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Abstract 

In this work, we wish to report the first member of a new family of organic semi-conductors 

constructed on a meta dihydroindacenodithiophene core, that is 2,2'-(2,8-dihexyl-4,6-dihydro-s-in-

daceno[1,2-b:7,6-b']dithiophene-4,6-diylidene)dimalononitrile (called meta-IDT(=C(CN)2)2). The 

properties of this molecule have been studied in detail through a structure properties relationship 

study with its regioisomer, that is 2,2'-(2,7-dihexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-

b']dithiophene-4,9-diylidene)dimalononitrile (para-IDT(=C(CN)2)2) (see isomers structures in 

blue in Chart 2). The influence of the bridge functionalization has also been investigated by 

comparison with their diketone analogues meta-IDT(=O)2 and para-IDT(=O)2. This study sheds 

light on the impact of regioisomerism on the electronic properties at the molecular level 

(electrochemistry, absorption spectroscopy, molecular modelling) and also on the supramolecular 

arrangement (SWAXS), and finally on the OFET performances and stabilities. The significant 

effect of self-assembled monolayers of 4-(dimethylamino) benzenethiol (DABT) grafted on the 

gold drain and source electrodes or of the use of flexible substrate (polyethylene naphtalate: PEN) 

instead of glass on the OFET performances and stabilities are also reported. In the light of these 

results (maximum mobility reaching 7.1×10-2 cm² V-1 cm-1, high Idon/Idoff of 2.3×107 and 
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subthreshold swing of 1.2 V/dec), we believe that the present OFETs can be further used to 

construct electronic circuits.  

 

Introduction 

The exponential development of organic electronic leads to an always growing demand of new, 

highly efficient organic semiconductors (OSCs) adapted to their use in specific devices1 including 

organic light-emitting diodes (OLED) based on fluorescent emitting materials,2-8 or based on phos-

phorescent materials,9-19  organic field-effect transistor (OFET)20-24 or organic photovoltaic 

(OPV).1, 25 Historically, in the field of OFETs, the design of p-type materials (hole-transporting) 

such as pentacene,26 oligothiophene27 or bridged oligoarylene28-29 derivatives have received most 

of the attention. For instance, air-stable p-type OFET with hole mobility (µh) reaching 5-10 cm2 V-

1 s-1 have been reported in literature for (triisopropylsilylethynyl)pentacene (1),30 alkylated 

dinaphtothienothiophene (2)31 or benzothienobenzodithiophene (3)32 and µh even greater than 40 

cm2 V-1 s-1 for 2,7-dioctyl-[1]benzothieno[3,2-b][1]benzothiophene(4),33 (see 1-4 structures in 

Chart 1). However, the development of p-n junctions, such as ambipolar transistors and 

complementary logic circuits with low power consumption and high operating level has extended 

the demand for efficient n-type (electron-conducting) OSCs with performances comparable to 

those of p-type OSC. Nevertheless, and despite the numerous breakthroughs in the last ten years, 

the best n-channel materials are not as good as the best p-channel materials mentioned above. 

Most of the n-type OFETs present electron mobility (µe) performances lower than 1 cm2 V-1 s-1. To 

the best of our knowledge, the best n-type OFET performances reported to date use N-fluoro-alkyl 

functionalized dicyano-perylene diimides 5,34 π-expanded quinoidal terthiophene 6
35 or 

naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile derivative 7,36 with µe of 

1.3, 3.0 and 3.5 cm2 V-1 s-1, respectively (see structures 5-7 in Chart 1). 

Page 2 of 29

ACS Paragon Plus Environment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 
 

3 

 

Chart 1. Molecular structures of the high efficiency hole-transporting OSCs (1-4)30-33 (left) and electron-transporting 
OSCs (5-7)34-36 (right). 

In the field of organic electronic, there are two main ways to increase the efficiency/stability of the 

device. The first is driven by molecular chemists and deals with the design of highly efficient 

OSCs perfectly fitting the necessary requirements of a specified device, this is called molecular 

engineering. The second is driven by physicists and electronicians and deals, no more with 

molecular engineering, but this time with device engineering. These 2 approaches have led to the 

fantastic development of organic electronics for the last twenty years and continue to be the 

driving force of the field. In the present work, these two approaches have been investigated. 

To produce OSCs fitting the requirements of organic devices, the most developed strategy of 

molecular engineering consists in the judicious incorporation of donor and/or acceptor fragments 

to a common molecular π-conjugated core. Among the molecular features that allow the 

modulation of OSC properties, regioisomerism can have remarkable consequences on the 

properties of the molecules.6, 21, 37-38 A simple structural modification can indeed drastically 

influence the oxidation potentials,3, 6, 11, 39-41 the fluorescence properties,3-5 the intermolecular π-π 

stacking,42-43 which determines the magnitude of the charge-transfer integral and thus the charge 

transport in OSC devices. An interesting example of such architecture modification inducing 

strong changes both in the film morphology and OFETs performances has been reported for 2D π-

expanded quinoidal terthiophenes.35 Indeed, OSC 6 (see structure in Chart 1) in which the two 

sulphur atoms of the thieno-thiophene units point outwards presents an electron mobility of 3.0 

cm2 V-1 s-1 nearly 7 times higher than that of its regioisomer with the sulphur atoms pointing 

toward the centre of the molecule (µe: 0.44 cm2 V-1 s-1). Even larger changes of charge transport 

performances as well as film morphologies were observed for two fluorenone-di-(octylthiophene) 

regioisomers with different position of the side alkyl tails on the thiophene ring, in relation with 
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the modified mesomorphic properties.44 It should moreover be mentioned that similar effects were 

also reported in the field of OLEDs with dihydroindenofluorene regioisomers (constructed either 

on para or meta bridged terphenyl fragments).6, 21 Finally, a last but not least consideration is 

linked to the fact that most of the OSCs reported in literature for organic electronics possess a 

linear shape and only very recently, Müllen group has reported n-type OSC with angular-shaped 

structure45 leading to electron mobilities reaching 0.01 cm2 V-1 s-1. Similarly, Okamoto and Takeya 

groups have reported V-shaped OSCs with hole mobilities reaching a very high mobility of 4 cm2 

V-1 s-1.46 A supplementary factor, the ‘shape’, seems then to play a key role on the packing in the 

solid state with a positive influence on the charge mobility. Exploiting regioisomerism therefore 

turns out to be an interesting strategy, since π-conjugated cores developed to date in literature for 

n-type OFET show a rather restricted diversity.47-48  

Regarding the device engineering, in 2009, Kitamura et al have demonstrated that electrode 

functionalization with some benzenethiol derivatives such as 4-(dimethylamino)benzenethiol 

(DABT) could have a high impact on electrical performance due to a better OSC organization on 

drain and source electrodes.49 This improvement can be explained by (i) the electron donating 

nature of DABT, (ii) the better morphology of the OSC thin film at the Au-DABT/OSC interface 

compare to bare Au/OSC and (iii) the reduction of the electron-injection barrier height by shifting 

the Fermi level of Au.49  

 
Chart 2. Chemical structures of the four IDT derivatives investigated in this work (left) and some structurally related 
electron-deficient ladder-type molecules previously reported based either on a dihydro[2,1-b]Indeno-meta-Fluorene 
([2,1-b]-IF, middle),21 or on Ladder PentaPhenylene (right).20 

In this work, we hence aim to report the first member of a new family of OSC constructed on a 

meta dihydroindacenodithiophene (IDT) core, that is 2,2'-(2,8-dihexyl-4,6-dihydro-s-indaceno[1,2-

b:7,6-b']dithiophene-4,6-diylidene)dimalononitrile (called meta-IDT(=C(CN)2)2). The properties 

of this molecule have been studied in detail through a structure properties relationship study with 

its regioisomer, that is 2,2'-(2,7-dihexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-4,9-
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diylidene)dimalononitrile (para-IDT(=C(CN)2)2) previously reported in literature by Geng et al50 

(see isomers structures in blue in Chart 2). Such a study will shed light on the impact of 

regioisomerism (meta-IDT vs para-IDT) on the electronic properties at the molecular level 

(electrochemistry, absorption spectroscopy, molecular modelling) and also on the supramolecular 

arrangement (SWAXS), and finally on the OFET performance and stability. Of particular interest, 

we notably report herein the significant effect of the self-assembled monolayers (SAMs) of DABT 

grafted on the gold drain and source electrodes on the OFET performance and stability. In the light 

of performances and stability obtained (maximum mobility reaching 5.8 x 10-2 cm² V-1 cm-1, high 

Idon/Idoff of 2.3 x 107 and subthreshold swing of 1.3 V/dec), we believe that the present OFETs can 

be further used to construct electronic circuits. Additionally, OFETs constructed on a flexible 

polyethylene naphtalate (PEN) instead of the glass substrate have shown at least similar (with 

meta-IDT(=C(CN)2)2) to more than twice better performances (with para-IDT(=C(CN)2)2) than 

similar rigid OFETs constructed on glass substrate (maximum mobility reaching 7.1 x 10-2 cm² V-1 

cm-1, high Idon/Idoff of 4 x 106 and subthreshold swing of 2.6 V/dec) opening large perspective for 

flexible devices. 

 Results and discussion: 

Design and synthesis 

The ideal OSC for n-type OFET should possess an electron-deficient π-conjugated backbone that 

facilitates close intermolecular π-π stacking and efficient electron transport, a LUMO level 

adapted to the cathode electrode potential in order to facilitate the electron injection and the 

achievement of a stable electron transport, and, finally, suitable non conjugated side-chains to 

provide an ideal balance between solubility, close intermolecular stacking and high crystallinity in 

the solid state thin-film.47-48, 51-53 The molecular design of the present OSCs consists in rigidifying 

the 1,3- or 1,4-phenylene-dithiophene fragment by two bridges in a syn or anti configuration 

(Scheme 1). This bridge stiffening should play a role on the planarity and molecular arrangements 

of the π−systems leading to different intermolecular π-π stacking in the solid state. Electron-

withdrawing ketones and/or dicyanovinylene functionalities have been introduced on the 

bridgeheads to ensure a low LUMO energy level and hexyl chains have been attached on the two 

side-thiophene cores for processability and crystallinity.54 

The synthetic strategies developed herein are based on the same approach involving in a first step 

the synthesis of the corresponding ketones meta-IDT(=O)2 and para-IDT(=O)2. Thus, the 

synthesis of meta-IDT(=O)2 has been envisaged through an efficient route (Scheme 1, A) based 

on the intramolecular electrophilic bicyclization of the 2,2'-(1,3-phenylene)dithiophene core, 2. 
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6 

The ester groups are arranged on the central phenyl ring, avoiding thus isomers formation as 

previously reported for bridged para2-3, 41, 55 and meta6 terphenyl fragments, namely 

dihydroindenofluorenes. The present route is hence regioselective and starts with the synthesis of 

the diethyl-4,6-dibromoisophtalate 1 following a method previously reported in literature 

(oxidation of the methyl groups of 1,5-dibromo-2,4-dimethylbenzene with potassium 

permanganate in tert-butyl alcohol and esterification of the resulting dicarboxylic acid in a mixture 

of ethanol and methanesulfonic acid, yield 55 %).21 Compound 1 is further involved in a Stille 

cross coupling (Pd(PPh3)4, DMF, 120°C) with the commercially available tributyl(5-

hexylthiophen-2-yl)stannane to give the diethyl 4,6-bis(5-hexylthiophen-2-yl)isophthalate 2 (yield 

85%), with the ester groups in α position of each thiophene unit. Unfortunately, treatment of 2 

with methanesulfonic acid as previously described for similar structures,21 failed to directly 

produce meta-IDT(=O)2. In the light of literature, another strategy was therefore employed7 and 

ester 2 was first saponificated under basic conditions (NaOH, EtOH/H2O) providing the isophtalic 

acid derivative 3 (62%). Compound 3 was then converted into its acid dichloride, 4 (oxalyl 

chloride, DMF, CH2Cl2), not isolated and further involved in a Lewis acid-promoted 

intramolecular Friedel-Craft acylation (AlCl3, CH2Cl2, 0°C to rt) to give the diketone meta-

IDT(=O)2 with an overall yield of 86% from 3. Thus, meta-IDT(=O)2 was obtained from 1 in an 

efficient three-step synthesis with an overall yield of 45%. Moreover, in the light of literature, the 

diketone meta-IDT(=O)2 can become in the future a versatile intermediate to construct other 

organic semi-conductors incorporating spirophenylacridine,12, 56 spiroindoloacridine,16 

spiroquinolinophenothiazine,57 spiroquinolinophenoxazine58 for other electronic applications such 

as OLEDs or PhOLEDs. Finally, the dicyanovinylene units were introduced through a smooth 

Knoevenagel condensation (30°C, CH2(CN)2, pyridine, CH2Cl2) producing the meta-

IDT(=C(CN)2)2 with a high yield (86%). It should be mentioned, that the present Knoevenagel 

condensation was performed in mild conditions and without titanium tetrachloride, frequently used 

to activate the carbonyl units of sterically hindered molecules.20, 50, 59-60 
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Scheme 1: Synthesis of meta-IDT(=O)2 / meta-IDT(=C(CN)2)2 (A) and para-IDT(=O)2 / para-IDT(=C(CN)2)2 (B). 
(i) Pd(PPh3)4, DMF, 120°C (85%); (ii) NaOH, EtOH/H2O, reflux (62%); (iii) oxalyl chloride, DMF, CH2Cl2 rt; (iv) 
AlCl3,CH2Cl2, 0°C to rt (86% over steps (iii) and (iv)); (v) CH2(CN)2, pyridine, CH2Cl2, 30°C. 
 

The regioisomer para-IDT(=C(CN)2)2 was synthesized following a similar synthetic procedure, 

starting from dibromoterephtalate 5,7 and obtained after purification with an overall yield of 21% 

(Scheme 1, B). It should be mentioned that both para- and meta-IDT(=C(CN)2)2 are only very 

weakly soluble in most common organic solvents. One can note that the yield of the route towards 

para isomer para-IDT(=C(CN)2)2 appears to be lower than that of its meta isomer meta-

IDT(=C(CN)2)2 mainly due to difficulty of purification in the final step v).  

Electrochemical properties 

Electrochemical studies of the four molecules were performed in Bu4NPF6 0.2 M/CH2Cl2 

solutions at a concentration of 10-3M for the diketones (para-IDT(=O)2 and meta-IDT(=O)2) and 

in saturated solution for the dicyanovinylene compounds (para-IDT(=C(CN)2)2 and meta-

IDT(=CN)2)2). The cyclic voltammetries (CVs) are presented Figure 1. It should be noted that 

both para-IDT(=O)2  and para-IDT(=C(CN)2)2 have been previously studied by Geng et al,50 

however, the electrochemical investigations were performed in solid state using CH3CN as solvent 

leading hence to different results than those presented herein in solution in dichloromethane. 

As presented Figure 1 (A-B), both para-IDT(=O)2 and meta-IDT(=O)2 present in CH2Cl2, two 

successive oxidation waves with peak potentials at 1.33 and 1.70 V for the para isomer and at 1.5 

and 2.1 V for the meta isomer. From their respective onset oxidation potentials (1.22 and 1.35V 

resp.), the HOMO energy levels were calculated at -5.62 eV for para-IDT(=O)2 and at -5.75 eV 

for meta-IDT(=O)2 (see details in the Supporting Information). The shift of 0.13 eV between the 

HOMO of the two isomers shows that the angular-shaped meta-IDT core is more difficult to 

Page 7 of 29

ACS Paragon Plus Environment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 
 

8 

oxidize than the linear para-IDT one. This might be assigned to the nature of the linkages. A 

similar shift has previously been observed between meta- and para-dihydroindenofluorene 

isomers.6 Indeed, the dihydro[1,2-b]indenofluorene, backbone possessing an anti geometry and 

para linkages is oxidized 0.17 V before its dihydro[2,1-b]indenofluorene isomer, possessing a syn 

geometry and meta linkages. This shift may be directly related to the para- or meta-linkages but 

also to the ring bridging and clearly indicates a shorter π-conjugation pathway in the meta- than in 

the para-derivatives. The same trend is hence detected herein indicating a similar effect of the side 

rings (phenyl in dihydroindenofluorene and thiophene in dihydroindacenodithiophene) on the π-

conjugation length. This indicates the importance of the linkages on the energy levels of the 

frontiers orbitals. This will be confirmed by theoretical calculations presented below. 

None of the two oxidation processes were reversible, showing the high reactivity of the oxidized 

species (radical-cation and dication). In contrast, in the cathodic range, the reduction of para-

IDT(=O)2 and meta-IDT(=O)2 present two well defined reversible waves with maxima at -0.95 

and -1.43 V and at -1.02 and -1.53 V, respectively. The two reduction processes occur at similar 

potential values than those previously reported for (i) a comparable para-IDT(=O)2 with no 

solubilizing alkyl chain on the thienyl units (-0.91 and -1.49 V, see molecular structure in the 

Supporting Information : Chart S1),61 (ii)  the dihydroindefluorenones possessing 3 bridged phenyl 

rings, namely para-IF(=O)2 (-0.98 and -1.38 V, see molecular structure in the Supporting 

Information : Chart S1)7 and meta-IF(=O)2 (-0.98 and -1.45 V, see molecular structures in Chart 

2)21 and (iii) the pentaphenylenones LPP(=O)2 (-1.07 and -1.52 V, see molecular structures in 

Chart 2)7 and diphenyl-LPP(=O)2 (-1.0 and -1.35 V, see structure in the Supporting Information : 

Chart S1) possessing 5 bridged phenyl rings.62 Thus, the nature (phenyl vs thiophene) and the 

number of constituted units do not significantly modify the reduction potentials of this type of 

compounds, clearly indicating a reduction centred on the carbonyl groups and not on the 

π−conjugated core. Thus, after the two successive reduction processes, the quinonoidal dianions 

were obtained.62 From the onset reduction potentials respectively measured at -0.83 and -0.84 V 

for para-IDT(=O)2 and meta-IDT(=O)2, we determined their LUMO energy levels lying at -3.57 

and -3.56 eV. These LUMO energy levels appear to be deep and highlight the strong electron-

withdrawing character of the ketones groups. Thus, the deep LUMO energy levels of both 

molecules lead to a short electrochemical energy gap ∆Eel of 2.05 eV for para-IDT(=O)2 and 2.19 

eV for meta-IDT(=O)2. It is noteworthy that the difference between the two gaps comes from the 

restriction of conjugation in the meta isomer compared to its para isomer and is therefore clearly 

induced by the modulation of the HOMO levels and hence by the nature of the π−conjugated 

system. 
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Figure 1. Cyclic voltammetry of para-IDT(=O)2 (A) and meta-IDT(=O)2 (B) (10-3 M) and of para-IDT(=C(CN)2)2 
(C) and meta-IDT(=C(CN)2)2 (D) (saturated solution) recorded in CH2Cl2 + Bu4NPF6 0.2 M, sweep-rate 100 mV.s-1. 
Platinum disk (Ø: 1mm) working electrode. 

As presented in Figure 1 (C-D), para-IDT(=C(CN)2)2 presents three successive oxidation 

processes with maxima at 1.44, 1.71 and 1.96 V, whereas its isomer meta-IDT(=C(CN)2)2 only 

presents two oxidation waves with maxima at 1.6 and 2.1 V. For both molecules, only the first 

oxidation process is reversible indicating the stability of the radical cations at the CV timescale. As 

this behaviour was not observed for LPP(=C(CN)2)2) (which present two successive reversible 

oxidation processes20) neither for meta-IF(=C(CN)2)2 (which oxidation is not observed before the 

oxidation of the electrolytic medium,21 see molecular structures in Chart 2), this feature can be 

assigned to the IDT core. The onset oxidation potentials are respectively measured at 1.24 and 

1.40 V, leading to HOMO energy level lying at -5.64 eV for para-IDT(=C(CN)2)2 and at -5.80 eV 

for meta-IDT(=C(CN)2)2. Thus, a small shift of 0.16 eV is observed between the HOMO levels of 

the two isomers, in accordance with that observed for the diketone derivatives, confirming that the 

conjugation of the meta isomer is more restricted than the conjugation of the para isomer. 

Moreover, only a very weak shift of the HOMO energy levels is observed from diketone to 

dicyanovinylene derivatives (0.02 eV and 0.05 eV in the para and the meta series respectively), 

indicating that the dicyano-derivatives are only slightly more difficult to oxidize than their 
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diketone derivatives. Thus, in the anodic range, the switch of the electron-withdrawing groups 

from carbonyl to dicyanovinylene units only has an extremely weak effect on the oxidation 

processes. The same effect was also detected in the LPP series which displays a weak HOMO 

level modulation between LPP(=O)2 (HOMO: -5.67 eV) and LPP(=C(CN)2)2 (HOMO: -5.79 

eV)20 and in the dihydroindenofluorene series for which the HOMO of the meta-IF(=O)2 (-5.96 

eV) is only shifted by 0.05 eV compared to that of meta-IF(=C(CN)2)2 (-5.91 eV).21 This feature 

confirms that the first electron transfer in oxidation occurs on the π-conjugated backbone with no 

(or very weak) influence of the bridge. This will be explained by the distribution of the HOMO 

obtained by molecular modelling (see below). The comparison of the HOMO of meta-

IF(=C(CN)2)2 (-5.91 eV)21 to that of meta-IDT(=C(CN)2)2 (-5.8 eV) shows that the change of the 

two external phenyl units in meta-IF(=C(CN)2)2 by two thienyl units in meta-IDT(=C(CN)2)2 

renders slightly easier the oxidation processes. This is in line with the electron rich character of 

thiophene ring. 

In reduction, para-IDT(=C(CN)2)2 presents three successive reduction processes with maxima at -

0.41, -0.74 and -1.12 V, whereas meta-IDT(=C(CN)2)2 only presents two successive reduction 

processes with maxima in the same potential range at -0.5 and -0.89 V. Thus, the two first 

reduction waves, both occur at a less negative potential than those of their related diketone 

derivatives. From their onset reduction potentials measured at -0.3 and -0.33 V resp., the LUMO 

energy level appears to be very deep, lying at -4.1 eV for para-IDT(=C(CN)2)2 and at -4.07 eV for 

meta-IDT(=C(CN)2)2. Thus, the LUMO energy of the IDT compounds is remarkably more 

affected by the substitution (shift of ca 0.5 eV) than the HOMO energy (shift of ca 0.05 eV, see 

above). These electrochemical data suggest that the LUMOs are localized on the bridges, 

rendering the LUMO levels more sensitive to bridges functionalization (=O vs =C(CN)2). 

Oppositely, as the HOMO energy levels are strongly less sensitive to bridges functionalization, 

they are surely more spread out on the IDT core. This finding, which will be confirmed through 

theoretical calculations, indicates that the bridge substitution allows selectively tuning the LUMO 

energy levels with only a weak alteration of their HOMO levels leading to very short 

electrochemical energy gap, 1.54 eV for para-IDT(=C(CN)2)2 and at 1.73 eV for meta-

IDT(=C(CN)2)2. These gaps are significantly contracted compared to their diketone analogues due 

to the decrease of the LUMO energy level. These electrochemical data (HOMO, LUMO and ∆Eel) 

are summarized in Table 1 and schematized in green in Figure 2. 
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Table 1. Summary of the selected electronic properties of the four IDT-derivatives 
 Electrochemical studies Theoretical calculations Optical 

studies 
 Oxidation 

peaks 
---------- 
Eox

onset 
 

(V)a 

Reduction 
peaks 

---------- 
Ered

onset
b 

 
(V) a 

HOMO 
(eV) b 

LUMO 
(eV) b 

∆Eel 
(eV)c 

HOMO 
(eV) 

LUMO 
(eV) 

∆Etheo 

(eV) 
∆Eop 
(eV)d 

para-IDT(=O)2 1.33, 1.70 
------- 
1.22 

 

-0.95, -1.43 
------- 
-0.83 

 

-5.62 -3.57 2.05 -5.80 -3.22 2.58 1.85 

para-IDT(=C(CN)2)2 1.44, 1.71, 
1.96 

------- 
1.24 

-0.41, -
0.74, -1.12 

------- 
-0.3 

-5.64 -4.10 1.54 -6.20 -4.21 1.99 1.29 

meta-IDT(=O)2 1.5, 2.1 
------- 
1.35 

-1.02, -1.53 
------- 
-0.84 

-5.75 -3.56 2.19 -5.93 -3.18 2.75 2.04 

meta-IDT(=C(CN)2)2 1.6, 2.1 
------- 
1.40 

-0.5, -0.89 
------- 
-0.33 

-5.80 -4.07 1.73 -6.37 -4.06 2.31 1.57 

a vs SCE, b Calculated from onset oxidation/reduction potential observed from CV (Figure 1). c ∆Eel = HOMO-
LUMO from electrochemical data. d hc/λ = 1239.84/λ (in nm) from absorption spectrum, λ being the low energy 
absorption band edge. 

 

Molecular modelling has been performed through DFT calculations at the Gaussian 09 B3LYP/6-

311+ G(d,p) level of theory, Figure 2). The HOMO of the four compounds are dispersed on the 

IDT core. This feature shed light on the small HOMO energy modulation observed through 

electrochemical experiments between the ketone and the dicyanovinylene molecules. An important 

difference is nevertheless detected between the two isomers. Indeed, for the para isomers, there is 

a delocalization over the whole IDT core due to the central phenyl para linkage, which maximises 

the π-conjugation. However, an inspection of the shape of the HOMO of meta isomers reveals a π-

conjugation interruption at the two opposite carbon atoms of the central phenyl ring (nodal plane), 

leading to a lower HOMO energy level than that of its para isomers. Meta-IDT(=C(CN)2)2 bears 

hence a strong resemblance to the cyclopentathiophene. Interestingly, the first oxidation of the 

spiro[fluorene-9,4’-[4H]indeno[3,2-b]thiophene]63 (see Spiro-FIT molecular structure in the 

Supporting Information: Chart S1) which is directed by the oxidation of the indenothiophene core 

occurs with a maximum of current at 1.67 V vs SCE, close to the peak potential measured for 

meta-IDT(=C(CN)2)2 (1.6 V, see Table 1).  

In contrast, the localisations of the LUMO are strongly different and much more sensitive to the 

bridge substitution. Indeed, in both ketones, the LUMO are mainly localised on the two 

cyclopentadienone cores whereas in dicyanovinylenes molecules, the LUMOs are instead 
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essentially localized on the cyclopentadiene/dicyanovinylene (Figure 2, top). These results are in 

accordance with the assignment of the different electron transfers exposed in the electrochemical 

part and show why the LUMO energy levels are impressively more influenced by the bridges than 

the HOMO levels are. Interestingly, theoretical calculations also confirm the experimental trends 

in term of HOMO/LUMO energy levels and energy gap modulation (see values in blue Figure 2). 

Thus, there is an impressive gap difference between ketones and dicyanovinylenes of 0.59 eV for 

the para derivatives (left) and of 0.44 eV for the meta derivatives (right). This gap variation, 

induced by a strong decrease of the LUMO levels (lowering of -0.99 eV in the para series and of -

0.88 eV in the meta series) is comparable to that obtained with electrochemical data (decrease of 

0.53 eV for the para-series and of 0.51 eV for the meta-series). 

 
Figure 2. Sketch of frontier molecular orbitals (isovalue: 0.04 [e bohr-3]1/2) and HOMO/LUMO energies of para-
IDT(=O)2, para-IDT(=C(CN)2)2, meta-IDT(=C(CN)2)2 and meta-IDT(=O)2 obtained from electrochemical data (in 
green) and from DFT calculations (in blue). First electronic transition calculated by TD-DFT B3LYP/6-
311+G(d,p) in red.  
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UV-Vis absorption spectra 

UV-Vis absorption spectra of the two IDT(=O)2 derivatives were recorded in cyclohexane 

whereas, due to solubility considerations, those of the IDT(=C(CN)2)2 derivatives were recorded 

in THF (Figure 3).  
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Figure 3. Normalized absorption spectra of para-IDT(=O)2 and meta-IDT(=O)2 isomers recorded in cyclohexane 
(A) and of meta-IDT(=C(CN)2)2 and para-IDT(=C(CN)2)2  isomers recorded in saturated solutions in THF (B). 

Absorption spectra of both IDT(=O)2 derivatives are well defined, with fine absorption bands 

between 250 and 450 nm, signing the high rigidity of the π-conjugated IDT backbones. Both 

molecules also present a weak absorption band at higher wavelength (between 450 and 700 nm). 

This very weak band is characteristic of a n-π* transition and in the light of TD-DFT (see in red, 

Figure 2) has been assigned a HOMO/LUMO transition possessing a very weak oscillator strength 

(f = 0.0503 for para-IDT(=O)2 and f=0.0051 for meta-IDT(=O)2). As the HOMO is fully 

localized on the IDT core and the LUMO on the cyclopentadienone unit, this transition presents a 

strong charge transfer character. The optical energy gap (∆Eopt) of the molecules was calculated 

from the onset of the low energy absorption band (inset Figure 3 A). These ∆Eopt are of 1.84 eV 

for para-IDT(=O)2 (λonset: 674 nm) and of 2.04 eV for meta-IDT(=O)2 (λonset: 608 nm). The 0.20 

eV difference between the two ∆Eopt is in the same range than that obtained from electrochemical 

data (0.14 eV) and from molecular modelling (0.17 eV). This evidences that the HOMO/LUMO 

difference is clearly involved in ∆Eopt (Table 1).  

Both IDT(=C(CN)2)2 derivatives present a less resolved UV-visible spectrum (Figure 3B) with 

broader absorption bands than those observed for IDT(=O)2 derivatives. The bathochromic shift 

from ketones to dicyanovinylenes observed for the high energy bands can be assigned to an 

extension of the conjugation. A weak and broad absorption band is also detected at low energy (at 

630 nm for meta-IDT(=C(CN)2)2 and at 743 nm para-IDT(=C(CN)2)2, inset Figure 3B), assigned 

in the light of TD-DFT to a HOMO/LUMO transition possessing a weak oscillator strength (f = 
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0.0081 and 0.0243, resp., see in red Figure 2). Thus, the bathochromic shift of this band upon 

dicyanovinylene functionalization is mainly due to the strong decrease of the LUMO energy 

level,20, 64-65 resulting in an optical gap ∆Eopt contraction of ca 0.5 eV from 2.04 eV for meta-

IDT(=O)2 to 1.57 eV for meta-IDT(=C(CN)2)2  and from 1.85 eV for para-IDT(=O)2 to 1.29 eV 

for para-IDT(=C(CN)2)2.  

In the higher energy range, meta-derivatives present additional absorption bands between 350 and 

450 nm for meta-IDT(=O)2 and between 400 and 600 nm for meta-IDT(=C(CN)2)2, those bands 

are also pointed by theoretical calculations at 427 nm for meta-IDT(=O)2 and at 464 and 545 nm 

for meta-IDT(=C(CN)2)2 and are assigned to HOMO-1 vs LUMO and HOMO vs LUMO+1 

transitions (see more details in the Supporting Information).  TD-DFT of the four compounds are 

given in the Supporting Information (Figures S10-S17). 

Thermally evaporated thin films of meta-IDT(=C(CN)2)2 and para-IDT(=C(CN)2)2 (thickness: 60 

nm, prepared in the same conditions than for the devices presented below) present respectively an 

onset absorption measured at 856 nm and 1016 nm leading to ∆Eopt of 1.45 eV and 1.22 eV 

(Figure 4). There is hence a slight gap contraction from solution to solid state surely due to 

different molecular arrangements (for meta-IDT(=C(CN)2)2 from 1.57 to 1.45 eV and for para-

IDT(=C(CN)2)2 from 1.29 to 1.22 eV) 
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Figure 4: Absorption spectra of thermally evaporated thin films (60 nm) of meta-IDT(=C(CN)2)2 (red line) and para-
IDT(=C(CN)2)2 (black line). 
 

Self-organization properties  

The thermal behaviour of IDT(=O)2 and IDT(=C(CN)2)2 compounds were investigated by 

polarizing optical microscopy (POM), thermogravimetric analysis (TGA), differential scanning 

calorimetry (DSC) and small and wide angle X-ray scattering (SWAXS). The four derivatives are 

birefringent and pasty solids at room temperature but show different thermal behaviours (Figure 

5): while the two IDT(=O)2 melt directly into the isotropic liquid at around 145°C ((meta-

IDT(=O)2 ; ∆H=53 J/g) and 172°C ((para-IDT(=O)2 ; ∆H=66 J/g), the two IDT(=C(CN)2)2 are 
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still birefringent and pasty at 300°C. The liquid states of both IDT(=C(CN)2)2 are therefore out of 

reach, especially as 300°C is also the temperature above which TGA curves show significant 

weight losses due to the onset of the degradation (the five percent weight loss limit is crossed 

around 350°C, at experimental conditions of 5°C/min ramps and of air as sweep gas; Figures S1-

S3 in the Supporting Information). The two IDT(=O)2 are on the contrary stable over broad 

temperature ranges in the liquid state (weight loss and degradation start above 250°C, and the five 

percent limit is crossed around 300°C). Such considerable delay (or disappearance) of the liquid 

state due to diCN is in line with previous results on other compounds and proceeds from the strong 

intermolecular dipole-dipole and π-π interactions introduced by these groups.[21] This feature may 

induce efficient electron hopping and hence high charge carrier mobility and is therefore 

promising for OFET applications (see below). 

Despite the maintenance of the pasty birefringent textures, the first heating run DSC curves of both 

IDT(=C(CN)2)2 show a big endothermic peak at practically the same temperature and with 

comparable integrations as the melting transition of IDT(=O)2 analogues (meta-IDT(=C(CN)2)2: 

145°C and ∆H=48 J/g; para-IDT(=C(CN)2)2: 170°C and ∆H=30 J/g) (Figure 5). These enthalpy 

changes are hardly understood by crystal phase’s transformations and the corresponding peaks 

must consequently indicate a melting process to a mesophase. The molecular design was actually 

optimized for mesomorphism: the two alkyl tails terminating a rod- or lath-shaped conjugated 

mesogen confers a “calamitic” or “sanidic” architecture66 to the materials. Mesogens and alkyl 

tails naturally nanosegregate from each other in alternating domains, and mesophases commonly 

occur when aliphatic chains melt to liquid-like lateral packing while mesogens maintain some 

long-range correlated order.67-68 IDT(=C(CN)2)2 and IDT(=O)2 have identical terminal chains 

which represent nearly the same volume fraction with respect to the mesogen, and it is therefore 

not surprising to find close melting temperatures for aliphatic domains. The intrinsic properties of 

both mesogens then come to the forefront: collapse of any long-range order and direct transition to 

liquid arise for the weakly interacting carbonyl-functionalized mesogens, whereas the cohesively 

self-associated dicyanovinylene-functionalized mesogens presumably maintain a long-range 

correlated structure across the liquid aliphatic interlayers. This structure would explain the 

birefringence and the high viscosity, and corollary clarify the behaviour on cooling and second 

heating: crystallization with small supercooling by starting from liquid IDT(=O)2, freezing of the 

viscous mesophase of IDT(=C(CN)2)2 on cooling (see Figures S4-S6 in the Supporting 

Information). 

 

Page 15 of 29

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 
 

16 

 

Figure 5: DSC traces of IDT(=O)2 and IDT(=C(CN)2)2 regioisomers (1st heating run (black) and cooling run (red) at 
5°C/Min, endotherm up); Cr: crystalline phase; Iso: isotropic liquid; Lam: three-dimensional lamellar mesophase. 

SWAXS patterns confirm these interpretations. In the pristine state, the four derivatives effectively 

give patterns typical of crystalline phases, with exclusively sharp reflections distributed over the 

whole scattering window (Figure 6). On heating above melting, IDT(=O)2 patterns become 

characteristic of nanosegregated liquids, with a broad small-angle scattering maximum coming 

from the alternation of molten domains of mesogens and chains, besides a broad wide-angle 

scattering maximum due to lateral distances inside domains (position of both maximums: 18-20 Å 

and 4-5 Å).  

Patterns above the melting of IDT(=C(CN)2)2 isomers contain a (00l) reflection series in the 

small-angle range and overlapping broad scattering and sharp reflections in the wide-angle range, 

which definitively confirms the identification to a three-dimensional lamellar mesophase. These 

lamellae emerge from the alternation of layers of molten chains, at the origin of the broad 

scattering hch, and from layers of regularly arranged mesogens. As previously encountered for 

closely related systems, 67-68 the aliphatic interlayers are not sufficient to blur out the positional 

correlations between successive conjugated layers and leave crossed reflections (hkl) of a three-

dimensional superstructure. Similar patterns are obtained after cooling to room temperature 

confirming the freezing of the mesophase structures, as already deduced from DSC (see Figures 

S4-S6 in the Supporting Information). The three dimensional cells remain unsolved so far, but the 

packing geometry can be investigated through the combination of the lamellar periodicities (meta-

IDT(=C(CN)2)2: d=24.1 Å; para-IDT(=C(CN)2)2: d=22.9 Å) with the empirically calculated 

molecular volumes Vmol. In that way, the molecular area Amol=Vmol/d (=36-37 Å2) measures the 
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lateral extension of lamellae and reflects the space requirement of the bulkiest molecular segment, 

here the self-associated dicyanovinylene-functionalized mesogens (the liquid aliphatic layers just 

spread to compensate the discrepancy with the minimum cross-section of chains: 24 Å2 at 160-

190°C). 

 

 

Figure 6: SWAXS patterns of IDT(=O)2 and IDT(=C(CN)2)2 regioisomers (left and right), at room temperature in the 
pristine state (bottom, black) and above the melting to the isotropic liquid (IDT(=O)2) or to a three-dimensional 
lamellar mesophase (IDT(=C(CN)2)2) (top, red); hch is the scattering signal from molten alkyl chains; the lamellar 
reflections series is identified by indexations (00l). 

Finally, in this series of four structurally related compounds, the molecular organization turns out 

to be driven by the nature of the functionalization group borne by the mesogen. This an important 

finding for these two families of regioiomers. Thus, regioisomerism seems to have no significant 

effect on the nanosegregation and mesomorphism, and only limited influence on the crystalline 

state. More specifically, both para-derivatives show somewhat higher melting temperatures as 

their meta-analogues (same increase of 25-27°C) and para-IDT(=O)2 exhibits the richest 

crystalline polymorphism (three phases found on first heating, against a single one for the 

analogue (see Figures S4-S6 in the Supporting Information). 

Organic Field-Effect Transistors 

The potential of both IDT(=C(CN)2)2 regioisomers has been investigated through the fabrication 

and electrical characterization of bottom-gate bottom-contact n-type channel OFETs in which they 

were used as active layer (see OFET structure in the Supporting Information Figure S18). Of 

particular interest, we also investigate the significant effect of the self-assembled monolayers 

(SAMs) of 4-(dimethylamino) benzenethiol (DABT) grafted on the gold drain and source 

electrodes on the OFET performance and stability (see device structure in the Supporting 

Information Figure S19).  
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The fabrication process is described as follows: 150 nm thick aluminium layer was evaporated on 

the substrate (rigid glass or flexible polyethylene naphtalate) and patterned by conventional 

photolithography on a 5x5 cm² glass substrate. SU-8 2000.5 Photoresist from Microchem (see 

details on this photoresist in the Supporting Information) was then spin-coated in order to obtain a 

400 nm thick layer. 50 nm thick gold layer was then thermally evaporated and patterned by 

photolithography.  

For the devices on which the DABT was grafted, the DABT grafting was performed in dry-

nitrogen glovebox by immersing the substrate in a 1.6 mg/mL (10 mmol/L) acetone solution of 

DABT for 10 min at room temperature. The devices were then rinsed with acetone. Finally, the 

OSCs were deposited by evaporation under vacuum as a 40 nm thick layer. This bottom gate 

bottom contact structure, in which the OSC is evaporated during the last process step avoids any 

structural effect resulting from the next step. This will be discussed below. 

The most important parameters, i.e. the mobility µFE, the threshold voltage VTH, the subthreshold 

swing SS and the on/off values of the drain-source resistance RDS (IDon/IDoff) were extracted from 

the transfer characteristics in the linear and saturated regime of a series of at least 5 OFETs of 

different dimensions (W=4000µm, L=3 to 50 µm), fabricated during the same process in order to 

get a more precise insight on the reproducibility of these values. The results presented in Table 2 

are the average values and the best measured linear and saturated mobilities are presented between 

brackets. Electrical measurements were performed in a dry-nitrogen glovebox at room 

temperature, after a 1 hour annealing at 80°C. The transfer characteristics of the best OFET with 

dimensions of 4000 µm x 20 µm are presented in Figure 7 (complete output characteristics and 

additional transfer characteristics on PEN are available Figure S20-22 in supplementary data).  

Table 2: Electrical properties of OFETs with and without DABT grafting on the drain/source electrodes. The 
numerical values represent the averages for at least 5 OFETs and the value between brackets is the maximum value 
obtained. The linear mobility was calculated from an ID-VGS curve at VD=10 V. 

OSC 
VTH 

(V) 
VON 

(V) 
SS 

(V/dec) 
 Idon/Idoff 

Linear µFE  
(cm² V-1 s-1) 

Saturated µFE 

(cm² V-1s-1) 
para-IDT(=C(CN)2)2 

without DABT on glass 
36.8 5 1.6 2.3×107  5.9×10-3 (7.4×10-3) 1.2×10-2

 (1.6×10-2) 

para-IDT(=C(CN)2)2 

without DABT on PEN 
31.4 -3.8 2.5 1.1×107  1.2×10-2  (2.5×10-2) 3.8×10-2 (7.1×10-2) 

para-IDT(=C(CN)2)2  
with DABT on glass 

21.8 -1.8 1.3 4.1×106 2.2×10-2 (2.6×10-2) 3.8×10-2 (5.8×10-2) 

meta-IDT(=C(CN)2)2 without DABT on glass 48.6 5.1 2.0 1.1×107  2.7×10-3 (3.8×10-3) 7.2×10-3 (1.0×10-2) 
meta-IDT(=C(CN)2)2 without DABT on PEN 46.4 2.9 2.6 3.9×106 2.6×10-3  (6.9×10-3) 1.2×10-2  (2.5×10-2) 
meta-IDT(=C(CN)2)2 
with DABT on glass 

51.3 0.5 1.2 1.4×107  9.6×10-3  (1.3×10-2) 1.8×10-2 (2.5×10-2) 

Page 18 of 29

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 
 

19 

-20 0 20 40 60 80 100

1p

10p

100p

1n

10n

100n

1µ

10µ

I D
 (

A
)

V
GS

 (V)

0.0

2.0m

4.0m

6.0m

8.0m

10.0m

12.0m

I D

1
/2
 (

A
1
/2
)

A

-20 0 20 40 60 80 100

100f

1p

10p

100p

1n

10n

100n

1µ

10µ

 

 

I D
 (

A
)

V
GS 

(V)

B

0.0

1.0m

2.0m

3.0m

4.0m

5.0m

6.0m

I D

1
/2
 (

A
1
/2
)

 

Figure 7: Transfer characteristics of OFETs with para-IDT(=C(CN)2)2 (A) and meta-IDT(=C(CN)2)2 

(B) on glass with (dotted line) and without DABT (straight line). 

First, when comparing the performances of both compounds without DABT, it appears that para-

IDT(=C(CN)2)2 (Figure 7a, straight line) presents slightly better performances than those of its 

regioisomer meta-IDT(=C(CN)2)2 (Figure 7b, straight line). Thus, the average linear field effect 

mobility (5.9 × 10-3 cm2 V-1 s-1) and saturated mobility (1.2×10-2 cm2 V-1 s-1) of para-

IDT(=C(CN)2)2 are about two times higher than those of meta-IDT(=C(CN)2)2 (2.7×10-3 cm2 V-1 

s-1 and 7.2×10-3
 cm2 V-1 s-1 respectively). It should be noted that for para-IDT(=C(CN)2)2, the best 

transistors exhibited high linear and saturated mobilities of 7.4×10-3 cm2 V-1 s-1 and 1.6×10-2 cm2 V-

1 s-1 respectively. Likewise, linear and saturated mobilities of 3.8×10-3 cm2 V-1 s-1 and 1.0×10-2 cm2 

V-1 s-1 were obtained with meta-IDT(=C(CN)2)2. Different hypotheses can be made to explain the 

differences observed in the field-effect mobility. Indeed, it has been demonstrated that electrical 

conduction through an OSC can occur following three main mechanisms. The first is the band 

conduction mechanism, mainly observed in the case of mono-crystal OSCs, and corresponds to 

electrical conduction occurring in inorganic semi-conductor. In the case of well-organized organic 

materials (small molecule), Multiple Trap and Release (MTR) is the most commonly accepted 

mechanism.69 For amorphous semiconductor, carrier conduction is dominated by hopping 

mechanism.70 Obviously, electrical performances through MTR mechanism will be better than 

those with the hopping one. In this study, a better electrical conduction cannot be explained by a 

difference in the LUMO values as they are equivalent for each compound. The difference found in 

the electrical conduction could be rather related to the molecular organization. Indeed, a well-

organized OSC will limit the defect density, the carrier trapping and thus promote the MTR 

mechanism. In light of this explanation, para-IDT(=C(CN)2)2 geometry seems to promote a better 

film packing than meta-IDT(=C(CN)2)2 according to electrical performances. 

Remarkably, both IDon/IDoff ratio and subthreshold swing (SS) are very high and lye in the same 

range for both compounds (IDon/IDoff = 2.3×107 vs 1.1×107 and SS=1.6 V/dec vs 2.0 V/dec for para-

IDT(=C(CN)2)2 and meta-IDT(=C(CN)2)2 respectively). It is well-known that electronic circuits 

as logic gates need to very efficiently switch from the “on state” to the “off state” in the smallest 
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voltage window. These results are hence very encouraging to develop such electronic circuits in 

light of the very high and uniform calculated IDon/IDoff  ratio and low SS obtained. Finally, the VON 

voltage, which corresponds to the potential at which the conduction canal is being formed was 

measured at c.a. 5V for both compounds. This value appears to be low and highlights the potential 

of these OSCs for further applications. 

 It should be noted that structurally related pentaphenylene (LPP(=C(CN)2)2)
20 and terphenylene 

(meta-IF(=C(CN)2)2)
21 previously reported in literature with similar device architecture display 

lower OFET performance, the main improvement being observed for the ION/IOFF ratio that 

remarkably  increases from 2/6.3×105 for LPP(=C(CN)2)2 /meta-IF(=C(CN)2)2  to 2.3/1.1×107 for 

the para-/meta-IDT(=C(CN)2)2. This shows the strong and highly beneficial influence of the 

incorporation of thiophene units within the main π-conjugated backbone compared to their phenyl 

analogues.20-21  

In literature, the OSC/insulator interface is often described to have a strong impact on the electrical 

properties of OFETs.71-72 It has been indeed shown that organic/organic materials used as 

OSC/insulator interface leads to a decrease of defects density compared to inorganic/organic 

interface.73 Moreover, SU-8 photoresist has already been used as insulator layer with very good 

results.20-21,74 Considering the idea that organic/organic interface leads to a decrease of defect 

density compare to inorganic/organic interface, OSC organization in our devices cannot be the 

same at the interfaces between OSC/SU-8 (OSC/organic) and OSC/Gold (OSC/inorganic) leading 

to disorganized film on electrodes. In 2009, Kitamura et al have demonstrated that electrode 

functionalization with some benzenethiol derivatives such as DABT could increase the electrical 

performance due to a better OSC organization on drain and source electrodes.49 In order to test this 

hypothesis on the present devices, DABT was grafted on the gold electrodes prior to the 

evaporation of the OSC. This grafting successfully and strongly enhanced the performances of the 

present devices  with an average linear mobility of 2.2×10-2 cm2 V-1 s-1 (up to 2.6×10-2 cm2 V-1 s-1) 

for para-IDT(=C(CN)2)2 (Figure 7a, dotted line) and of 9.6×10-3 cm2 V-1 s-1 (up to 1.3×10-2 cm2 V-

1 s-1) for meta-IDT(=C(CN)2)2 (Figure 7b, dotted line). Interestingly, the saturated mobility was 

also impressively enhanced with an average value of 3.8×10-2 cm2 V-1 s-1 obtained for para-

IDT(=C(CN)2)2 (up to 5.8×10-2 cm2 V-1 s-1) and of 1.8×10-2 cm2 V-1 s-1 for meta-IDT(=C(CN)2)2 

(up to 2.5×10-2 cm2 V-1 s-1). An important feature needs to be stressed out. Indeed, saturated field-

effect mobility for para-IDT(=C(CN)2)2 has previously been obtained as high as 0.24 cm2 V-1 s-1 

by Geng and coworkers50 in a bottom-gate-top-contact structure with substrate temperature of 

80°C during semiconductor evaporation (with nevertheless a very high VTH of 33 V and a low 

ION/IOFF of 104). Two hypotheses could be given to explain this difference. First, numerous studies 
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have shown the high impact of the substrate temperature during the OSC deposition on field-effect 

mobility. Tian et al. obtained a maximum field-effect mobility for Tsub=80°C with lower values of 

0.12 cm²/V.s and 8.6×10-2 cm²/V.s for Tsub=60°C and 100°C respectively. The substrate 

temperature promotes the grain size of the molecule increasing the field-effect mobility until grain 

dissociation with the creation of void in the layer decreasing the electrical conduction and then the 

field-effect mobility of the device. In the present study, para-IDT(=C(CN)2)2 and meta-

IDT(=C(CN)2)2 have been deposited under vacuum at ambient temperature, which could hence 

explained the different mobilities obtained. Secondly, as previously explained, we achieve bottom-

gate-bottom-contact structure in order to compare these two molecules without any external effect. 

In fact, the OSCs have been deposited in the last step of the fabrication process (see more details in 

supplementary data).  

According to previous studies, top-contact structure (such as that developed by Geng et al)50 is 

more adapted to extract channel/OSC mobility because of lower access resistance in the device. In 

the present study, extraction of field-effect mobilities takes account of access resistance and limits 

the field-effect mobility values. Considering these two hypotheses, the mobilities obtained herein 

are in the same range than those previously obtained for para-IDT(=C(CN)2)2. However, it is 

important to note that the present OFETs using para-IDT(=C(CN)2)2 possess very high IDon/IDoff 

ratio (2.3×107), being around 1000 times higher than that previously reported (104).50  

The DABT grafting has not only a strong influence on mobilities but also on the VON and on the 

SS.  Thus, the SS was lowered for both compounds (from 1.6 to 1.3 for para-IDT(=C(CN)2)2 and 

from 2.0 to 1.2 for meta-IDT(=C(CN)2)2) and the VON voltage was impressively reduced from 5 to 

-1.8 V for para-IDT(=C(CN)2)2 and from 5.1 to 0.5 V for meta-IDT(=C(CN)2)2. This variation 

can be linked to the improved conduction canal formation, due to a lesser number of defects within 

the OSC thanks to a better molecular organization. These promising values should allow these 

devices to be used in functional electronic circuits, which usually work at a potential of 5V. 

Despite bottom-gate-bottom-contact structure with organic insulator and OSC presents higher 

access resistance, all the process steps are fully compatible with flexible substrate as PolyEthylene 

Naphtalate (PEN). This is an important feature in organic electronic technology. Thus, both para-

IDT(=C(CN)2)2 and meta-IDT(=C(CN)2)2 have been successfully deposited at low temperature 

(Tmax=120°C) on flexible PEN substrate. In Table 2, performances of OFET have been extracted 

for glass substrate and PEN substrate (thickness =25µm) without DABT. Interestingly, both glass 

and PEN deposited OFETs display similar parameters showing the possibility to fully transfer the 

present structure on flexible substrate. More precisely, one can note an increase of both linear (X 
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2) and saturated (X 3) field-effect mobility for flexible OFET with para-IDT(=C(CN)2)2 whereas 

linear µFE is the same with meta-IDT(=C(CN)2)2 and saturated µFE is multiplied by 1.7 from rigid 

to flexible devices. Saturated µFE reach the high value of 7.1×10-2 cm2 V-1 s-1 for para-

IDT(=C(CN)2)2 and of 2.5×10-2 cm2 V-1 s-1 for meta-IDT(=C(CN)2)2. 

Electrical performances presented above such as field-effect mobility, threshold voltage or sub-

threshold slope are related to static characterization and are not relevant to understand electrical 

behaviour of OFETs in an electronic circuit. In future electronic devices, OFET will be used as 

either as switch or current source. In switch mode, off state and on state have to be very well 

differentiated (IDon/IDoff), therefore frequency response and electrical stability under short 

polarization (t<1ms) have to be studied. As current source, the OFET will act as current supply for 

OLEDs, sensors or amplifiers. For these applications, current has to be constant under electrical 

polarization. A classical way to evaluate the electrical instability of an OFET is called gate-bias 

stress. It consists in stressing OFET with constant polarization for a while and then extract 

threshold voltage from transfer characteristics. Threshold voltage shift is then analysed to evaluate 

electrical stability of the device. Kippelen et al.26 have shown a simplified way to analyse electrical 

stability in OFET by measuring drain current decay under continuous polarization. This method 

has been applied to our devices over a period of 10 minutes. The results extracted from Figure 8 

are summarized up in Table 3. 
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Figure 8. Measurement of drain-source channel on-current decay with time under continuous polarization using 
classical OFETs or DABT-modified OFETs. 

Table 3: Idfinal/Idt=0 after 10 min continuous polarization 
 para-IDT(=C(CN)2)2 

without DABT 
para-IDT(=C(CN)2)2 

with DABT 
meta-IDT(=C(CN)2)2 

without DABT 
meta-IDT(=C(CN)2)2 

with DABT 
Idfinal/Idt=0  (%) 7 49 0.8 24.8 

Without DABT, it appears that the current rapidly decreases for both isomers (Figure 8, black and 

green lines). However, one can note that the resulting IDfinal/IDt=0 ratio is ca 10 times higher for 
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para-IDT(=C(CN)2)2 than for meta-IDT(=C(CN)2)2 (7% and 0.8% resp.). As observed for the 

electrical performances, the intermolecular packing is responsible for a higher defect density into 

the meta-IDT(=C(CN)2)2. Charge carrier trapping is then promoted and may explain the faster 

decrease of the drain current in meta-IDT(=C(CN)2)2.  

Numerous studies have demonstrated the strong impact of the insulator/OSC interface on OFETs 

electrical stability73,75. As shown in Table 3, the grafting of DABT on the drain-source electrodes 

has an impressive impact on the electrical stability of the present devices, showing the influence of 

the electrode/OSC interface on this matter. The enhancement of the ratio Idfinal/Idt=0 observed for 

both compounds (49% and 24.8% for para-IDT(=C(CN)2)2 and meta-IDT(=C(CN)2)2 

respectively) is then attributed to the decrease of the defect density at the gold/OSC interface.  

Finally, it should be noted that the OSC/insulator interface is the same in the two different devices 

(with and without DABT) as the DABT was only grafted on the gold drain and source. This has 

been previously confirmed by one of us,74 by contact angle measurements demonstrating that no 

SU-8 surface energy modification occurs when SU-8 surface is exposed to a thiol derivative 

(octadecanethiol). Thus, the improvement of the electrical stability due to the DABT grafting is 

here remarkable. Previous works have already demonstrated that OSC/insulator interface has a 

high impact on electrical stability.73,75 In this study, as the electrical stability was strongly 

increased by the grafting of DABT (see above, Table 3 and Figure 8), we evidence that this 

stability is also dependent of electrode/OSC interface. It is then reasonable to conclude that 

electrical stability under constant polarization is dependent on the combination of both interfaces: 

electrode/OSC interface and insulator/OSC interface. We are currently working on the 

enhancement of this stability through a screening of the best combination of OSC, SAMs and 

insulator.  

Conclusion 

In summary, two members of a new family of OSC based on the dihydro-s-indaceno[1,2-b:7,6-b’]-

dithiophene core, namely meta-IDT(=O)2 and meta-IDT(=C(CN)2)2, have been synthesised. Their 

main physicochemical properties have been studied in solution and in solid state, rationalized 

through theoretical calculations and compared to those of their corresponding regioisomers para-

IDT(=O)2 and para-IDT(=C(CN)2)2. The new V-shaped central core of the meta-isomers leads to 

a decrease of the HOMO energy levels compare to the para-isomer derivatives, with nevertheless 

an identical LUMO energy level. This allows tuning the HOMO/LUMO gap. These molecules 

have been successfully incorporated as active layer in OFETs, either deposited on glass or on 

flexible PEN substrates. In both devices, para-IDT(=C(CN)2)2 presents higher linear and saturated 
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field-effect mobilities (5.9×10-3/1.2×10-2 cm2 V-1 s-1 on glass and 1.2×10-2/3.8×10-2 cm2 V-1 s-1 on 

PEN) than those of meta-IDT(=C(CN)2)2 (2.7×10-3/7.2×10-3 cm2 V-1 s-1 on glass and 2.6×10-

3/1.2×10-2 cm2 V-1 s-1 on PEN). The IDon/IDoff ratio (2.3/1.1×107 on glass and 1.1/0.39×107 on PEN 

for the para-/meta-isomers) and subthreshold swing (1.6/2 V/dec on glass and 2.5/2.6 V/dec on 

PEN for the para-/meta-isomers) lye in the same range for both isomers and appears high and 

promising to further design electronic circuits. Another significant improvement of the device 

performances and of their electrical stabilities has been performed by modifying the gold 

electrodes by a SAMS of DABT. Such a modification remarkably improves the organization of the 

OSC on the electrode surface which leads to better charge transfer in the device and therefore si-

gnificantly higher mobilities and stabilities (increase of the linear µFE from 0.6 10-2 to 2.2 10-2 cm2 

V-1 s-1 with para-IDT(=C(CN)2)2 and from 2.7 10-3 to 9.6 10-3 cm2 V-1 s-1 with meta-

IDT(=C(CN)2)2). Thus, despite slightly lower performance than those of the known and highly 

efficient para-IDT backbone, this work clearly shows the potential of the new meta-IDT core. 

Both para-IDT(=C(CN)2)2 and meta-IDT(=C(CN)2)2 based OFETs are currently investigated in 

circuits.   
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