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Christian Viard-Gaudin

Abstract Flowcharts are considered in this work as

a specific 2D handwritten language where the basic

strokes are the terminal symbols of a graphical lan-

guage governed by a 2D grammar. In this way, they

can be regarded as structured objects, and we propose

to use a MRF to model them, and to allow assign-

ing a label to each of the strokes. We use structured

SVM as learning algorithm, maximizing the margin be-

tween true labels and incorrect labels. The model would

automatically learn the implicit grammatical informa-

tion encoded among strokes, which greatly improves

the stroke labeling accuracy compared to previous re-

searches that incorporated human prior knowledge of

flowchart structure. We further complete the recogni-

tion by using grammatical analysis, which finally brings

coherence to the whole flowchart recognition by label-

ing the relations between the detected objects.

1 Introduction

Sketched diagram is a powerful language that can help

illustrating people’s ideas. They contain self-explanatory
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symbols and can expand their styles freely. One typi-

cal example of such diagram is flowchart, which makes

the illustrations of programs or structural objects very

intuitive. With the emergence of electronic devices, the

situations are becoming more common that people have

to record their diagrams in their tablets and hopefully,

the applications would facilitate the process of diagram

parsing. Understanding and processing diagrams by ma-

chine learning techniques is also becoming a hot re-

search topic, and fortunate enough, as a 2D handwrit-

ten language, the task of recognizing sketched diagram

is similar to recognizing handwritten mathematical ex-

pressions and the latter can be referenced.

A traditional workflow of parsing 2D handwritten

language is a trilogy: grouping strokes into symbols,

recognizing symbols, and then analyzing structures [9].

We can follow this process in diagram recognition in

a broad way, however, the properties differ from one

specific 2D language to another. Cases are rare that

one symbol is contained in another except square root

operator in mathematical expressions, but it is common

in flowchart that texts are contained in terminal nodes.

Sketched diagrams also have a more flexible grammar

in that they can almost expand their symbols in all

directions, but in mathematical expressions, rules are

settled so that there is less variability. From Figure 1

we can see that arrows in a flowchart can have various

shapes, and can point to almost everywhere. Flowchart

also cover a larger scope than mathematical expressions

[9, 19]. All these add difficulties in sketched diagram

recognition.

Although most of the 2D handwritten languages can

be interpreted as the trilogy that has been mentioned

above, recent researches tend to use a global method

to avoid the propagation of errors, which decrease the

recognition rate by feeding the misinterpreted symbols

or structures into the following steps [9, 19].
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(a) Example of flowchart

(b) Examples of mathematical expression

Fig. 1 Two 2D handwritten languages: sketched diagrams
and mathematical expressions. The diagram has much flex-
ibility while the mathematical expression follows a rather
strict grammar.

Instead of enlarging the search space by generat-

ing several segmentations and several symbol hypothe-

ses, our proposal is to guide the local recognition using

neighborhood information. In this way, the problem is

not solved by simply performing classification of indi-

vidual component, that approach does not take into

account the empirical fact that labels do not occur in-

dependently; instead, each label displays a strong condi-

tional dependence on the labels of the surrounding com-

ponents. To this end, document is arranged as a struc-

tured object, which can fit into an undirected graphical

model, or more specifically, a Markov Random Field

(MRF). A MRF that would incorporate local, neigh-

borhood and global information would be a superior

solution to solve symbol ambiguity problems. In addi-

tion, it is possible to train this model in a structured

learning framework. Two alternatives exists for param-

eter learning: logistic loss based Conditional Random

Field (CRF) approach and hinge-loss based structured

SVM approach. CRF is almost intractable for general

graphical models [17] [21], as shown in Figure 2. Mean-

while, several works [15] [30] showed that structured

SVMs avoid the inference in the whole label space by a

heuristic search in a primal form, making the learning

tractable. This paves a new way of learning parameters

of MRF, and due to its max-margin property of its loss

function, the structural SVM can lead to a Max-Margin

Markov Random Field (M3N).

In this work, we adopted structured SVM learning

methods and MRF for the first time in the field of 2D

handwriting recognition, leading to a novel statistical

and structural information combined online flowchart

recognition method, which is also applicable to other 2D

handwriting problems. We build a M3N on the stroke

level of the online flowcharts for stroke labeling. The

parameters of M3N are learned using structured SVM.

After stroke labeling, we use a grammatical description

language extended from a previous work [18] to parse

the structure of a given sketched diagram, thus obtain-

ing the final recognized flowchart. In order to fully eval-

uate of the recognition process, the ground-truth of the

flowchart dataset [2] have been completed by adding

the object relations.

In the following sections, we first have a review of

previous works on 2D handwritten language recognition

and the application of structured learning, especially

CRF and structured SVM, and how they inspired our

handwriting recognition research. In the third section,

we will describe the stroke labeling problem, in which a

full description of our max-margin MRF building and

training will be given. In the fourth section, we explain

how the strokes labels are used in the syntactical anal-

ysis. The experiment will be given in the fifth section

after a short description of the new version of the eval-

uation dataset. We will conclude the research in the

sixth section.

2 Related researches

Flowchart can be viewed as one type of 2D handwrit-

ten languages. To enlarge the scope, we will review

more generally 2D handwritten language recognition

researches that complete symbol recognition and struc-

ture recognition simultaneously. Integrating neighbor-

hood information in handwritten document understand-

ing can be done globally by using strict language mod-

eling like grammars or more locally through CRF or

alternatively with structured SVM. Both kinds of ap-

proaches will be discussed in this section.

2.1 2D Handwritten language recognition

Significant research effort has been reported for recogni-

tion of math expressions in the recent years [19], in part

due to online input devices becoming more popular.

Zanibbi et al. [34] proposed baseline structure tree that

parses the elements of a mathematical expression into

a tree that fits natively its structure and then passed it

to lexical parser and expression analyzer. The output

of this three-pass system is an operator tree that can
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Fig. 2 Examples of graphical models. MRF and CRF share the same graphical models, but MRF are generative models
which model the joint probability distribution, while CRF are discriminative models which model the conditional probability
distribution. The black triangles on the edges are the unary factor nodes, while black squares on edges are the pairwise factor
nodes.A linear chain model (left example) will be easier to train and will be used for inference with respect to a general model
which contains cycles (right example).

be interpreted by computer. In [29], a minimal span-

ning tree (MST) is used to arrange all strokes into a

graph and used symbol dominance information to set

the weights of the tree so that they take into account the

baseline of the mathematical expression. Symbol rela-

tion tree (SRT) is used in [26], it overcomes the baseline

restrictions and build the tree using dominance sym-

bol. They also used layered search to include symbol

hypothesis and prune search space. These elegant so-

lutions are well adapted for mathematical expressions,

however, they might not be applicable to flowcharts or

other sketched diagrams as the concepts baseline and

dominance symbol are too specific. Another drawback

of these approaches is their greedy decisions. In order

to take the final decisions as later as possible, Awal et.

al. [3] used a 2D dynamic programming algorithm sym-

bol hypothesis generator, concatenating it with a Time

Delayed Neural Network (TDNN) [31] symbol classi-

fier. Besides, structure interpretation also suffers from

ambiguity, which is caused by the ambiguous position

of symbols and previous recognized symbols. Symbol

relation tree is proposed in [26] to include all the sym-

bol hypothesis and relation hypothesis. They used a

heuristic measure to calculate the cost of a certain tree

and they get the interpreted mathematical expression

by best-first-searching for the interpretation with the

lowest cost. Hence, this tree-style models may not be

applicable to our diagram recognition needs.

There are no public flowchart or any other sketch

diagram dataset until 2011 [2], and after that, many

researches appeared to improve that first trial research.

Lemaitre et. al. [18] analyzed the structure of the flowchart

and described them in DMOS (introduced in section

4.1), a grammatical method for structured document

analysis. This approach provides a global solution to

the problem. The structure, symbol and stroke labels

are recognized in one step. However, this unified recog-

nition framework did not use any statistical learning

methods. To improve this method, research combined

statistical and structural information [8]. They used de-

formation scores to measure potential of candidate sym-

bols so that they could dynamically switch to a prefer-

able symbol in the structured search. However, the pro-

posed approach did not cover simply all the possible

variations to build a given symbol. For instance, the

drawing of a rectangle can be done in a single stroke or

can be done with 4 strokes, one side at a time. To deal

with this variability, the structural approaches need to

define one specific rule for specific case. Wu et.al. [33]

proposed to recognize symbols in flowcharts by using

shapeness, which is a property of whether a symbol

has a good shape. They used a 256 dimensional fea-

ture and represented it compactly by using 16 INT64

numbers, calling it INT64 feature. The INT64 feature

is used in a linear classifier to filter out symbols with

good shape, then a neural network is used to achieve

the final recognition. This research outperforms others

due to its separation of processing of symbols accord-

ing to whether they are having a regular appearance,

this is too specific to the field of flowchart recognition:

for mathematical expression recognition, there are less

texts and symbols have regular shapes, and the posi-

tion relationship between texts and symbols are more

complicated.

Bresler et.al. proposed max-sum model in [6], which

can be viewed as a structured model incorporating unary

and pairwise relationships. Their max-sum model tried

to maximize the global compatibility of symbols. They

first extracted a bunch of symbol candidates (about 8.8

times the groundtruth symbol set size) and evaluated

their combinations to find the most suitable symbols

that fit in the flowcharts. They formulated the max-
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sum model as a an Integer Linear Programming (ILP)

[27] problem and solved it using IBM ILOG CPLEX1.

In their following research [7], they refined their re-

search by carefully dealing with text and arrow sym-

bols: they first filtered out text by using Bi-directional

Long-Short Term Memory neural network (BLSTM)

based Bayesian classifiers then checked connection points

of each symbol to decide the connecting arrows. They

also published finite automata dataset to validate their

research. One of the inspirations of their effort to our

research is that their max-sum model is an attempt to

include the global information in one model. Though

achieving high recognition precision, filtering of text

and their effort in deciding arrow type make their effort

too specific to flowchart. Besides, the large amount of

generated symbol hypothesis increased the inference ef-

fort in the max-sum model, and will always inevitably

drop some true symbols.

2.2 Structured learning

Structured learning describes a wide range of problems

that involve structured objects instead of scalar discrete

or real values. By denoting X an input space, and Y an

output space, the structured learning means fitting a

function h to map from X to Y using a set of train-

ing samples in (X × Y). By using the word structured,

the output Y should be arranged in a structured man-

ner, like trees or graphs. The task of stroke labeling in

flowchart recognition corresponds to this description as

the underlying strokes are arranged in a Markov ran-

dom field. Here we have a review of previous researches

that used CRF and M3N, two practical forms in struc-

tured learning [22].

As we have mentioned before, CRF is a powerful

tool in describing regional context. Research utilized

Bayesian CRF in their flowchart recognition [25]. They

first modeled the distribution of parameters, pairwise

probability and the inverse of partition function as Gaus-

sian distributions, and then they repeatedly trained the

model by minimizing Kullback–Leibler divergence be-

tween the new and the original models. This method is

called expectation propagation. They did their research

on text-free segment based flowchart recognition. How-

ever, Gaussian distribution is a strong assumption that

may not applicable to pairwise potentials. Besides, their

research did not continue with symbol recognition and

their flowchart contains much fewer symbol types com-

pared to the flowchart dataset mentioned in [2], only

arrows and nodes are included.

1 www.ibm.com/software/products/en/ibmilogcpleoptistud

A promising result using CRF in sketch diagram

recognition is described in [11], though it is originally

designed for text/nontext classification in handwritten

documents. They build the CRF using a set of associa-

tive potential functions and interactive potential func-

tions, the latter are built on a set of 5 relations, not

limited to spatial, temporal and touching relations. In

their later research [12], they further improved labeling

accuracy by building a hierarchical tree-CRF, on the

same handwritten document database, and they clas-

sify strokes to five classes, which is more specific than

just text/nontext. They grouped and recognized sym-

bols by building a MST on the recognized strokes of

the same type. However, the hierarchical tree-CRF’s

performance is largely controlled by the clustering dis-

tance threshold, which is specific to the document and

can largely affect CRF’s performance according to their

experiment.

On the other hand, M3Ns are showing promising

performance in the field of image labeling. The property

that CRF can be reduced to a structured SVM [15] [30]

provides smooth transition from traditional research of

CRF to max-margin MRF representation. One example

is [24], which uses M3N to combine multiple local be-

liefs of superpixels and regional affinity. They also used

global constraints to refine unary potentials. Structured

SVM has also been applied in the field of object loca-

tion [4], point matching [28] and pose esti-mation [13].

However, one common idea behind the construction of

M3N is that unary potentials should describe the local

belief based only on the local observation, while pair-

wise potentials, or even higher order potentials should

describe regional interactions.

Regarding all the previous researches using MRF in

handwriting recognition [35] [11] [12], MRF has shown

to be a powerful structured model to describe neigh-

borhood information. We discarded the idea of find-

ing a tree-structure in the representation of sketched

diagrams and resort to general graph MRF that may

contain cycles to capture neighborhood relationship be-

tween strokes. Training by structured SVM learning al-

gorithm is a natural solution to avoid the intractable

learning problem in the partition function of CRF that

may contains loops in underlying graph [17]. Training

a M3N consists of learning the unary potentials and

the pairwise potentials to incorporate local belief and

neighborhood compatibility accordingly. With the la-

beled strokes, the grammar parsing will result in a legit-

imate, reasonable diagram. This is the first attempt to

use structured SVM in 2D handwritten language recog-

nition, and the combination of structural grammars and

statistical recognition result gives a complete compara-

ble referral on different recognition stages.
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3 Stroke labeling using max-margin MRF

Suppose we haveN diagrams, then we denote the stroke

observation set as X(n) for each diagram, which is in-

dexed by n. We denote strokes
{
X

(n)
1 , X

(n)
2 , . . . , X

(n)
Mn

}
=

X(n) that belong to the observation set. Mn is the num-

ber of strokes in an observation set. The topic of this

section is stroke labeling problem, so each of the stroke

observation has a corresponding label Y
(n)
i , which takes

discrete labels such as Arrow, Terminal and so on, de-

pending on the diagram. In the following, in case of no

ambiguity, we simply define the observation set of a spe-

cific sample of diagram X and its corresponding label

set as Y, each strokes will be indexed by subscripts.

Classically, we use an energy function to describe

the whole compatibility of the flowchart. It is composed

of a set of unary energy functions and pairwise energy

functions:

E(X,Y)

=

∑
i

ε(Xi, Yi) +
∑

<i,j>∈E
ε(Xi, Xj , Yi, Yj)


(1)

In the energy function in equation (1), the unary

energy function describes the local belief Yi given only

the isolated observation Xi. The pairwise energy func-

tion ε(Xi, Xj , Yi, Yj) provides regional compatibility. In

many image segmentation researches, pairwise energy

functions try to fix the local belief by smoothing re-

gional labels given the regional observations. That en-

ergy function, under the assumption of Gibbs distri-

bution [17], can be incorporated into a MRF:

P̃ (X,Y) = exp [−E(X,Y)]

=
∏
i

e−ε(Xi,Yi)
∏

<i,j>∈E
e−ε(Xi,Xj ,Yi,Yj)

=
∏
i

Φ(Xi, Yi)
∏

<i,j>∈E
Φ(Xi, Xj , Yi, Yj)

(2)

Here in formula (2), we use exponential form of po-

tential function to ensure potential function are always

positive, which is a requirement of MRF [17]. The infer-

ence problem is to solve Y = argmax
Y

P̃ (X,Y), which

can also be interpreted in the form of energy function

as Y = argmin
Y

E(X,Y). In the following subsections,

we will describe the feature selection, inference problem

and learning problem separately.

3.1 Potential functions

The potential functions should be built to exhibit the

relevant features from the raw data. Here we discuss

the selected features for unary potential functions and

pairwise potential functions, then describe the mathe-

matical expressions.

3.1.1 Raw feature selection

Considering that diagrams drawn by different people

have different scales, as a preprocessing step, we rescaled

all the diagrams to a [-1, 1] bounding box and kept its

height/width ratio. For the convenience of uniform fea-

ture extraction, we sampled each stroke to equal count

of points with a constant spatial step. Our trial on the

number of points per stroke showed that the denser

the sampling the better the feature extraction ability,

but performance is hard to improve after 30 points per

stroke. For the balance between performance and pro-

cessing time complexity, we set sampling point on each

stroke to 30.

To extract raw features for unary potential func-

tions Φ(Xi, Yi), we calculate the ∆x, ∆y, cos θ, sin θ,

cos γ, sin γ on each sampling point as illustrated with

Figure 3. The angle θ is the slope angle on the current

Fig. 3 This graph illustrates raw features for unary poten-
tials. i and i + 1 are two consecutive sampled points on a
stroke, and we here showed features ∆x, ∆y, θ and γ for
sampled point i.

point, and γi = θi+1 − θi = ∆θ. This describes the

curvature of that point. For the ∆x, ∆y, we normalize

them by dividing the width and height of the bounding

box of the flowchart separately. Altogether there are

30 × 6 = 180 features that describe a stroke, and we

normalize them by dividing by the maximum absolute

value of each component.

The pairwise potentials Φ(Xi, Xj , Yi, Yj) should de-

scribe the regional compatibility of label Yi, Yj given



6 Chengcheng Wang et al.

observation Xi, Xj . We focus on two types of neighbor-

hood in pairwise function: temporal neighborhood and

spatial neighborhood. Hence, from the time domain, Xi

and Xi+1 are considered as neighbors, so there is a po-

tential function that describes their affinity. For the spa-

tial neighborhood, we define a threshold distance. If the

stroke pairs’ minimal distance is below that threshold,

they are considered as neighbors. To decide the thresh-

old, we tested thresholds from 0.01 to 0.07 and eval-

uated stroke labeling accuracy and training time, and

we took 0.03 as a preferable threshold in the following

experiments. The detail of this spatial threshold deci-

sion can be referred in section 5. The pairwise potential

function is undirected, which means Φ(Xi, Xj , Yi, Yj) is

equivalent to Φ(Xj , Xi, Yj , Yi). The Figure 4 shows an

example of sketch with its set of unary and pairwise

potential functions.

(a) Example sketch
diagram

(b) Underlying Markov random
field

Fig. 4 A sample sketch diagram and its corresponding MRF.
Unary potential functions are represented by a solid triangle
between X and Y, and pairwise potential functions are rep-
resented by a solid square between Ys. Those links indicate
they are regarded as neighbors temporally or spatially.

We extract raw features for pairwise potentials by

finding the displacement of each of the sampled points

on one stroke to the point on another stroke that can

offer the minimal distance. As shown in Figure 5, X1

is the first sampling point on the left stroke, and from

all the sampling points on the right stroke, Yn has the

minimal distance. The displacement from X1 to Yn is

shown by a dotted arrow, and this displacement gener-

ates ∆x and ∆y as two pairwise raw features. For the

sampling points Y1 on the right stroke, we find the sam-

pling point X1 on the left stroke with minimal distance.

We do this repeatedly on every sampling points of each

pair of strokes. Altogether, there are 30 × 2 × 2 = 120

pairwise raw features.

Fig. 5 This graph shows raw feature pairwise relationship.
Every stroke is sampled to 30 points, X1, X2, . . . , X30 on the
first stroke and Y1, Y2, . . . , Y30 on the second stroke. Only a
selected number of points are presented. The features are the
displacements vectors from every sampling point from one
stroke to another, as shown by dotted arrow.

In many researches on analyzing online handwrit-

ten documents, researchers would chose manually se-

lected and refined features to feed the classifiers [12].

We, however, simply selected very raw features as de-

scribed above, and then use supervised classifiers to

classify them to different types of stroke relationships,

and the feature derived from the classification result is

used as feature. In this way researchers avoided the ef-

fort to manually select different features according to

different scenarios, making our method adaptable to

fields beyond flowchart. However, domain specific raw

features could have better results.

3.1.2 Mathematical formulation of potential functions

The unary potential function Φ(Xi, Yi) can be formally

defined according to equation (3).

Φ(Xi, Yi) = exp

[
−

L∑
l=1

1Yi=l

K∑
k=1

wk,lfk(Xi)

]

= exp

[
−

K∑
k=1

L∑
l=1

wk,l [1Yi=lfk(Xi)]

] (3)

In the equation above, 1Yi=l is the indicator func-

tion given the current label, and K is the number of

features that are fed in this unary potential function. L

is the number of possible labels. In this research, since

unary potential functions are to describe the local con-

fidence of a label, we should use a supervised classi-

fier that gives confidence on final labels directly. Prac-

tically, all classifiers giving this kind of outputs could be

used. Since raw features directly reflects the property

of strokes which are of various shapes, and even same
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type of stroke is having various shapes in flowchart, we

choose ensemble methods to improve robustness of the

feature extraction. We selected random forest [5], which

uses averaging methods to combine different decision

trees to prevent over-fitting, and GBDT [23], which is

using boosting to combine several weak classifier to a

strong one. The refined features are the probability of

each label given the observation. Both classifiers give

the probability of predicted class, and here we concate-

nated them to form refined feature. Since the fk(Xi)

describe the probability of different labels based on two

pre-trained classifiers, K = 2 × L. The classifiers are

trained on raw features of observations.

Following the idea of unary potential functions, the

formulation of pairwise potential functions in equation

4 also used an indicator and a feature descriptor.

Φ(Xi, Xj , Yi, Yj)

= exp

− l1,l2∈L∑
l1=1,l2=1

1Yi=l1,Yi=l2

K∑
k

wl1,l2,kfk(Xi, Xj)


= exp

− K∑
k

l1,l2∈L∑
l1=1,l2=1

wl1,l2,k [1Yi=l1,Yi=l2fk(Xi, Xj)]


(4)

That feature descriptor should describe local proper-

ties that reflect local relationship of two neighboring

strokes, thus completing local compatibility description.

We continue using random forest and GBDT, taking

pairwise raw features and classify them into given stroke

relationships. For within-symbol strokes, the symbol la-

bel is used as stroke relationship label, and for inter-

symbol strokes, stroke relationship inherits from sym-

bol relationship (for a concrete example, section 5.1 de-

scribes possible symbol relationships for flowchart database).

By adding ”no relationship” for other situations, all

possible stroke relationships are included.

Though there are choices for a more sophisticated

and advanced classifier, we simply disregarded the abun-

dant choice for other researchers to push our boundary

further. Whatever classifier one would use, the auto-

matic feature extraction process from raw features to

the classified class enables one to use this identical pro-

cess in their own handwriting recognition task is one

contribution in our work, which greatly facilitated the

transplanting of our system to other problems.

3.2 Model inference

Inference problem has been a main focus of probabilis-

tic graphical model research. Here in this research, we

adopt Alpha-Expansion-Fusion algorithm [14]. This is

a graph-cut based algorithm so it is faster than belief

propagation. Besides, this algorithm adopts Quadratic

Pseudo-Boolean Optimization (QPBO) so that its en-

ergy does not have to be submodular.

3.3 Parameter learning

In the structured SVM framework, a discriminant func-

tion F (X,Y; w) exists describing the compatibility of

label Y and observation X. The dot product of the

feature vector f(X,Y) and parameter w can give a

good description of F (X,Y; w), in which the parse fea-

ture function reflects the property of the structured

objects itself. As formulas (3) and (4) indicate, po-

tential function can be reorganized in the format as

exp [−w · f(X,Y )], so by aggregating (2), (3) and (4) we

can get the feature vector representation and parameter

vector w, expressed in formula (5). Inference problem

in the form of discriminant function can be expressed

as Y = argmax
Y

F (X,Y). The MRF expression formula

(2) is not a linear representation of features, however,

minimizing the energy function is equivalent to max-

imizing the structured learning discriminant function,

as shown in formula (5):

F (X,Y) = −E(X,Y) = w · f(X,Y) (5)

A solution to generalize normal SVM training to

structured outputs is presented in [15]. All the things

to do in training is to find a cutting-plane, described

by w, that separates right labels from those inferred
by the models but with wrong labels. In this research,

we use margin-scale problem formulation and solve the

problem by using one-slack structural SVM learning al-

gorithm [16]. The problem can be formulated as follows:

min
1

2
||w||2 + Cξ, (6)

with the constraints

1

N

N∑
i=1

{
∆(Y(i), Ȳ(i))

−w ·
[
f(X(i),Y(i))− f(X(i), Ȳ(i))

]}
≤ ξ

∀(Ȳ(1), Ȳ(2), . . . , Ȳ(N)) ∈ YN . (7)

In formula (7) Ȳ(i) is the predicted labels for sam-

ple i, while the true labels is denoted as Y(i). The

structural loss ∆(Y(i), Ȳ(i)) defined in this loss func-

tion specifies the margin between true label and the
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incorrect label in our max-margin MRF training. The

one common form of structural loss is Hamming dis-

tance between true labels and predicted labels, and we

continue use that in this paper. The difficulty of struc-

tural SVM is that the label space Y(n) may be tremen-

dously large: it takes LMn possible label combinations,

so the constraints in the QP may be very large, which

could not be handled easily. For this problem, [16] pro-

poses N-slack and one-slack structural SVM training

algorithm that uses a heuristic search strategy to add

constraints dynamically. The main idea is to get the

most violated instance in each iteration and to add that

into constraints set W, replacing the constraints in (7),

then solve the QP in primal space. The iteration will

stop when the constraint set remains unchanged after

a certain iteration. The majority of constraints are be-

hind the most violated one, so it is unnecessary to add

all the constraints. For the completeness of this paper,

we repeat the algorithm in Algorithm 1.

Algorithm 1 Training Structured SVM by using

margin-rescaling One-Slack formulation

Require: S =
[
(X(1),Y(1)), . . . , (X(N),Y(N))

]
, C, ε

1: W ← ∅
2: repeat
3: (w, ξ)← Solving QP, replacing constraints (7) with W
4: for all i ∈ [1, . . . , N ] do
5: Ȳ(i) ← argmax

Ȳ(i)∈Y

[
∆(Y(i), Ȳ(i)) + w · f(X(i), Ȳ(i))

]
6: end for
7: if 1

N

∑N
i=1

{
∆(Y(i), Ȳ(i))−

w
[
f(X(i),Y(i))− f(X(i), Ȳ(i))

] }
> ξ+ε then

8: W ←W ∪
(
Ȳ(1), Ȳ(2), . . . , Ȳ(N)

)
9: end if

10: until W unchanged during iteration

4 Grammatical analysis of handwritten

flowcharts

Once the isolated strokes have been labeled, we pro-

pose to combine the results using a grammatical de-

scription. This second step does ensure the global con-

sistence of the recognition. The presented system is an

extension of the grammatical analysis from the previous

works [18] and [8]. In this former solutions, the analy-

sis was based only the set of atomic elements in data:

the full strokes and the straight-lines (segments) within

the strokes. Using these terminals, their relative layout,

and the a priori lexical knowledge about flowcharts the

syntactical analysis recognizes the symbols. Compared

to [18] this new work adds two main propositions: using

pre-recognized strokes from a statistical approach (the

MRF in our case) and producing the relationship labels

between the recognized symbols.

4.1 The DMOS approach

The DMOS (Description and MOdification of the Seg-

mentation) method [10] is a grammatical method for

structured documents analysis. The using of the gram-

matical language EPF (Enhanced Position Formalism)

enables a syntactic and structural description of the

content of a document. From the description in EPF of

a model of documents, it is possible to compile auto-

matically an analyzer which will be used to process the

documents.

The DMOS engine is based on the Prolog language.

It means that a document is described with a set of

rules. For example the following rule allows to build

a quadrilateral object using four segments (TERM SEG)

locally named S1, ..., S4.

quadrilateral Q::=

TERM_SEG S1 &&

AT(end S1) && TERM_SEG S2 &&

AT(end S2) && TERM_SEG S3 &&

AT(end S3) && TERM_SEG S4

The AT(.) operator allows to add constraints on

the next used terminals. For example AT(end S1) &&

TERM SEG S2 means that S2 should be at the end of the

the segment S1. Without these constraints, a quadrilat-

eral would be recognized for each set of four segments

whatever their layout. Using this rule, it is possible to

build a top rule to recognize a complex document based

on several quadrilaterals. As DMOS is based on a Pro-

log solving engine, the analyzer can try and test, using

backtracking, all combinations of segments to satisfy

the main rule. The order of the rules in the grammar

can have a big impact on how efficient is this search.

Indeed some predicates can have to enumerate a lot of

candidates. To optimize this search, the current version

of DMOS is able to build and save intermediate objects

(like quadrilaterals in the previous example) and then

to use them as new terminals in the explanation of a

full document.

4.2 The Flowchart analysis

The grammar processes the strokes in three main steps:

1. build all boxes found in the documents using [8],

2. label the boxes and connect them with arrows,

3. use the remaining strokes to build text areas.
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The second step follows a simple flowchart gram-

mar: start with a terminator or a connection symbol,

then continue with an arrow to the next box; each box

(terminator, connection, process or data) is followed by

an arrow which ends on a box; decision boxes are fol-

lowed by two arrows; . . .

The next rule illustrates in a simplified EPF lan-

guage how an arrow follows a process box. This re-

cursive predicate builds a list of symbols starting by

a process named Pr (of course the real rules deal also

with the other types of boxes) and an arrow named

Arr. The first step is to check if the box Pr satisfies

the graphical conditions to be a Process. The predicate

ProcessCond can be seen as a binary classifier of Pro-

cess boxes. Then the arrow candidates are selected in

an area closed to the box Pr. At the end of the arrow,

another box among the previously found boxes should

exist. If these conditions are satisfied the link between

the arrow Arr and the next box B is saved and the

recursion is called to build the remaining parts of the

flowchart. If the new box B is also a Process, the same

version of recursiveDiag will be used to look for the

new arrow. The second part of the predicate is an ex-

ample of ending predicate: the last box should be a

connection box.

recursiveDiag [Pr, Arr|Remaining]::=

ProcessCond Pr && Pr == Process &&

AT(closeTo Pr) && anArrow Arr &&

AT(end Arr) && Box B in savedBoxes &&

save Arr B &&

recursiveDiag [B|Remaining]

recursiveDiag [LastBox]::=

LastBox == Connection

It should be noticed that the real grammar should

accept flowcharts which are not perfectly drawn. For

example in Figure 10 an arrow is missing to connect

the ”Input n,m” box and the ”r= n%m” box.

The grammar is designed to force the explanation of

all available strokes. Thus if some strokes are remained

at the end of the analysis and if they can not be in-

cluded in a text area in the last step, then the predicate

fails and thanks to the backtracking, another solution

is explored.

In the previous work [18] the system was based only

on the syntactic description of the document based on

the relative positions of the strokes. In [8] some statis-

tical information based on the boxes shapes are used to

first detect the boxes and then, using the same struc-

tural grammar as in [18], build the flowchart.

In this work the labels obtained from the MRF are

used to improve the syntactical analysis at three points:

– box labeling: in the first step of the analysis, if all

strokes of a box have the same label, then the box

will have this label, otherwise criteria from [8] are

used;

– arrow ending: during the third step, if a remaining

stroke labeled as an arrow is close to a detected

arrow, then they are merged;

– text detection: during the third step, the text areas

start with a stroke labeled as text and then they are

expanded horizontally with the unused strokes.

5 Experiments

We performed our sketch diagram parsing experiments

on the updated publicly available dataset Flowchart

Dataset [2].

5.1 Data description

The flowchart dataset consists of handwritten flowcharts

of various complexity. Some are complex algorithms

with descriptive texts while some are just simple and

straightforward sequential operations. The used sam-

ples are the same as in the already published Flowchart

dataset [2] but the ground-truth has been updated. The

symbols in the flowchart dataset are divided into 7

classes: Data, Terminator, Process, Decision, Connec-

tion, Arrows and Text. Strokes inherit their belong-

ing symbol label. Compared to the initial version, the

ground-truth contains the symbol segmentation and la-
bels but also their relationships in the flowchart. Thus,

the latest version includes three directional relation-

ships between symbols: i) Associated Text between node

or arrow and their associated texts; ii) Source and iii)

Target, which clarify the relationships between arrow

and linked nodes. This opens the possibility for re-

searches to utilize and recognize these relationships.

The flowcharts have been collected using digital pens

from university students of the research laboratory. This

dataset is split into train set and test set. However,

we further manually divided the training set into three

folds to perform 3 fold cross-validation for parameter

tunning. We divide the training set in such a way that

each fold has no flowchart writers overlapped with the

writers in other folders. We sacrificed the equality of

each divided size for no overlapped writer, to avoid the

situation where the writers’ writing habits contributes

to the recognition result on validation set. For the de-

tailed statistics of flowchart dataset, please refer to Ta-

ble 1.
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Table 1 Flowchart database statistical overview. 10 writers
of the Test part appear also in the Train part.

Writers Patterns Flowcharts Strokes Symbols
Training 30 14 248 23355 5540
Training fold 1 11 14 76 6896 1688
Training fold 2 11 14 83 7898 1861
Training fold 3 8 14 89 8561 1991

Test 15 14 other 171 15696 3791

5.2 Parameter tuning by cross-validation

Our model has several hyper-parameters to be decided,

and that can be done by cross-validation using our di-

vided 3-fold training set. Here in this subsection, we

briefly explain how to decide the spatial distance thresh-

old mentioned in 3.1.1. Spatial distance threshold would

affect the graphical model’s structure, and the smaller

the spatial distance is, the sparser the graphical model

would be, which may effect the training and inference

time, and stroke labeling performance. In each round of

training, we select one fold as validation set, and train

on the combination of the other 2 folds. Then we take

the average on each fold as current parameter’s perfor-

mance measure. In this research, we use pystruct [20]

back-ended by OpenGM [1] to perform structured SVM

parameter learning and M3N inference.

Fig. 6 This experiment shows the result of tuning of spatial
distance threshold by 3-fold cross-validation. Two metrics are
to decide the final choice of spatial distance threshold: infer-
ence time on per flowchart, and stroke labeling accuracy.

Fig 6 shows the spatial distance threshold’s effect

on model inference time and stroke labeling accuracy.

For stroke labeling accuracy before 0.03, it is increasing

steady. This is due to the fact that with larger spatial

distance threshold, the more connections exist for ver-

tices on graphical models, the richness of connection

provides more information of the flowchart. However,

the accuracy appears to be unstable after that because

expanded edges are providing a redundancy, which is

having a side effect on graphical model learning and in-

ference. By selecting two peak values of stroke labeling

accuracy and drop 0.05 which is having a longer infer-

ence time, we finally selected 0.03 as threshold value.

We use similar steps for determination of other pa-

rameters, such as the minimal number per leaf and the

number of decision trees in random forest classifier, and

maximal number of leaves of GBDT. Since there are

too many parameters to do grid-search, we selected one

type of parameters, then settle down others to per-

form parameter grid search by cross-validation. Then

we switch to another type of parameter, until we have

tuned all the parameters. Finally, the random forest

has 80 trees and 14 as minimal samples per leaves and

GBDT has 25 trees with a maximal 31 leaves per tree

to form the unary potential function feature refiner; for

the pairwise potential function feature refiner, random

forest has 80 trees and 3 minimal samples per leaves

and GBDT has 30 trees with a maximal 127 leaves per

tree to form the refined feature generator.

5.3 Stroke recognition

After the determination of parameters, we train our

model on the whole training set and perform test on test

set. The first stage of our flowchart recognition system

is to use M3N to determine stroke labels. Due to the

randomness of random forest and GBDT, we launched 5

experiments to recognize flowchart. The average recog-

nition result can be referred to Table 3, and we selected

the experiment that has median recognition rate to il-

lustrate the detail below. There are 7 classes of symbols

in flowchart, so strokes are classified into 7 classes. Here

we show the confusion matrix in Figure 7 and precision,

recall and F1 score of our model in Table 2:

Table 2 Stroke labeling result for each class and all together
before and after grammatical analysis (GA). P for precision,
R for recall. (%)

Before GA After GA
P R F1 P R F1

Text 97.88 98.42 98.15 96.81 99.27 98.03
Arrow 93.93 92.29 93.10 98.18 90.49 94.18
Process 90.17 94.08 92.08 93.13 94.69 93.91
Terminator 95.03 77.13 85.15 89.29 78.48 83.53
Connection 91.87 83.70 87.60 83.22 91.85 87.32
Data 90.00 91.56 90.77 93.28 94.59 93.93
Decision 90.44 93.82 92.10 95.69 92.53 94.08
All 95.71 95.70 95.67 96.19 96.18 96.14
Accuracy 95.70 96.18

Our M3N model is using GBDT and Random Forest

as raw feature extractor, and we also tested their stroke
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Fig. 7 Confusion matrix for strokes labeling result on test set. The left one is the result after M3N inference but before
grammatical analysis. The right one is after grammatical analysis. Each row of the matrix contains all the strokes of the
groundtruth class, and each column contains all the strokes of the predicted class. The denser each block is on the diagonal,
the higher the recall rate.

recognition rate along with M3N combined stroke recog-

nition rate. From Table 3 we can see that when using

a standalone classifier to classify strokes, the classifier

does not use neighborhood information and it is keeping

at a recognition rate a little above 80%. By combining

it with M3N, we observed a significant improvement of

stroke recognition rate. This validated our belief that

MRF is suitable for modeling the 2D handwritten lan-

guage.

From the confusion matrix before grammatical anal-

ysis, terminator class is having the lowest recall rate.

That is because terminator is having a similar shape

with process. Process is actually a rectangle while ter-

minator is a rounded rectangle, there’s no doubt why

many strokes belonging to terminator are classified to

process. Besides, they can also be misclassified to arrow

because arrow is of various shape itself. Another in-

teresting point is that text have the highest recall rate,

that’s mainly because text has its own style, they would

Table 3 Stroke labeling result and final symbol recognition
recall on the test set of flowchart dataset (%). Considering
the randomness from Random Forests and GBDT, our exper-
iment launched for 5 times, with mean and unbiased standard
error recorded. This table also listed some other researches on
the same dataset.

Stroke Reco. Rate Symbol Reco. Rate
Lemaitre et. al. [18] 91.1 72.4
Carton et. al. [8] 92.4 75.0
Bresler et. al. [7] 95.2 82.8
Wu et. al. [33] 94.9 83.2
Wang et. al. [32] 95.8 84.3
GBDT only 80.87± 0.07 -
Random Forest only 81.45± 0.10 -
GBDT+RF+M3N inference 95.70± 0.65 -
GBDT+RF+M3N inference+GA 96.16± 0.34 80.69± 0.85

cluster together and in a much smaller scale. Also, the

biased number of training samples of different strokes

are having a side-effect on recognition result: stroke

classes with few samples are more likely to be misclas-

sified to other classes.

Fortunately, with grammatical analysis, this biased

sample problem is eased. From the right confusion ma-

trix, which is the result after grammatical analysis, we

observe an obvious decrease of error recognition case on

arrow, process and data. However, there’s an increase

in the error where strokes are labeled as text. The class

text is hard to encoded in grammatical rules so our

grammatical analysis process fails to process it along

with other shapes, and has to be left till last. Overall,

grammatical analysis improved the labeling result from

our statistical model from 95.70% to 96.18%, proving it

to be helpful in statistical model improvement. We also

performed a dual-side t-test on stroke recognition rate

compared to the state-of-the-art stroke recognition rate

[32], and we are having a confidence above 90% that

current model is superior than [32]. Considering that

research [32] is also conducted by us, by using MRF

learned with structured SVM, they are of same origina-

tion and they are all significantly superior to flowchart

recognition methods using other models.

5.4 Symbol and graph level recognition

When the stroke recognition results are available, we

can process the grammatical structural analysis. This

analysis enables to build both objects based on strokes,

and logical relationships between recognized symbols.
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(a) Flowchart recognized without error. (b) Correctly segmented flowchart but with one recog-
nition error: one terminator is recognized as process.

(c) Legend

Fig. 8 Typical examples of flowchart recognition, with max-margin MRF stroke labeling and grammatical analysis. The
strokes are colored to indicate their recognition result. The legend of Figures is shown in 8(c).

(a) An incorrectly recognized flowchart, recognized with
max-margin MRF only without grammatical analysis.

(b) Same flowchart recognized after grammatical analysis.

Fig. 9 A flowchart’s recognition result in two stages: 9(a)for after max-margin MRF stroke labeling and 9(b)after stroke
labeling and grammatical analysis. Grammatical description would eliminate some stroke labeling errors, for example the
process is confused with data symbol before grammatical analysis. Most of this type of errors are corrected after grammatical
analysis step.

The novelty of our experiments is that the database

now includes relationships in the ground truth. Conse-

quently, we can evaluate structural correctness in our

graph level recognition analysis. Our graphical level

evaluation is done using the tools mentioned in [19].

Table 4 gives object level recognition result, specif-

ically symbol segmentation results and symbol recog-

nition results. Traditional recall and precision metrics

compute the ratio of correctly recognized symbols to

groundtruth symbols and correctly recognized symbols

to all recognized symbols respectively. We can notice

a higher rate for symbol segmentation than for sym-

Table 4 Symbol segmentation and recognition result after
grammatical analysis (%)

Precision Recall F1
Text 71.06 78.93 74.79
Arrow 72.89 76.89 74.84
Process 84.95 89.95 87.38
Terminator 78.21 77.83 78.02
Connection 85.18 92.74 88.80
Data 92.63 89.80 91.19
Decision 82.86 82.07 82.46
Object overall 76.13 80.85 78.42

Segmentation 78.21 83.06 80.57
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(a) A correctly labeled flowchart using max-margin MRF. (b) The same flowchart recognized after grammatical analysis,
which leads to error.

Fig. 10 An incorrectly recognized flowchart compared to the state before grammatical analysis. 10(a) is correctly labeled.
The arrow and the decision symbol are all recognized as text, while letter o is recognized as connector. This is due to the
undetected decision box (as in [8], Fig. 6). Missed boxes can not be recognized.

bol recognition because a correctly recognized symbol

requires both a valid segmentation and a valid symbol

label.

Table 5 Graph level recognition on test set, considering all
171 flowchart instances

Rate(%) Correct count
Correct symbol segmentation 19.88 34
Correct symbol recognition 12.87 22
Correct symbol + structure 5.85 10

Table 5 shows the recognition results at the global

flowchart level. A diagram is considered correctly rec-

ognized only when all of its symbols are correctly seg-

mented, correctly labeled and the structure is correctly

parsed . These three requirements come in an order

that a later requirement must meets a prior require-

ment, so in table 5 we give recognition rate under these

three more and more strict requirements. It can be seen

that the correctly recognized diagrams are relatively

few considering all the requirements. However, we need

a more detailed analysis of the causes of errors.

In Figures 8, 9 and 10 we have shown four exam-

ples of labeled flowcharts: 8(a) is a correctly recog-

nized flowchart, 8(b) is a correctly segmented but in-

correctly labeled sample, and Figures 9 and 10 show

incorrectly recognized flowcharts. From the examples

we can have some insight of the source of the errors.

For 8(b), the only error occurs with a process box rec-

ognized as data. This implies that though grammatical

analysis ensure a valid interpretation, a better flowchart

recognition result can be achieved by using stronger lo-

cal raw feature extractor. Compared to some researches

that filtered text first as [7], our performance is satis-

fying. The goal of the additional grammatical struc-

tural analysis is to recover as much as possible these

errors. However, the quality of the results will depend

on the strength of the rules that are hard-coded and

relies heavily on the designer experience. This is why,

in some cases, the initial probabilistic model would give

better results than the post-processed one. Such a sit-

uation is illustrated in Figure 10 where from the cor-

rectly labeled flowchart obtained with the max-margin

MRF, cf. Figure 10(a), an incorrect interpretation is

then produced applying the grammar rules, cf. Figure

10(b). To improve global recognition rate, higher or-

der MRF should be considered and shape information

incorporated grammar parser, like [8], can be used to

avoid labeling part of the node symbol into strokes.

6 Conclusion

In this work a mixed strategy is proposed for recog-

nizing online handwritten flowcharts. From one hand,

we develop MRF models trained using structured SVM

to label the flowcharts at the stroke level. On the other

hand, a syntactic approach is used to parse the results of

the stroke labeling and to produce symbols with their

relationships in consistence with grammar rules. In a

sense, an implicit and an explicit grammar modeling are

achieved with this solution. We validated our approach

on a flowchart dataset that now contains a complete
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ground-truth, including logical order, and that is avail-

able for experiments.

Furthermore, this symbol recognition method can

support additional improvements. First of all, we can

balance differently the local and the global constan-

cies. In this direction, MRF can support higher order

potential functions. This could be helpful for produc-

ing better segmentation results. Secondly, a deeper in-

tegration of our MRF model and grammatical model

could be studied to use a probabilistic parsing method

to alleviate the dominant effect of the stroke labeling.

In further research we will investigate the potential of

MRF more deeply to make it more compatible to global

consistency.
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8. Céres Carton, Aurélie Lemaitre, and Bertrand

Couasnon. Fusion of statistical and structural in-

formation for flowchart recognition. In Document

Analysis and Recognition (ICDAR), 2013 12th In-

ternational Conference on, pages 1210–1214. IEEE,

2013.

9. Kam-Fai Chan and Dit-Yan Yeung. Mathemati-

cal expression recognition: a survey. International

Journal on Document Analysis and Recognition,

3(1):3–15, 2000.
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