_2 at 40 °C for 24 h; [Monomer]₀/[CTA]₀/[G2]₀ = 2000:100:1.

Scheme S1. Different microstructures of PDCPD obtained from ROMP of DCPD.

Table S2. Copolymerization of NB-OLF and mOLF catalyzed by G2 using CTA 1 in CH_2Cl_2 during 24 h^{*}.

Fig. S1. SEC traces of copolyolefin samples prepared from the ROMP of NB/COE, NB^{COOMe}/COE, DCPD/CDT and DCPD/COD using **G2** catalyst and CTA **1** (Table 1, entries 1, 6, 12, 14).

Fig. S2. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 6).

Fig. S3. ¹³C NMR spectrum (100 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 6).

Fig. S4. FTIR spectrum of a crude copolymer prepared from ROMP/CM of NB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 6).

Fig. S5. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S6. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S7. FTIR spectrum of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S8. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S9. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S10. FTIR spectrum of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig.S11. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S12. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig.S13. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S14. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig.S15. FTIR spectrum of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S16. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S17. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig.S18. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig.S19. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S20. FTIR spectrum of a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S21. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig.S22. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S23. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and CDT using **G2** and CTA **1** (Table 1, entry 12).

Fig. S24. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and CDT using **G2** and CTA **1** (Table 1, entry 12).

Fig. S25. FTIR spectrum of a crude copolymer prepared from ROMP/CM of DCPD and CDT using **G2** and CTA **1** (Table 1, entry 12).

Fig. S26. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S27. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S28. FTIR spectrum of a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S29. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S30. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S31. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1-OEt** (Table 1, entry 1).

Fig. S32. ¹³C NMR spectrum (100 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1-OEt** (Table 1, entry 1).

Fig. S33. ¹H-¹³C{¹H} HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1** (Table 1, entry 1).

Fig. S34. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3; spectrum with assignments of all signals in Fig. S35).

Fig. S35. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S36. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4; spectrum with assignments of all signals in Fig. S37).

Fig. S37. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

5

Fig. S38. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, $CDCl_3$, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8; spectrum with assignments of all signals in Fig.S39).

Fig. S39. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S40. ¹H-¹³C (DEPT) HMBC NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe}/COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S41. FTIR spectrum of a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1** (Table 1, entry 1).

Fig. S42. DSC traces of copolyolefin samples prepared from the ROMP/CM of NB/CDT, oxaNB^{COOMe}/COE, DCPD/COE and DCPD/CDT using G2 catalyst and CTA 1 (Table 2, entries 4, 6, 19, 24, 26, 31).

Fig. S43. Flow curves of copolyolefin samples prepared from the ROMP/CM of NB/COE, using **G2** catalyst and CTA **1** (Table 3, entries 1 and 2).

Fig. S44. Flow curves of copolyolefin samples prepared from the ROMP/CM of NB^{COOMe}/COE using **G2** catalyst and CTA **1** (Table 3, entries 3–6).

Fig. S45. Flow curves of copolyolefin samples prepared from the ROMP/CM of oxaNB^{COOMe}/COE using **G2** catalyst and CTA **1** (Table 3, entries 7–9).

Fig. S46. Flow curves of copolyolefin samples prepared from the ROMP/CM of DCPD/COE and DCPD/COD using **G2** catalyst and CTA **1** (Table 3, entries 10–12).

Fig. S47. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of oxaNB^{COOMe}.

Fig. S48. ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CDCl₃, 23 °C) of oxaNB^{COOMe}.

Table S1. Apparent physical state and thermal analysis of different homopolyolefins synthesized by ROMP/CM using CTA **1** and catalyst **G2** in CH₂Cl₂ at 40 °C for 24 h; $[Monomer]_0/[CTA]_0/[G2]_0 = 2000:100:1.$

Entry	Monomer	СТА 1-R	$M_{n,theo}^{b}$ (g.mol ⁻¹)	$M_{n,NMR}^{c}$ (g.mol ⁻¹)	Apparent physical state at 23 °C	T_g^{d} (°C)	$T_m{}^{\mathrm{d}}$ (°C)	<i>T_c</i> ^d (°C)
1	COE	OMe	2200	2900	Solid	-78	52	45
2	CDT	OEt	3200	3200	Solid	<i>n.o</i> .	32	22
3	COD	OEt	2200	2500	Solid	<i>n.o</i> .	32	21
4	NB	OEt	3800	4500	Solid	32	-	-
5	ENB	OEt	-	-	Solid	110	-	-
6 ^a	DCPD	OMe	-	-	Solid	155	-	-
7	NB ^{COOMe}	OMe	3000	2300	Liquid	-12	-	-
8	oxaNB ^{COOMe}	OMe	3100	3500	Liquid	-2	-	-

^a ROMP of DCPD was performed at 23 °C. ^b Theoretical molar mass value calculated from $M_{n,theo} = M_{monomer} \times (Conv.monomer \times [monomer]_0) / (Conv.CTA \times [CTA]_0)$, on the basis of the sole formation of functionalized copolymers, i.e. without taking into account any CNF. ^c Experimental molar mass value determined by ¹H NMR analysis (refer to the Experimental Section). In entries 1–4, 7 and 8, quantitative monomer and CTA conversion was observed by ¹H NMR analysis. In entries 5 and 6, quantitative monomer conversion was observed by ¹H NMR analysis; yet, the CTA was not consumed at all, thus precluding the determination of NMR molar mass values. ^d DSC experiments recorded according to the following cycles: -100 to +100 °C at 10 °C min⁻¹; +100 to -100 °C at 10 °C min⁻¹. *n.o.* = not observed.

Scheme S1. Different microstructures of PDCPD obtained from the ROMP of DCPD. [Le Gac, P. Y.; Choqueuse, D.; Paris, M.; Recher, G.; Zimmer, C.; Melot, D. *Polym. Degrad. Stabil.*, 2013, 98, 809–817; Mohite, D. P.; Mahadik-Khanolkar, S.; Luo, H.; Lu, H.; Sotiriou-Leventis, C.; Leventis, N. *Soft Matter*, 2013, 9, 1516–1530; Davidson, T. A.; Wagener, K. B.; Priddy, D. B. *Macromolecules*, 1996, *29*, 786–788; Yang, Y.-S. *Polymer*, 1997, *38*, 1121–1130.]

Due to the different ring strain, the ROMP of DCPD usually first occurs via opening of the NB unit leading to **PDCPD A**, which is soluble in usual organic solvents. Then, cyclopentene rings can open, thus forming a cross-linked PDCPD network (**PDCPD B**). Copolymers containing **PDCPD B** are rigid (not liquid) at room temperature, and are thus not suitable for adhesive applications. Decreasing the reaction temperature to room temperature was found to enable the sole formation of **PDCPD A**. Therefore, all copolymerizations using DCPD as a comonomer were performed at 23 °C.

Entry	Reaction Temp.	NB-OLF /mOLF	[NB-OLF] ₀ : [mOLF] ₀	R-CTA 1	[CTA 1] ₀ (equiv vs G2)	NB-OLF Conv.ª	mOLF Conv.ª	DF Sel. ^b	CNF Sel. ^b	M _{n,theo} c	M _{n,NMR} d (DF ,	$M_{n,SEC}^{e}$ CNF)	$D_M^{\rm e}$	$M_{n,SEC}^{e}$ (CNF)	$D_M^{\rm e}$ (CNF)
	(°C)				,	(mol%)		(wt%)		$(g.mol^{-1})$			$(g.mol^{-1})$		
1	40	NB/COE	1000:1000	OEt	50	100	100	97	3	4 100	4 100	10 700	1.7	13 200	1.5
2	40	NB/COE	25 000:25 000	OEt	1 250	100	100	83	17	4 100	4 500	21 700	1.7	22 800	1.6
3	40	NB/CDT	25 000:25 000	OEt	1 250	100	100	94	6	5 100	5 900	15 500	1.7	24 100	1.3
6	40	ENB/CDT	1000:1000	OEt	50	100	100	90	10	5 600	5 200	7 800	2.0	10 500	2.1
7	40	ENB/CDT	25 000:25 000	OEt	425	100	100	82	18	16 600	17 200	27 200	1.9	31 000	1.7
8	40	NB ^{COOMe} /COE	1000:1000	OMe	50	100	100	98	2	5 200	5 500	13 600	1.5	14 400	1.5
9	40	NB ^{COOMe} /COE	25 000:25 000	OMe	1 250	100	100	98	2	5 200	5 100	30 300	1.6	47 000	1.7
10	40	oxaNB ^{COOMe} /COE	1000:1000	OMe	50	100	100	97	3	3 100	3 500	3 200	1.6	12 100	1.3
11	40	oxaNB ^{COOMe} /COE	25 000:25 000	OMe	1 250	100	100	90	10	2 900	4 200	19 500	1.4	52 500	1.6
12	40	oxaNB ^{COOMe} /COE	25 000:25 000	OMe	1 250	100	100	91	9	2 900	3 900	24 500	1.7	48 100	1.6
13	23	DCPD/COE	1000:1000	OMe	100	100	100	94	6	2 400	3 200	18 200	1.7	21 200	1.4
14	23	DCPD/COE	25 000:25 000	OMe	1 250	97	85	83	17	4 400	5 100	21 000	1.8	39 600	1.8
15	23	DCPD/CDT	1000:1000	OEt	100	100	100	97	3	2 900	4 600	11 200	2.0	25 000	1.5
16	23	DCPD/CDT	25 000:25 000	OEt	1 250	92	78	90	10	3 700	4 600	37 000	1.9	41 000	1.4
$17^{\rm f}$	23	DCPD/CDT	25 000:25 000	OEt	1 250	100	80	88	12	3 700	4 100	38 600	1.9	42 300	1.5
18	23	DCPD/COD	1000:1000	OEt	100	100	100	89	11	2 700	3 400	17 500	1.7	20 100	1.5

Table S2. Copolymerization of NB-OLF and mOLF catalyzed by G2 using CTA 1 in CH₂Cl₂ during 24 h.*

* Duplicated results of Table 1; NB, COE and CDT were distilled over CaH₂ prior to use; NB^{COOMe} and ENB were used as received; 1 equiv. of **G2** used in each reaction ^a Monomer and CTA conversion as determined by NMR analysis (refer to the Experimental Section). Full conversion of CTA was observed for all reactions ^b **DF** = difunctionalized copolymer; **CNF** = cyclic non-functionalized copolymer determined after weighting the CNF recovered following elution of the crude sample through a silica column (refer to the Experimental Section) (Scheme 1). ^c Theoretical molar mass value calculated from $M_{n,theo} = M_{monomer} \times (Conv.monomer \times [monomer]_0) / (Conv.$ **CTA** $\times [$ **CTA** $]_0), on the basis of the formation of only functionalized copolymers without taking into account any$ **CNF** $. ^d Experimental molar mass value determined by ¹H NMR analysis (refer to the Experimental Section). ^e Number-average molar mass (<math>M_{n,SEC}$) and dispersity ($D_{\rm M} = M_{\rm w}/M_{\rm n}$) values determined by SEC vs. polystyrene standards (uncorrected $M_{\rm n}$ values) in THF at 30 °C. f $\frac{1}{2}$ equiv. of catalyst was added at the beginning of the reaction, the other $\frac{1}{2}$ equiv. was added after 24 h.

Fig. S1. SEC traces of copolyolefin samples prepared from the ROMP of NB/COE, NB^{COOMe}/COE, DCPD/CDT and DCPD/COD using **G2** catalyst and CTA **1** (Table 1, entries 1, 6, 12, 14).

Fig. S2. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 6).

Fig. S3. ¹³C NMR spectrum (100 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 6).

Fig. S4. FTIR spectrum of a crude copolymer prepared from ROMP/CM of NB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 6).

Fig. S5. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S6. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S7. FTIR spectrum of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S8. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S9. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S10. FTIR spectrum of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig.S11. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S12. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig.S13. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S14. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig.S15. FTIR spectrum of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S16. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S17. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig.S18. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig.S19. ¹³C{¹H} NMR spectrum (125 MHz, $CDCl_3$, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S20. FTIR spectrum of a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S21. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig.S22. ¹³C{¹H} NMR spectrum (125 MHz, $CDCl_3$, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S23. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and CDT using **G2** and CTA **1** (Table 1, entry 12).

Fig. S24. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and CDT using **G2** and CTA **1** (Table 1, entry 12).

Fig. S25. FTIR spectrum of a crude copolymer prepared from ROMP/CM of DCPD and CDT using **G2** and CTA **1** (Table 1, entry 12).

Fig. S26. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S27. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S28. FTIR spectrum of a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S29. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S30. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of DCPD and COD using **G2** and CTA **1** (Table 1, entry 14).

Fig. S31. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1-OEt** (Table 1, entry 1).

Fig. S32. ¹³C NMR spectrum (100 MHz, CDCl₃, 23 °C) of **CNF** copolymer isolated from a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1-OEt** (Table 1, entry 1).

Fig. S33. ¹H-¹³C{¹H} HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1** (Table 1, entry 1).

Fig. S34. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3; spectrum with assignments of all signals in Fig. S35).

Fig. S35. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of NB and CDT using **G2** and CTA **1** (Table 1, entry 3).

Fig. S36. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4; spectrum with assignments of all signals in Fig. S37).

Fig. S37. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of ENB and CDT using **G2** and CTA **1** (Table 1, entry 4).

Fig. S38. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8; spectrum with assignments of all signals in Fig.S39).

Fig. S39. ¹H-¹³C HMBC (DEPT) NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe} and COE using **G2** and CTA **1** (Table 1, entry 8).

Fig. S40. ¹H-¹³C (DEPT) HMBC NMR spectrum (400 MHz, CDCl₃, 23 °C) of a crude copolymer prepared from ROMP/CM of oxaNB^{COOMe}/COE using **G2** and CTA **1** (Table 1, entry 10).

Fig. S41. FTIR spectrum of a crude copolymer prepared from ROMP/CM of NB and COE using **G2** and CTA **1** (Table 1, entry 1).

Fig. S42. DSC traces of copolyolefin samples prepared from the ROMP/CM of NB/CDT, oxaNB^{COOMe}/COE, DCPD/COE and DCPD/CDT using G2 catalyst and CTA 1 (Table 2, entries 4, 6, 19, 24, 26, 31).

Fig. S43. Flow curves of copolyolefin samples prepared from the ROMP/CM of NB/COE, using **G2** catalyst and CTA **1** (Table 3, entries 1 and 2).

Fig. S44. Flow curves of copolyolefin samples prepared from the ROMP/CM of NB^{COOMe}/COE using **G2** catalyst and CTA **1** (Table 3, entries 3–6).

Fig. S45. Flow curves of copolyolefin samples prepared from the ROMP/CM of oxaNB^{COOMe}/COE using **G2** catalyst and CTA **1** (Table 3, entries 7–9).

Fig. S46. Flow curves of copolyolefin samples prepared from the ROMP/CM of DCPD/COE and DCPD/COD using **G2** catalyst and CTA **1** (Table 3, entries 10–12).

Fig. S47. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) of oxaNB^{COOMe}.

Fig. S48. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 23 °C) of oxaNB^{COOMe}.