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The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in tem-
perature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological
responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity
significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being
listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work
on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can
organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different
strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cov-
er exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local
extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that pro-
tect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time.
Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod
communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to
community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape
alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring
studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological
and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic land-
scape, to allow efficient management of ecosystems and conservation of biodiversity.
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Introduction
Climate is one of the most important drivers of species’ distri-
bution and abundance. Over the last decades, the earth’s cli-
mate has irrefutably warmed. For the coming century, global

mean surface temperature is projected to increase by ~1°C, for
the most optimistic scenario, to ~3.7°C, for the least optimistic
one. The global precipitation regime is expected to change,
increasing the contrast between seasons and between wet and
dry regions (Meehl et al., 2007). In temperate regions, snow
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cover and snow events will decrease, and extreme events, such
as heat waves and drought, heavy precipitation and storms,
are expected to occur more often (Stocker et al., 2013). Rapid
variation of climate is expected to alter species’ life-history
traits (for example, phenology, Fabina et al., 2010) and biotic
interactions (e.g. Wernegreen, 2012), which might lead to
range contractions or even extinctions (Thomas et al., 2004,
2006).

Terrestrial ectothermic organisms may be particularly
affected by modifications of local climate conditions, because
body temperature and, subsequently, basic physiological
functions, depend on environmental temperature (Gillooly
et al., 2001; Deutsch et al., 2008). Among ectotherms, terres-
trial gastropods (i.e. land snails and slugs) are particularly
prone to climate change for the following reasons. First, their
activity and physiology are highly sensitive to local tempera-
tures (Cameron, 1970; Bailey, 1975), and many species enter
a state of dormancy (aestivation and/or hibernation) when
conditions are unfavourable for activity (e.g. Heller and
Ittiel, 1990; Iglesias et al., 1996). Second, their moist skin
and the secretion of a mucus trail for locomotion make them
particularly sensitive to low hygrometric conditions (e.g.
Young and Port, 1989). Third, moreover, their proverbial
slowness and high cost of movement strongly limit their abil-
ity to escape a hostile environment actively (Denny, 1980).
Although widely used as witnesses of previous climate
changes (Goodfriend, 1992), terrestrial gastropods have so
far received little attention regarding the potential impact of
current rapid climate change on their distribution, compared
with other taxa. This is surprising for the following reasons.
First, with ~24 000 described species, inhabiting a large
range of habitats, terrestrial gastropods are one of the most
diverse group of land animals (Lydeard et al., 2004), playing
a primordial role in ecosystem functioning specifically by
aiding in decomposition, nutrient cycling and soil-building
processes (Mason, 1970a, b; Jennings and Barkham, 1979;
Prather et al., 2013), providing food and essential nutrients
to wildlife (South, 1980; Churchfield, 1984; Frest and

Johannes, 1995; Martin, 2000; Nyffeler and Symondson,
2001), and determining plant community structure (Hulme,
1996; Peters, 2007). Second, 1105 species worldwide appear
on the IUCN red list as extinct, critically endangered, endan-
gered or vulnerable (www.iucnredlist.org), and many more
are listed regionally and nationally (Fig. 1A). Third, many
species are serious pests that lead to crop damage and pesti-
cide spreading (Barker, 2002) as well as negative impacts on
natural habitats and native biodiversity (Cowie, 2011).
Fourth, some gastropods are pathogen vectors (Rowley
et al., 1987; Graeff-Teixeira, 2007).

Models of future distribution of gastropod species tend to
predict range shifts and an increase of diversity with latitude
and altitude. These models are based on climate projections
that predict higher temperatures and more precipitation at
high latitudes and altitudes compared with low latitudes and
altitudes, where climate is expected to become drier (Willis
et al., 2006; Müller et al., 2009; Hof, 2011; Beltramino
et al., 2015). Although such models have a general interest,
their reliability is limited. For example, most of the critically
endangered species live on islands (Oceania) or in Europe
and North America, where the climate change will largely
interact with anthropogenic pressures (Fig. 1B and C;
Gibson et al., 2009). In fact, it has been demonstrated that
climate change could push gastropod species to the brink of
extinction, e.g. Rhachistia aldabrae was believed to be
extinct (Gerlach, 2007), but a few specimens were rediscov-
ered in 2014 (Amla, 2014). Modifications in species’ distri-
bution and abundance without a northward shift of the
range were also reported (Baur and Baur, 1993, 2013;
Peltanova et al., 2012; Pearce and Paustian, 2013).

Conservation management plans aim to protect ecosys-
tems and biodiversity, but they often lack approaches that
take the ecological impacts of climate change into account,
as well as specific organism responses and interactions.
Furthermore, conservation strategies typically target the eco-
logical integrity of large areas, a scale inadequate for taxa

Figure 1: Terrestrial gastropods on the IUCN Red List of Threatened Species™ (IUCN, 2016). (A) Global distribution of assessed terrestrial
gastropods (n = 2070) in the red list categories Abbreviations: CR, critically endangered; DD, data deficient; EN, endangered; EX+EW, extinct
and extinct in the wild; LC, least concern; NT, near threatened; and VU, vulnerable. (B) Geographical origin of terrestrial gastropods in the CR
category (n = 283). (C) Threats (n = 2153) encountered in all red list categories for assessed terrestrial gastropods (n = 2070). One species can
face more than one threat.
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such as terrestrial gastropods, which are constrained by low
mobility or thermal barriers within the habitat. The lack of
knowledge on organisms’ responses to climate change and
on how effects of extreme weather events can be mitigated
by adequate habitat management is striking. There is a cru-
cial need to incorporate physiological and behavioural spe-
cific traits into projection of ecological effects of climate
change (Deutsch et al., 2008) when conceiving management
or restoration plans of protected areas (Evans et al., 2015).
For example, the Committee of Status of Endangered
Wildlife in Canada (COSEWIC) identified droughts and
absence of snow (Augspurger, 2013) as ongoing threats in
all of the species at-risk assessments of terrestrial gastropods
(14 species; see www.sararegestry.gc.ca for species status
reports). However, none of them could clearly identify the
scope and severity of climate change impact because specific
physiological and behavioural knowledge is lacking. Only
partial knowledge on thermal tolerance of model organisms
(e.g. Staikou, 1999; see also Table 1 and Fig. 2) is available.

Currently, the threats of climate change are documented
in only 87 of 283 critically endangered terrestrial gastropods
worldwide (Fig. 1C; IUCN, 2016). Although habitat loss and
perturbation, invasive species and pollution may increase the
impact of climate change, in many of the remaining species
the impact of the threats of climate change are unknown. In
the threat calculation for a species at-risk assessment, ‘climate
change’ is divided into different threat categories illustrating
effects on species (for complete information on these categor-
ies, see Salafsky et al., 2008 and http://cmp-openstandards.org/
using-os/tools/classification-beta-v-2-0). These categories are
not always evident to differentiate. For example, ‘changes in
temperature regimes’ (threat 11.3) and ‘changes in precipitation

and hydrological regimes’ (threat 11.4) are, in general, closely
linked. Here, we gathered some aspects of terrestrial gastropod
physiology and species’ strategies, including our own research
work, which may provide a perspective for increasing the
understanding of potential impacts of climate change and a
gaining integration of species traits in conservation manage-
ment. We address the following four main climate change
threats, critical for terrestrial gastropods: (i) winter temperature
and snow cover; (ii) drought and high temperature; (iii) extreme
events; and (iv) habitat loss and fragmentation.

Winter temperature and snow cover
Climate warming includes changes of mean temperature
with the effect of delaying the cold season, but also increas-
ing the variability of temperature in the litter and upper soil
layers as a result of the absence of snow, especially in
autumn and spring when temperatures fluctuate around 0°C
(Augspurger, 2013). Delaying the winter season might have
an impact on phenology of terrestrial gastropods. Winter dor-
mancy is triggered by photoperiod and temperature (Bailey,
1981; Jeppesen, 1977), and reproduction is possible at suitable
temperatures with decreasing photoperiod (Nicolai et al.,
2010). Terrestrial gastropods that change phenology by later
entry into dormancy and/or autumn reproduction are suscep-
tible to be exposed to below-zero temperatures and/or have
reduced energy reserves for winter survival, respectively. Given
that winter survival increases with size in many terrestrial
gastropod species (in Cepaea nemoralis, Oosterhoff, 1977; in
Arianta arbustorum, Terhivuo, 1978; Baur and Baur, 1991),
juveniles from autumn reproduction might be particularly vul-
nerable, especially if they do not reach the crucial shell size

Table 1: Comparison of cold tolerance strategies in three species of European Helicidae

Parameter Helix pomatia Cornu aspersum Cepaea nemoralis

Annual cycle Hibernation: 5–6 months
Aestivation: few days

Hibernation/aestivation: highly variable
across Europe (6–0 months)

Hibernation: 5–6 months
Aestivation: few days

Shell breadth 30–50mm 25–40mm 18–25mm

Cold-tolerance
processes

Tc = −2°C (activity)
Tc = −6°C (dormancy)
LT50 = −10°C (2 h exposure)

Tc = −3°C (activity)
Tc = −5°C (dormancy)
LT50 = −10°C (2 h exposure)

Tc = −4°C (activity)
LT50 = −10°C (2 h exposure in
activity) Tc = LLT = −10°C (dormancy)

Cold-tolerance
strategy

Partly freeze tolerant Partly freeze tolerant Partly freeze tolerant (activity)
Freeze avoidant (dormancy)

Distribution South-Eastern Europe to England and
Scandinavia

North Africa to North Western Europe
(The Netherlands, England) and
eastwards to the Rhine Valley

Central Europe from Mediterranean to
England and eastwards to Poland

Status Protected in Europe (Appendix III, Bern
Convention)

Invasive in North and South America,
Australia, South Africa and New Zealand

Invasive in North America

References Nietzke (1970); Lind (1988); Kerney and
Cameron (1999); Nicolai et al. (2005,
2011, 2012a, 2015); Ansart et al. (2014);
personal observation A.N.

Kerney and Cameron (1999); Ansart et al.
(2001, 2002, 2010, 2014); Nicolai et al.
(2005); personal observations A.A. and
A.N.

Kerney and Cameron (1999); Ansart et
al. (2014); personal observations A.A.
and A.N.

Abbreviations: LT50, lethal temperature for 50% of individuals; LLT, absolute lower lethal temperature; Tc, temperature of crystallization.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conservation Physiology • Volume 5 2017 Perspective

Downloaded from https://academic.oup.com/conphys/article-abstract/5/1/cox007/3074430
by INRIA Rennes user
on 20 June 2018

http://www.sararegestry.gc.ca
http://cmp-openstandards.org/using-os/tools/classification-beta-v-2-0
http://cmp-openstandards.org/using-os/tools/classification-beta-v-2-0


below which they are unable to hibernate (Biannic and
Daguzan, 1993). The length of dormancy is also important for
genital tract maturation and gamete genesis, assuring the suc-
cess of future reproduction (Bonnefoy-Claudet and Deray,
1984; Gomot and Gomot, 1991). When dormancy of C.
nemoralis was reduced from 5–6 to 3 months, no spring repro-
duction occurred, and the albumen gland had increased by
only 36% of its initial dry mass compared with 91% increase
after 5 months (unpublished data A.N. for Annegret Nicolai).
Although some species have a highly variable length of dor-
mancy depending on the geographical origin of the population,
other species need a long dormancy period, such as the
Roman snail Helix pomatia (Lind, 1988) dormancy period.
For example, hibernation in C. aspersum lasts >7 months in
Scotland (Crook, 1980), 6 months in Wales (Bailey, 1981), ~5
months in North-Western France (Lorvelec and Daguzan,
1990) and 4 months in North-Western Spain (Iglesias et al.,
1996), whereas some Mediterranean populations do not
hibernate (Madec, 1989). Changing phenology has conse-
quences for population dynamics because of the possibility of
higher winter mortality, low juvenile winter survival from
autumn reproduction and reduced spring reproduction.

Survival to sub-zero temperatures is partly related to behav-
iour, such as the ability to occupy buffered microsites (Heller

and Dolev, 1994; Nicolai et al., 2011) and the orientation of
the apex in the hibernation position (Carney, 1966; Terhivuo,
1978; Baur and Baur 1991). At a physiological level, winter
mortality can be caused by insufficient energy reserves to endure
long periods of inactivity (Storey and Storey, 1990, 2004; Bailey
and Lazaridou-Dimitriadou, 1991; Heller and Dolev, 1994;
Pakay et al., 2002) and by a low ability to tolerate the exposure
to sub-zero temperatures. Cold hardiness strategy is thus crucial
for the maintenance and development of a species in a cold-
constrained habitat (Bale and Walters, 2001; Pither, 2003; Bale
and Hayward, 2010; Chown et al., 2010). There are currently
two main categories of physiological responses to sub-zero tem-
peratures, freeze avoidance and freeze tolerance, although many
intermediate response strategies are possible. Freeze-tolerant
organisms generally have a poor ability to supercool (i.e. the
ability to maintain body fluids at a liquid state below the freez-
ing point), between −5 and −10°C, allowing slow freezing of
tissues and thus sufficient time to implement protection mechan-
isms. In some snail species, ice nucleating agents decrease the
supercooling ability (e.g. gut bacteria; Ansart et al., 2010;
Nicolai et al., 2015). On the contrary, in freeze-avoidant organ-
isms, for which ice formation in tissues is lethal, the supercool-
ing ability will be enhanced, often in association with the
synthesis of large amount of antifreeze substances (for more
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Figure 2: Relationships between the temperature of crystallization (Tc) and the volume of 43 species of slugs and snails. Triangles indicate shelled
species and circles slugs. White symbols indicate freeze-intolerant species, black symbols partly freeze-tolerant or freeze-tolerant species and grey
symbols indicate species with unknown cold-tolerance strategy. Data are from Ansart et al. (2014) and personal observations A.A. except for species
Dl and Ac (Storey et al., 2007), Dre (Cook, 2004), Al, Aat and Ar (Slotsbo et al., 2012), Aal (Riddle, 1981), Dc and Ga (Riddle and Miller, 1988), Cav
(Koštál et al., 2013), Vp (Schmid, 1988) and Aar (Stöver, 1973), Tm (Franke, 1985). Sample size ranges from five to 110 individuals depending on
species. Only Tc values obtained during the cold season have been considered. Volume was estimated as the mean between the volume of a cone
and that of an ellipsoid for shelled snails (see Ansart et al., 2014) and as the volume of a cylinder for slugs. Mean size estimations were extracted
from Welter-Schultes (2012), Kerney and Cameron (1999) and Rowson et al. (2014) for European species and from Pilsbry (1940, 1948) for American
species. Abbreviations: Aal, Anguispira alternata; Aar, Arianta arbustorum; Aat, Arion ater; Ac, Arion circumscriptus; Al, Arion ‘lusitanicus’ = vulgaris
(invader); Ar, Arion rufus; As, Abida secale; Cac, Cochlicella acuta; Cap, Cantareus apertus; Cas, Cornu aspersum; Cav, Chondrina avenacea; Cb, Clausilia
bidentata; Cci, Ciliella ciliata; Cco, Columella columella; Ce, Columella edentula; Ch, Cepaea hortensis; Cl, Cochlicopa lubrica; Cn, Cepaea nemoralis; Cs,
Cepaea sylvatica; Cu, Candidula unifasciata; Dc, Discus cronkhitei; Dl, Deroceras laeve; Dre, Deroceras reticulatum; Dro, Discus rotundatus; Em, Ena
montana; Ev, Eobania vermiculata; Ga, Gastrocopta armifera; Hla, Helicigona lapicida; Hli, Hygromia limbata; Hlu, Helix lucorum; Hp, Helix pomatia; Ma,
Macrogastra attenuata; Nh, Nesovitrea hammonis; Od, Oxychilus draparnaudi; Pa, Pupilla alpicola; Pe, Pomatias elegans; Pm, Pupilla muscorum; Th,
Trochulus hispidus; Tp, Theba pisana; Vc, Vallonia costata; Vp, Vallonia perspectiva; Wm, Triodopsis (Webbhelix)multilineata; and Zd, Zebrina detrita.
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information on these strategies, see, for example, Ramløv,
2000; Zachariassen and Kristiansen, 2000; Block, 2003).

Winter mortality as a result extreme cold temperatures
appears to be a key factor in shaping the distribution and abun-
dance of land gastropods (Pfenninger, 2004; Horsák et al.,
2013; Horsák and Chytry, 2014). Terrestrial gastropods are
largely present in regions with harsh cold seasons; in northwest
Europe, 35 species are recorded above the Arctic Circle and 44
species can be found at altitudes higher than 2000m (Kerney
et al., 1983; Kerney and Cameron, 1999), and in Canada,
~30 species live at high altitudes in the Rocky Mountains and
in arctic provinces (Grimm et al., 2009; Forsyth RG pers.
communication).

Cold tolerance strategies are still poorly known within the
group of terrestrial gastropods, but all strategies from freez-
ing avoidance to tolerance can be encountered. Some species
have a short generation time, and only eggs will persist dur-
ing winter (e.g. the slug Lehmannia marginata; Cook and
Radford, 1988). For all studied species, eggs are killed by ice
formation but can supercool more or less depending on the
species [temperature of crystallization (Tc) = −3.9 to
−14.7°C in 34 different species; Tc is the temperature at
which body fluids start to freeze; unpublished data A.A. and
A.N. for the two authors). In species for which adults hiber-
nate, the comparison of 31 terrestrial European snails from
13 different families revealed a strong phylogenetic constraint
on the Tc, highly dependent on both water mass and water
content (see Fig. 2; Ansart et al., 2014). The cold hardiness
strategy has been extensively studied for only few species; all
small species with high supercooling ability are freezing avoi-
dant, in contrast to large snail species, which can supercool
poorly but tolerate freezing of body fluids to some extent
(from a few hours to a few days). All slug species, particularly
sensitive to inoculative freezing, appear to be freezing tolerant
(Fig. 2). Even if knowledge is still too scarce to conclude
undoubtedly, only the smallest species seem able to survive
extreme cold temperatures during winter. This hypothesis is
supported by several studies offering evidence that land snail
communities are less diverse at high altitudes and latitudes,
where small taxa become more frequent (Hausdorf and
Hennig, 2003; Nekola et al., 2013; Baur et al., 2014; Horsák
and Chytry, 2014; Schmera and Baur, 2014; Forsyth and
Oldham, 2016). With climate warming, we would expect the
gastropod community to become richer in bigger species,
with consequences for competition, trophic webs, vegetation
grazing and soil dynamics.

Under global warming, climatologists predict a decrease
of snow events and a thinning of snow cover. Snow cover
plays a very important buffer role. When present, soil tem-
perature is perfectly constant near 0°C, i.e. above the freez-
ing point of the fluids of living organisms. If absent, high
variation of temperature can be a real threat for species sur-
vival and considerably modify future distribution predic-
tions. In Chondrina clienta and Balea perverse, two

sympatric species with different cold tolerance capacities,
survival was significantly higher in snow-covered microsites
compared with exposed ones, at 90 vs. 79% and 100 vs.
88%, respectively (Baur and Baur, 1991). In recent years, we
have compared cold tolerance in three Helicidae species: the
large edible snails Cornu aspersum (brown garden snail) and
Helix pomatia (Roman Snail), and the smaller C. nemoralis
(grove snail), revealing that closely related species within
the same family can have very different responses to climate
change (Table 1). Cornu aspersum and C. nemoralis are
invasive in some parts of the world, owing in particular to
the development of human-related traffic. In some places,
they are considered to be an agricultural pest (e.g. in USA
and Canada, Ansart et al., 2009; Cowie et al., 2009). On the
contrary, H. pomatia was common in many parts of Europe
until the end of the 20th century (Nietzke, 1970), but habitat
loss through agriculture and urbanization diminished
important populations in some parts of Europe, such as
Germany. As consequence, the species has been protected in
Europe since 2002 (Appendix III of the Bern Convention).
We found that the three species are partly freezing tolerant
in activity, because they can bear body freezing (but only for
a very short time (Table 1)). During the winter, while H.
pomatia, partly freezing tolerant, relies on permanent snow
cover for winter survival, C. nemoralis, freeze-avoidant with
a higher supercooling capacity, can survive longer periods of
frost. Cepaea nemoralis would then be less vulnerable than
H. pomatia to high variations in winter temperature, which
are expected to occur more frequently at high latitudes when
snow cover is absent (Augspurger, 2013). Different geo-
graphical populations show slight variations in cold hardi-
ness processes, but an adaptive and/or plastic response to
local climate is difficult to prove because differences in indi-
vidual size and water compartment interfered with environ-
mental conditions (Ansart and Vernon, 2004; Nicolai et al.,
2005, 2012a; Gaitan-Espitia et al., 2013). The loss of snow
cover is the major threat of climate change in temperate
regions, because it directly affects winter survival and indir-
ectly affects reproductive success in some bigger terrestrial
gastropods (data for smaller gastropod species are lacking).

Drought and high temperature
Temperature has a fundamental impact on physiological pro-
cesses that determines the performance of ectotherms relative
to temperature (Angilletta, 2009). Thermal performance
curves (Gillooly et al., 2001), which describe this relation-
ship, are asymmetric for most ectotherms, and upward shifts
of global temperature bring organisms much closer to critical
limits, leading to the risk of local extinction, especially for
species that cannot rapidly shift their distribution (Dillon
et al., 2010), such as terrestrial gastropods.

As a consequence of their soft and permeable integument,
air breathing and mode of locomotion, land gastropods are
particularly sensitive to desiccation (Machin, 1964). Body
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temperature regulation is mainly achieved by the active
research of a buffered microhabitat and metabolic down-
regulation (daily torpor or aestivation). Although many
scientists have been interested in the upper thermal limit
and adaptations to heat of intertidal species, which endure
daily highly variable ecological conditions (e.g. Marshall
and McQuaid, 2011), far fewer have studied precisely heat
resistance and the underlining mechanisms in land snails
and slugs. At the community level, whereas the surface-to-
volume ratio of globular shells would be more beneficial for
facing dehydration in high-temperature conditions (Ansart
et al., 2014), oblong and thick shells would prevent desicca-
tion and facilitate access to sheltered microhabitats (Giokas
et al., 2005). Lacking a shell, slug species are supposed to
be much more sensitive to heat stress (Thompson et al.,
2006).

Usually, snails can cope with drought periods in the sum-
mer. Although H. pomatia aestivates for a short period, C.
aspersum can endure several months in the Mediterranean
region (Table 1), and snails of semiarid to arid regions are
inactive for the whole year except for a few rainy days (e.g.
6–12 days/year in Cristataria genezarethana; Heller and
Dolev, 1994). Mortality in snails from semiarid to arid
regions is usually low; 5% in Cristataria genezarethana
(Heller and Dolev, 1994) and 14% in Rhagada convicta
(Johnson and Black, 1991), whereas H. pomatia in a contin-
ental climate has a mortality rate that varies between age
classes from 6 to 20% (Starodubtseva and Dedkov, 2003).
However, during a drought of 1 month immediately after
arousal from hibernation when snails had to recover from
winter fasting, mortality was up to 70% in H. pomatia in
Germany (Nicolai et al., 2011). Richardson (1974) observed
direct lethal effect of high temperatures in a sand-dune popu-
lation of C. nemoralis. For the same species, Chang and
Emlen (1993) showed that repartition of the individuals in
the landscape was strongly constrained by high temperatures
and low humidity. Linked to urban development, subsequent
increase in the soil temperature near Basel (Switzerland)
might have triggered the extinction of several populations of
the land snail Arianta arbustorum, mainly explained by the
limited heat resistance of eggs (Baur and Baur, 1993). In the
same species, it has also been demonstrated that the sperm
length was reduced at higher temperatures, thereby affecting
reproductive success (Minoretti et al., 2013). In the African
species Achatina fulica and Macrochlamys indica, a longer
aestivation was related to a weaker viability of allosperm
stored in the spermatheca, a longer gestation period because
of the time necessary to meet energy needs, and a reduced
number of eggs per brood (Raut and Ghose, 1982).

For species inhabiting arid regions, being active for very
short periods and requiring several years to reach maturity
(e.g. Yom-Tov, 1971; Heller and Dolev, 1994; Arad et al.,
1995), longer droughts can have important consequences
on population dynamics, as for the endangered Corsica
snail Tyrrhenaria ceratina, for which activity periods are

extremely short in spring and autumn depending on humid-
ity (Charrier et al., 2013).

Heat tolerance is diverse among terrestrial gastropods (e.g.
Riddle, 1990). Given that most species spend drought periods
hidden in a buffered shelter, with their shell aperture closed
with an epiphragm, costs associated with aestivation are also
the production of chemical compounds that allow for mainten-
ance of cell function. The Mediterranean species Xeropicta
derbentina is particularly well adapted to high temperatures,
with individuals enduring hot hours of the day agglutinated on
the top of vegetation. In this species, calcium cells playing a
role in osmoregulation (Dittbrenner et al., 2009; Scheil et al.,
2011), heat shock proteins and antioxidant defences
(Troschinski et al., 2014) have been shown to be implicated in
heat tolerance. In the less heat-adapted species H. pomatia, we
observed via a metabolomic fingerprinting method an increase
of polyols, such as myo-inositol and glycerol, and sugars, such
as maltose, that might protect the cell against dehydration
(Nicolai et al., 2011). Moreover, cholesterol was found in high
concentration, which is responsible for the maintenance of
membrane fluidity at high temperatures (Robertson and Hazel,
1997). The high concentration of succinid acid indicated the
use of an anaerobic mollusc-specific glycolytic pathway that
produces more energy than fermentation (Livingstone, 1991)
also observed in some slugs during freezing (Storey et al.,
2007). These compounds implied a stress reaction to a pro-
longed drought, with an unusual timing involving high costs.

We can also expect different selective intra-specific effects of
climatic pressures on land gastropods. Individuals with light-
coloured shells have been suggested to tolerate solar radiation
and heat better (e.g. C. nemoralis, Richardson, 1974; C. asper-
sum, Lecompte and Madec, 1998; Cepaea vindobonensis,
Staikou, 1999; Theba pisana, Johnson, 2011). In C. nemoralis,
for which shell polymorphism has been much studied, the
higher frequency of light shells in open habitats compared
with dark ones (Ożgo, 2005) has been related to differences in
mortality (Tilling, 1983), activity (Chang, 1991) and behav-
ioural thermoregulation (Jones, 1982) in relationship with the
opioid system (Kavaliers, 1992).

Extreme events
Flood
If floods are a normal and important element of biodiversity
maintenance in certain ecosystems (Ilg et al., 2009), they can
also directly or indirectly threaten terrestrial soil faunas, for
several reasons, as follows: (i) air breathing becomes impos-
sible; (ii) water intrudes into body compartments (swelling);
(iii) individuals can uncontrollably be displaced and/or (iv)
be contaminated by toxic substances from the water; and (v)
environmental conditions can be impacted by flooding
(Plum, 2005). Abundances and biomass of soil invertebrates
are immediately reduced by flooding. The effect is generally
reversible and is normally compensated during the next soil
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dry period, but flooding events that are too frequent can pre-
vent communities from recovering and affect the environ-
mental conditions more harshly (Plum, 2005).

There have been few studies concerned with the effects of
flooding on land gastropod communities or species. Along a
gradient of flood frequency in Danubian floodplain forests,
Čejka et al. (2008) found that land snail communities were
less rich, with lower abundance, when floods were frequent,
compared with other sites. When confronted by flooding,
slugs and snails actively migrate, but their ability to move is
insufficient to escape brutal inundation. They can be trans-
ported passively, thereby colonizing new habitats (by water
itself, driftwood, or large animals; Dahl et al., 1993; Ożgo
et al., 2015). They can avoid drowning by climbing onto
emerging substrates or floating vegetation or by using air-
filled cavities in the soil (Dahl et al., 1993).

Flood impacts on land gastropods can be difficult to gener-
alize. Some terrestrial gastropods, such as C. nemoralis, might
be able to survive sudden hypoxic conditions for several hours.
Active adults of C. nemoralis were exposed to N2 for 15 h
and tested for long-term survival; all snails survived and repro-
duced (unpublished data A.N.). Antioxidant defences have
been shown to be highly implicated in tolerance to hypoxia/
anoxia occurring during dormancy periods in C. aspersum
(Welker et al., 2016) and H. pomatia (Nowakowska et al.,
2015). Given that the majority of gastropod species spend
some time with low metabolism, we could expect such a toler-
ance to be highly shared among the taxon.

In the North American snail Anguispira kochi the main
threat for the Canadian range is increased risk of flooding of
the habitat (COSEWIC, in press). The water level of Lake
Erie has been high for a few years owing to higher precipita-
tion, which increases the impact of storms, completely
immersing smaller islands and eroding the habitat.
Population maintenance in stochastically flooded occurrence
sites might depend on the population density, dispersal cap-
acity in the fragmented landscape and the spatiotemporal pat-
tern of the occurrences of storms and flooding, but also on
hypoxia tolerance.

Storms and hurricanes
Species respond in different ways to large-scale habitat modi-
fications attributable to storms and hurricanes with respect
to population density, absolute spatial variability or relative
spatial variability (Bloch and Willig, 2006). Storms can
change the pattern of spatial organization of the gastropod
community through cross-scale interactions between local
species demographics and human-shaped landscape configur-
ation of patches (Willig et al., 2007). In tropical forests, gaps
in the canopy triggered by hurricanes are thought to enhance
mortality of gastropods by desiccation stress, mostly affect-
ing eggs and young stages. At the same time, the deposition
of organic matter on the soil provides supplementary food
resources and humid microhabitat. In two endangered

Hawaiian tree species, Achatinella mustelina and Achatinella
sowerbyana, between-tree movements might be mostly passive,
occurring during violent wind storms (Hall and Hadfield,
2009). This results in heterogeneous responses of species, with
some being favoured by such events in contrast to others, and
some exhibiting variable trends (Bloch and Willig, 2006).

In the case of the endangered species T. ceratina, climate
change increased wind speed and changed wind direction at
the locality, thereby allowing storms that erode the coastal
habitat at an increasing frequency (Charrier et al., 2013). The
highest abundance of the species was measured on the marine
terrace ridge immediately behind the beach, probably related
to the vegetation community providing food and shelter. Parts
of the ridge are eroded by storms, thereby affecting the popu-
lation size. Retreat to lower parts of the sand savannah behind
the dunes, which are usually not affected by storms, seems to
be negated by the presence of a lower gravel-soil layer in the
sand. This layer originates from the construction of the urban
zone bordering the habitat and interferes with deep burrowing
behaviour (up to 50 cm deep) related to dormancy periods.

Fire
Fire can result from long droughts that might increase in fre-
quency and duration, especially in Mediterranean to contin-
ental and temperate climate. Fire can directly affect the
survival of terrestrial gastropods (Nekola, 2002; Bros et al.,
2011) or indirectly by reducing the wood, litter and mulch
layer on the soil surface (Bellido, 1987). Fire reduces and
modifies organic substrates and residues that are sources of
nutriments, buffering and sheltering; it changes microclimate,
such as heating of bare soil and increasing soil evaporation
(reviewed by Saestedt and Ramundo, 1990; Knapp et al.,
2009). In the tall grass prairie in Manitoba, the gastropod
community was impoverished a few years after fire;
unburned prairie hosted more aquatic and terrestrial species
than burned prairie (unpublished data A.N.). In
Mediterranean regions, Santos et al. (2009) showed that 4
years after the perturbation, the gastropod community was
dominated by xerophilous species, whereas forest species
dominated in unburned sites. Recolonization of burnt
patches by terrestrial gastropods depends on their survival in
microsites within the habitat (Kiss and Magnin, 2003,
2006). Severely burnt patches display a higher pH, possibly
attractive to gastropods (Hylander, 2011). Post-fire manage-
ment can increase post-fire survival by restoring the humus–
litter layer and providing moist microhabitat (Bros et al.,
2011). Even if resilience of gastropod communities to fire
events is high, a long time is required to return to the initial
state (Kiss and Magnin, 2006), whatever the post-fire man-
agement type (see Bros et al., 2011). It is expected that an
increased frequency of fire and a loss of microsites as refugia
within the habitat, triggered by the combined effect of cli-
mate change and human impact, will weaken their sustain-
ability and consequently affect litter decomposition and
nutrient cycling.
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Habitat loss and fragmentation
Interacting with human-driven changes in land use, climate
change is expected to affect landscape structure (Opdam and
Wascher, 2004; Vos et al., 2008). Habitat loss and habitat
fragmentation are two distinct processes, even though they are
often confounded in experimental and field studies, because
they generally occur together (McGarigal and Cushman, 2002;
Fahrig, 2003). Habitat loss generally has a negative effect on
biodiversity, directly by impacting species richness, population
abundance, species distribution and genetic diversity, and
indirectly by affecting species interactions and population
growth rate (for a review, see Fahrig, 2003).

Few examples document the effect of climate change-
induced habitat loss on gastropod species, independently of
fragmentation. In Lake Erie islands (North America), habitat
loss results from the disruption of natural erosion–deposit
cycles owing to changes in the frequency and intensity of pre-
cipitation and storms and to the human activity of sand min-
ing. This disruption affects the habitat of the endangered
species Allogona profunda (COSEWIC, 2014). A compar-
able situation is described for the Corsica snail T. ceratina
(see section ‘Storms and hurricanes’; Charrier et al., 2013).

Habitat loss can drive species to occupy suboptimal
patches, leading to reduced fitness. For example, a change in
resource availability, and thereby energy and types of nutri-
ents provided, can impact reproduction and egg quality in
C. aspersum (Nicolai et al., 2012b), such as egg shell thickness,
which can also lead to secondary effects on heat tolerance
(Nicolai et al., 2013).

Models have highlighted the existence of an extinction
threshold in habitat availability, below which the population
size does not allow its maintenance (e.g. Flather and Bevers,
2002). Moreover, the existence of such a threshold has also
been theoretically highlighted for the fixation time of selectively
neutral genotypes by genetic drift (Ezard and Travis, 2006).
Both thresholds are affected by habitat shape and spatial cor-
relation (Ezard and Travis, 2006), supporting the necessity to
study habitat loss and fragmentation simultaneously when con-
sidering the impact of climate change on local populations.

The consequences of fragmentation per se are more
diverse and less clear than those of habitat loss (Robinson
et al., 1992; Harrison and Bruna, 1999), with negative
impacts involving a reduction of the population size, edge
effects and reduced flow between patches, intensifying isola-
tion, thereby decreasing genetic diversity and increasing
inbreeding rate, leading eventually to the extinction of local
population (Fahrig, 2003 and references therein). Positive
impacts of habitat fragmentation on population maintenance
have also been demonstrated, such as the persistence of
inter-specific interactions (predator–prey relationship, com-
petition); heterogeneity of patch conditions can also avoid
simultaneous extinction of a whole population (Fahrig,
2003). Moreover, the matrix quality can considerably

influence the impact of habitat fragmentation on biodiversity
(Franklin and Lindenmayer, 2009). Taxa with low mobility,
such as terrestrial gastropods, are supposed to be particularly
sensitive to habitat fragmentation. Although dispersal in
minute gastropods is mainly passive (wind, water, animal,
mainly birds and human transport; e.g. Dörge et al., 1999;
Aubry et al., 2006; Ożgo et al., 2015; Simonová et al.,
2016), active dispersal is expected to play an important role
at a local scale (Aubry et al., 2006). Active dispersal is
known to be a highly variable trait, within and among popu-
lations, as a response to cost–benefit balance, depending on
the species traits and environmental context and with poten-
tial consequences on population dynamics (Bonte et al.,
2012; Clobert et al., 2012). This variability of active disper-
sal depends on climatic conditions (Hall and Hadfield, 2009;
Dahirel et al., 2014), species (see Kramarenko, 2014 and
references therein) and individual size (Baur and Baur, 1988;
Honek and Martinkova, 2011), age and/or reproductive sta-
tus (Tomiyama and Nakane, 1993, Dahirel et al., 2014) and
habitat exploitation (sedentary vs. nomadic species, Murphy,
2002; Edworthy et al., 2012; specialist vs. generalist species,
Kappes et al., 2009; Dahirel et al., 2015). As an illustration,
in the minute European land snail Punctum pygmaeum (shell
breadth approximately 1.2–1.5mm), the mean distance trav-
elled over a 12 h period is 47 mm (Baur and Baur, 1988),
whereas in the large Australian Hedleyella falconeri (shell
breadth approximately 90–100mm), individuals moved 9m
on average per night (Murphy, 2002), and in the endangered
Allogona townsendiana, displacement during 3 years was
32.2 m (Edworthy et al., 2012).

Fragmentation can alter gastropod dispersal cost in two
ways: directly, as the cost for crossing hostile matrix is
increased, and indirectly, as movements of vector species,
such as mammals, can also be affected by landscape struc-
ture changes (Kappes et al., 2009). Moreover, alteration of
the habitat and its consequences (reduced resources, higher
density, microclimatic changes and community modification)
can modify the dispersal behaviour of species. In general,
fragmentation is negatively correlated with emigration pro-
pensity (Bonte et al., 2006; Schtickzelle et al., 2006). If a
boundary-crossing avoidance behaviour has effectively been
observed in gastropods (Baur and Baur, 1988; Giokas and
Mylonas, 2004), in some species, such as the brown garden
snail C. aspersum, exploration increased with higher frag-
mentation on an urbanization gradient (Dahirel et al., 2016).
In the endangered Canadian species A. townsendiana, the
individual home-range area was highly variable (from 18.4
to 404.4m²), depending on habitat quality; in habitats where
stinging nettle (food source and shelter) and coarse woody
debris (reproduction sites) were present, the home range was
significantly smaller (Edworthy et al., 2012). In a compara-
tive analysis (20 European Helicoidea species), Dahirel et al.
(2015) showed that several traits linked to mobility were
phylogenetically constrained (e.g. locomotion speed),
whereas others were independent of phylogeny (e.g. explor-
ation propensity, path sinuosity).
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Several field or experimental studies gave interesting
insights into the consequences of fragmentation for gastro-
pod species. In small conservation forests, litter mollusc spe-
cies assemblages depended not only on local environmental
variables but also on surrounding landscapes, with open
fields having a negative impact on species richness and com-
position (Götmark et al., 2008), somehow counterbalancing
the conclusion from Cameron and Pokryszko (2004); gastro-
pod faunas can survive in very small fragments of suitable
habitat. Moreover, connectivity of habitat patches has been
shown to be important for maintaining a diversity of taxa
with low dispersal ability, such as gastropods (Knop et al.,
2011). In an experimentally fragmented grassland, a 3 year
survey of six land snail species allowed the demonstration of
a significant impact of fragmentation on all species, but with
specific differences in population size reduction, extinction
rate and recolonization probability (Stoll et al., 2009).
Species with a larger body (more mobile), longer activity per-
iod and short generation time were less susceptible to frag-
mentation. The fragment size was negatively correlated with
the extinction rate and positively correlated with the recolon-
ization probability, highlighting the importance of edge
effects, affecting both the composition of vegetation and
microclimatic conditions on the edge zone (Stoll et al.,
2009). In the same experimental system, the reduced density
of herbivores (mainly gastropods) and the vegetation shifts
in the fragments decreased the grazing intensity to Trifolium
repens seedlings, thereby amplifying the modification of the
habitat quality (Ledergerber et al., 2002). In deciduous for-
ests, fragmentation affected more forest-specialized than eur-
yecious and matrix species, with main effects being generated
by edge effects on environmental conditions (Kappes et al.,
2009).

Facing rapid changes of their habitat, some species have
proved a high evolvability of some traits, such as C. nemoralis.
In the British Isles and The Netherlands, large-scale habitat
changes (opening and warming) triggered a rapid adaptive
change in shell morph frequencies; lighter and unbanded shells
were more frequent, which could be advantageous against
insolation and predators compared with darker and banded
shells (Ożgo and Schilthuizen, 2012; Cameron and Cook,
2013; Schilthuizen, 2013). Responses to habitat loss and frag-
mentation appear then as an idiosyncratic trait, highlighting
the necessity to conduct studies at the population level. Fast
adaptation might confer some ability to maintain a population
in unstable and rapidly changing habitat for some species
(Ożgo, 2011), but it remains difficult, if not impossible, to gen-
eralize responses.

Perspectives
Molluscs are the taxon with the highest number of extinc-
tions; 42% of the 693 recorded extinctions of animal species
since the year 1500 were molluscs, and 99% of them were
terrestrial and freshwater species (Lydeard et al., 2004). As a
result of a general bias in both public and scientific interest

for vertebrate extinctions, the conservation status of gastro-
pod species is poorly known and biodiversity management
generally not intended to promote their maintenance
(Régnier et al., 2008, 2015).

To understand how a species will be affected by climate
change, we need to know responses at different organiza-
tional levels: species-specific physiological and behavioural
processes, population responses and distribution of species in
the climatic heterogeneous landscape. In most endangered
gastropods, studies are scarce and sensitivity traits (physio-
logical and behavioural) and their evolvability unknown.
Without this knowledge, we are unable to assess species’ sta-
tus that will be the basis for species’ recovery strategies, inte-
grated in conservation strategies of ecosystems.

Experimental manipulation of environmental conditions
in the field (temperature and/or rainfall; Sternberg, 2000) or
in climate chambers (temperature and/or CO2; Bezemer and
Knight, 2001) has confirmed the difficulty in drawing a gen-
eral picture of organisms’ responses. In general, physiological
studies, involving metabolomic fingerprinting, survival or
performance analysis in different climatic conditions (meth-
ods used in studies of Table 1; for more, see Madliger and
Love, 2015), are highly invasive, making them unsuitable for
endangered and protected species. As numerous physio-
logical processes are phylogenetically constrained, an ideal
situation would be to approximate the responses of endan-
gered species by those of a common, phylogenetically close
species. However, our example of cold tolerance in three
Helicidae species showed that they differ in life-history strat-
egy, behavioural responses and physiological processes.
Therefore, species-specific studies at the population level and
the development of non-invasive methods (e.g. heart rate to
measure thermal performance; Marshall and McQuaid,
2011; Han et al., 2013) are required to understand the
physiological responses to climate change of rare and endan-
gered species.

Habitat alteration drives species to migrate to suitable
habitat. Given that most of the critically endangered species
are on islands (Fig. 1 and, e.g. COSEWIC, 2014, in press),
habitat is limited. Moreover, human-driven habitat loss and
fragmentation through intensified urbanization, agriculture
and forestry, dramatically increases the impact of climate
change at the population level. Especially for endangered
species, living in restricted habitat (such as protected areas or
habitat remnants), dispersal or migration being largely
negated by habitat loss and fragmentation, studies on the
impact of habitat alteration are still scarce, but greatly
needed.

Recently, several authors pointed to the necessity of inte-
grating physiological and behavioural traits in an interacting
environment to avoid false predictions (Helmuth, 2009;
Kearney et al., 2009; Chapperon and Seuront, 2011; Huey
et al., 2012; Twomey et al., 2012). Historical impacts of cli-
mate change and anthropogenic pressure on population size
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or on habitat structure combined with density-dependant
population maintenance processes, such as reproduction and
dispersal, should be considered to develop dynamic conser-
vation models in changing landscape. Providing a thermally
heterogeneous landscape may be a key component of conser-
vation of terrestrial species under climate change. However,
the complexity of the thermal landscape as perceived by an
organism is difficult to infer from average temperatures
recorded by weather stations, so many studies are simplified
to take only one landscape factor into account, e.g. topog-
raphy (Sears et al., 2011). Anthropogenic activity influences
these landscape parameters, but is often largely ignored in
large-scale models. The link between habitat choice and
physiology is poorly known for all but a few species
(Angilletta, 2009). Genetic diversity, phenotypic plasticity
and evolvability of traits seem to be essential elements to a
complete understanding of how a species will face climate
change (Marshall et al., 2010; Donnelly et al., 2012; Huey
et al., 2012; Merilä and Hendry, 2014; Schilthuizen
and Kellermann, 2014). Integrative approaches should con-
sider spatiotemporal heterogeneity of climate at local scales
over a species’ range and the capacity of species to respond
to climate variations through plasticity of traits or
adaptation.

Understanding the spatiotemporal effect of climate change
on gastropod species would require a precise knowledge of
specific physiological processes, behavioural responses and
their plasticity in combination with genetic adaptation at dif-
ferent organizational scales, from individual to species. This
objective seems reachable for some well-studied model spe-
cies, such as the brown garden snail C. aspersum or the
grove snail C. nemoralis, with a panel of studies conducted
worldwide, from phylogeographic history (e.g. Davison and
Clarke, 2000; Guiller et al., 2012) to physiological (see
Table 1) and behavioural traits (e.g. Jaremovic and Rollo,
1979; Dahirel et al., 2014). Extrapolation to other species,
particularly to endangered ones, remains limited, and a min-
imal knowledge of basic physiological processes in species at
risk is urgently needed to determine adequate conservation
strategies.

In parallel, as most terrestrial gastropods are part of a diverse
mulch and litter community that is essential in all ecosystems to
ensure soil fertility (Swift et al., 1979), it is necessary to
develop a functional approach to understand the effect of cli-
mate change in the soil system. The need for the preservation
of soil functions, via the conservation of species in the litter
community and the ecosystems they occupy, is still too often
underestimated.
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