Supporting information for

Conformationally Dynamic Titanium and Zirconium Cationic Complexes of

Bis(naphthoxy)pyridine ligands: Structure, "Oscillation" and Olefin Polymerization Catalysis

Liana Annunziata, Thierry Roisnel, Abbas Razavi, Jean-François Carpentier,* and Evgueni Kirillov*

Figure S1. ¹H NMR spectrum of complex 2-Ti.

Figure S2. ¹³C NMR spectrum of complex 2-Ti.

Figure S3. ¹⁹F NMR spectrum of complex 2-Ti.

Figure S4. Stack plot of ¹H NMR spectra of complex 2-Ti.

Figure S5. Stack plot of ²⁹Si{¹H} NMR spectra of complex 2-Ti.

Figure S6. Result of deconvolution of ²⁹Si{¹H} NMR spectrum of complex 2-Ti.

Figure S7. ¹H NMR spectrum of complex 2-Zr.

Figure S8. Stack plot of ¹H NMR spectra of complex 2-Zr.

Figure S9. ¹H NMR spectrum of complex 2-Zr.

Figure S10. Low-field portion of the ¹H–¹H COSY NMR spectrum of complex 2-Zr.

Figure S11. ¹H–¹³C HMQC NMR spectrum of complex 2-Zr.

Figure S12. Stack plot of ${}^{19}F{}^{1}H$ NMR spectra of complex 2-Zr.

Figure S13. Stack plot of ²⁹Si{¹H} NMR spectra of complex 2-Zr.

Figure S14. ¹H NMR spectrum of complex 3.

Figure S15. ¹³C NMR spectrum of complex 3.

Figure S16. ¹H NMR spectrum of oligopropylene sample prepared with 3/MAO system.

Figure S17. Aliphatic portion of the ${}^{13}C{}^{1}H$ NMR spectrum of oligopropylene sample prepared with 3/MAO system.

Figure S18. The *ipso*-carbon region of the ${}^{13}C{}^{1}H$ NMR spectrum of polystyrene sample prepared with **3**/MAO system.

 Table S1.
 Summary of Crystal and Refinement Data for Compounds 2-Zr and 3.

Figure S19. DFT data obtained from B3PW91 level calculations for OSIP 2-Ti- C_s -decoord(1).

Figure S20. DFT data obtained from B3PW91 level calculations for OSIP 2-Zr- C_s -decoord(1).

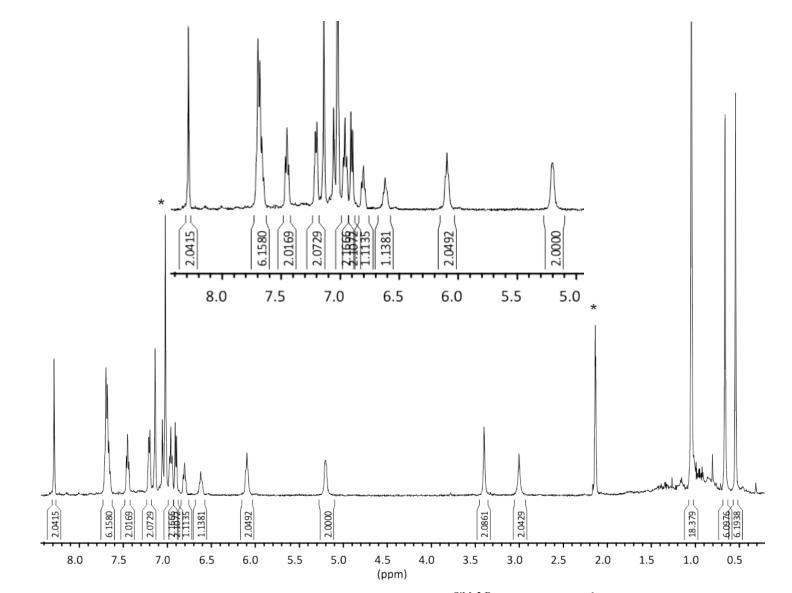

Additional results on the polymerization activity studies.

 Table S2. Propylene Polymerization Promoted by 1-Zr and 3.

 Table S3.
 Styrene Polymerization Promoted by 1-Ti, 1-Zr, 2-Ti, 2-Zr and 3.

References

^{*} Corresponding authors: Fax: (+33)(0)223-236-939. E-mail: jean-francois.carpentier@univrennes1.fr; evgueni.kirillov@univ-rennes1.fr.

Figure S1. ¹H NMR spectrum (500 MHz, toluene- d_8 , 25 °C) of complex {ONO^{SiMe2*t*Bu</sub>}Ti(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Ti**) (* stand for solvent peaks).}

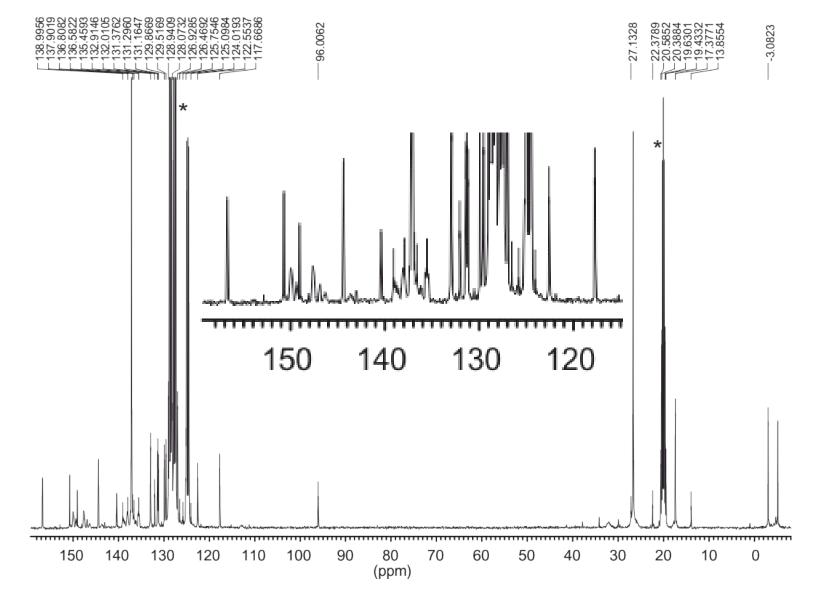
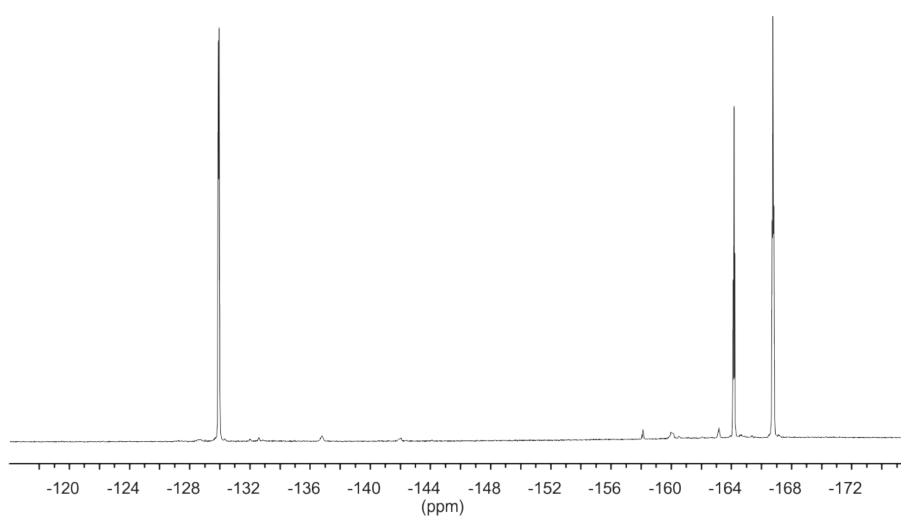
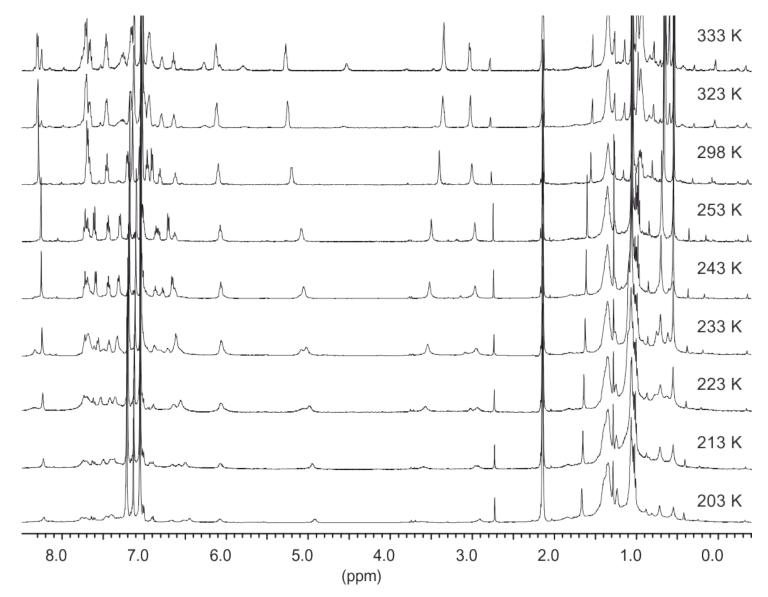
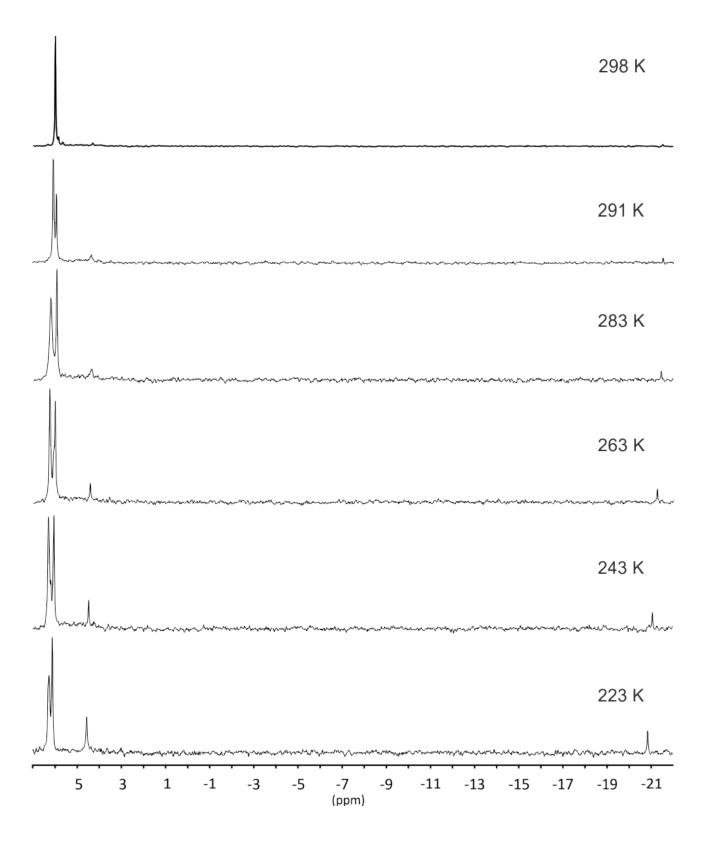


Figure S2. ¹³C{¹H} NMR spectrum (100 MHz, toluene- d_8 , 25 °C) of complex {ONO^{SiMe2/Bu}} Ti(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (2-Ti) (* stand for solvent peaks).

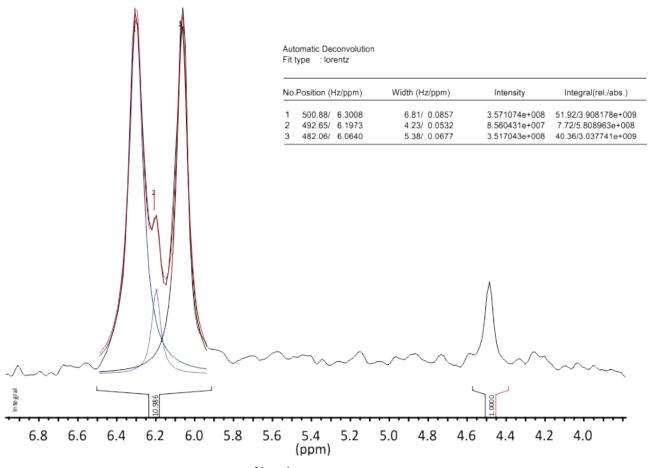
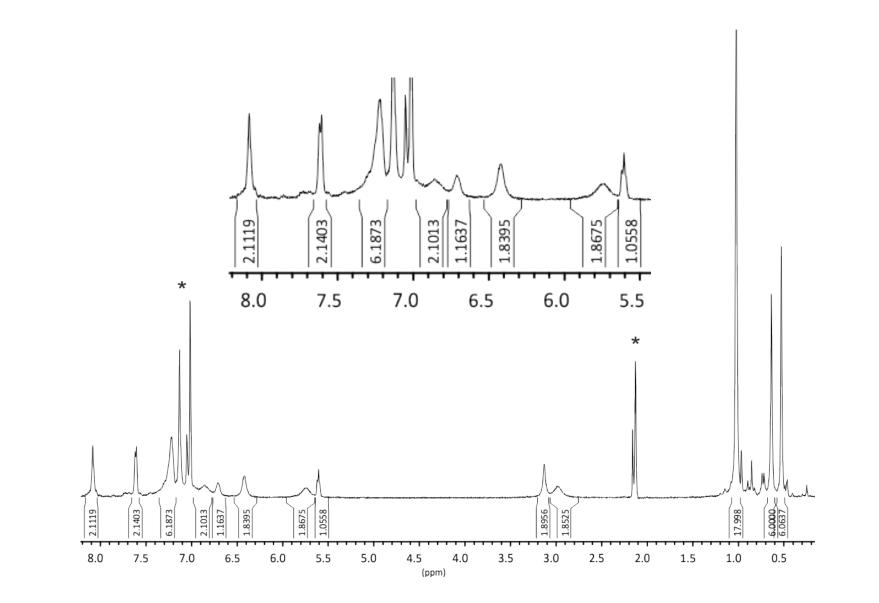
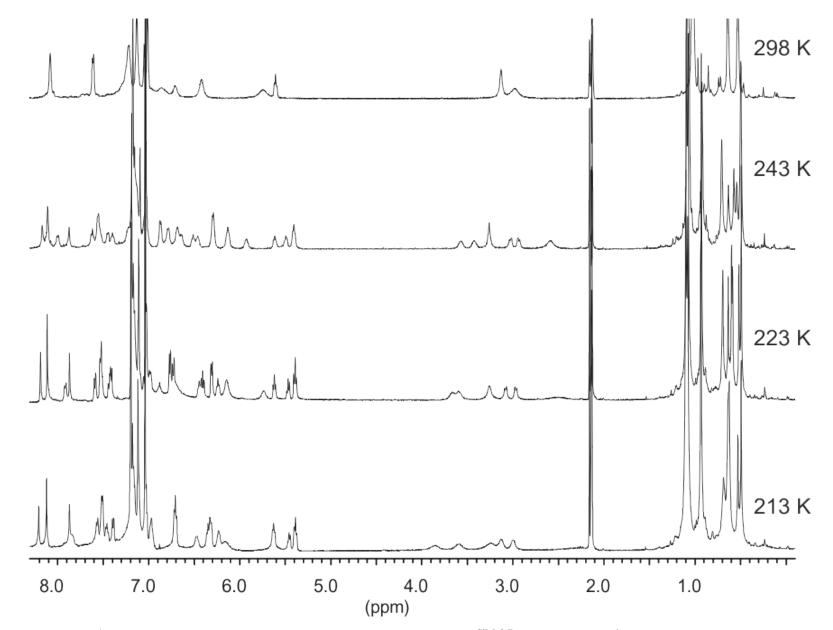
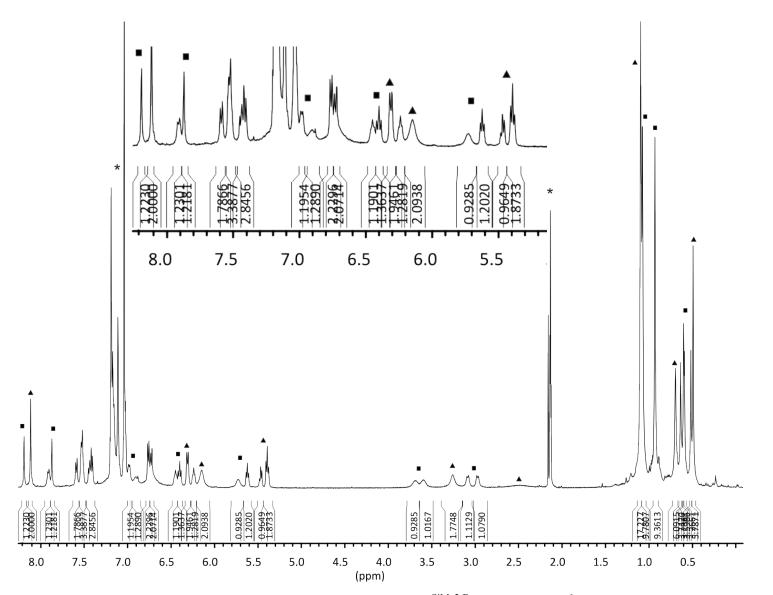

Figure S3. ¹⁹F{¹H} NMR spectrum (376 MHz, toluene- d_8 , 25 °C) of complex {ONO^{SiMe2/Bu}}Ti(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (2-Ti).

Figure S4. Stack plot of ¹H NMR spectra (500 MHz, toluene- d_8) of complex {ONO^{SiMe2}/Bu}Ti(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Ti**).

Figure S5. Stack plot of ²⁹Si{¹H} NMR spectra (79.5 MHz, toluene- d_8) of complex {ONO^{SiMe2*t*Bu}}Ti(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Ti**).

Figure S6. Result of deconvolution of ²⁹Si{¹H} NMR spectrum (79.5 MHz, toluene- d_8 , -30 °C) of complex {ONO^{SiMe2tBu}}Ti(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Ti**).

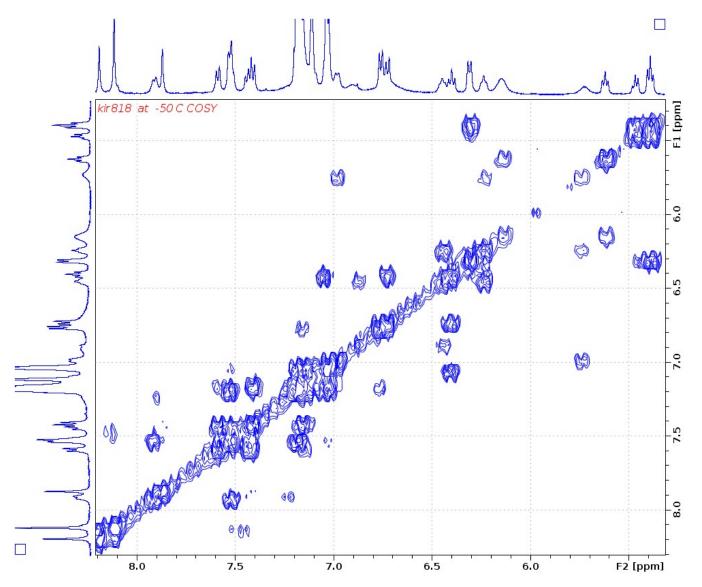
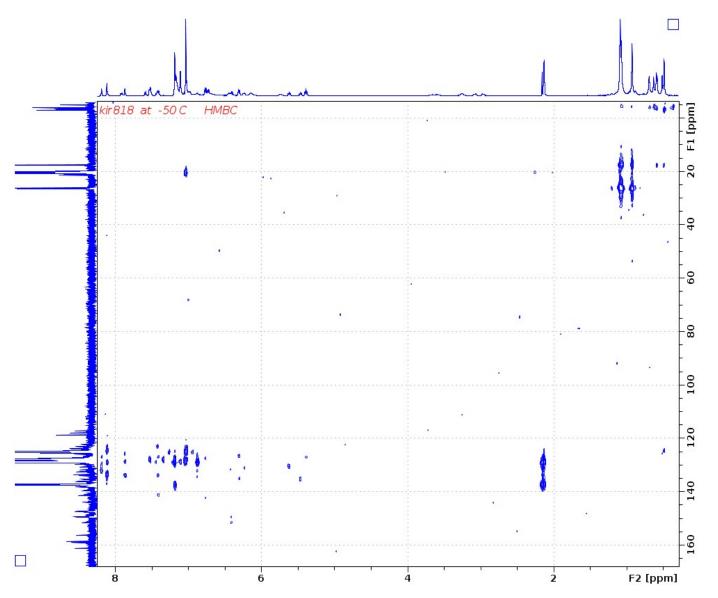
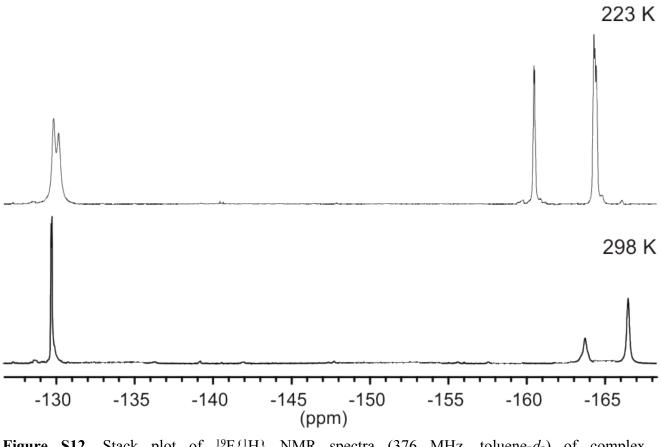
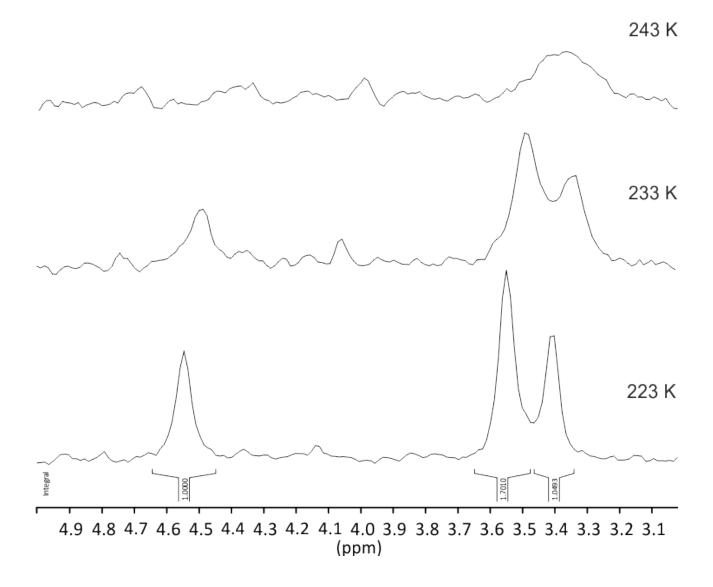
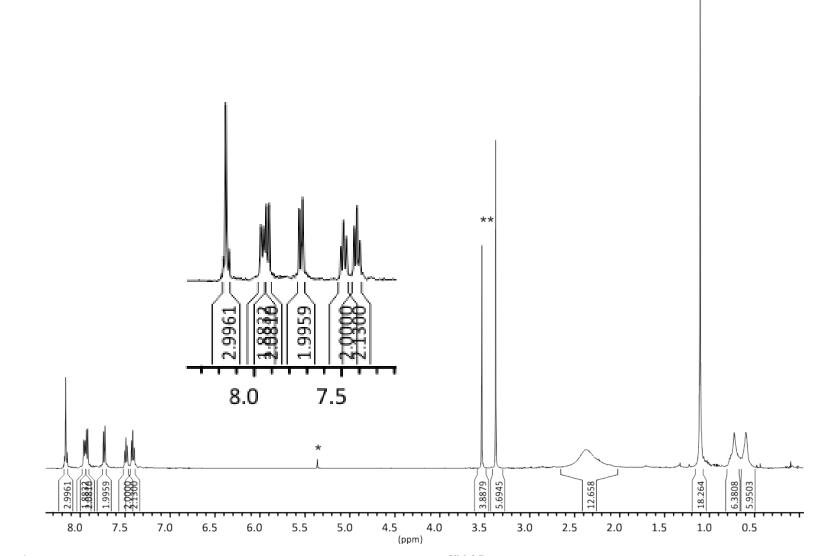

Figure S7. ¹H NMR spectrum (500 MHz, toluene- d_8 , 25 °C) of complex {ONO^{SiMe2tBu}}Zr(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (2-Zr) (* stand for solvent peaks).

Figure S8. Stack plot of ¹H NMR spectra (500 MHz, toluene- d_8) of complex {ONO^{SiMe2tBu}}Zr(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Zr**).

Figure S9. ¹H NMR spectrum (500 MHz, toluene- d_8 , -50 °C) of complex {ONO^{SiMe2*t*Bu</sub>}Zr(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Zr**) (* stand for solvent peaks).}

Figure S10. Low-field portion of the ¹H–¹H COSY NMR spectrum (500 MHz, toluene- d_8 , -50 °C) of complex {ONO^{SiMe2*t*Bu</sub>}Zr(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Zr**).}


Figure S11. ¹H–¹³C HMQC NMR spectrum (500 MHz, toluene- d_8 , -50 °C) of complex {ONO^{SiMe2}/Bu} Zr(CH₂Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (2-Zr).

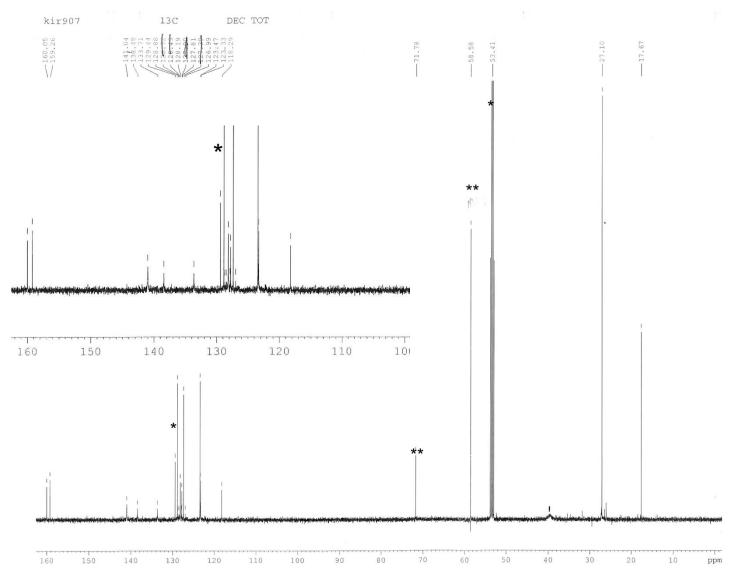

Figure S12. Stack plot of ${}^{19}F{}^{1}H$ NMR spectra (376 MHz, toluene- d_8) of complex {ONO^{SiMe2/Bu}}Zr(CH₂ Ph)(η^6 -Ph)CH₂B(C₆F₅)₃ (**2-Zr**).

Figure S13. Stack plot of ²⁹Si{¹H} NMR spectra (79.5 MHz, toluene-*d*₈) of complex ${ONO^{SiMe2tBu}}Zr(CH_2Ph)(\eta^6-Ph)CH_2B(C_6F_5)_3$ (**2-Zr**).

Figure S14. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 25 °C) of complex {ONO^{SiMe2*t*Bu</sub>}ZrCl₂(HNMe₂) **(3)** (* and ** stand for solvent and DME peaks, respectively).}

Figure S15. ¹³C{¹H} NMR spectrum (125 MHz, CD₂Cl₂, 25 °C) of complex {ONO^{SiMe2/Bu}}ZrCl₂(HNMe₂) (**3**) (* and ** stand for solvent and residual DME peaks, respectively).

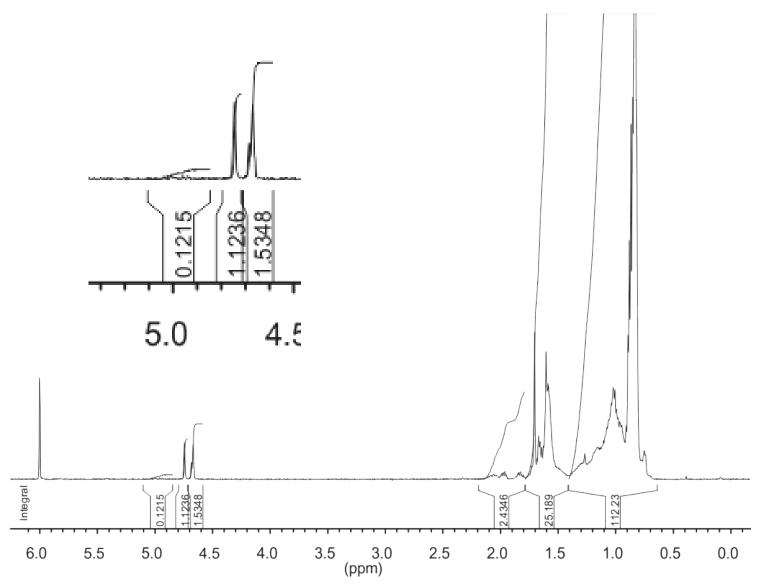
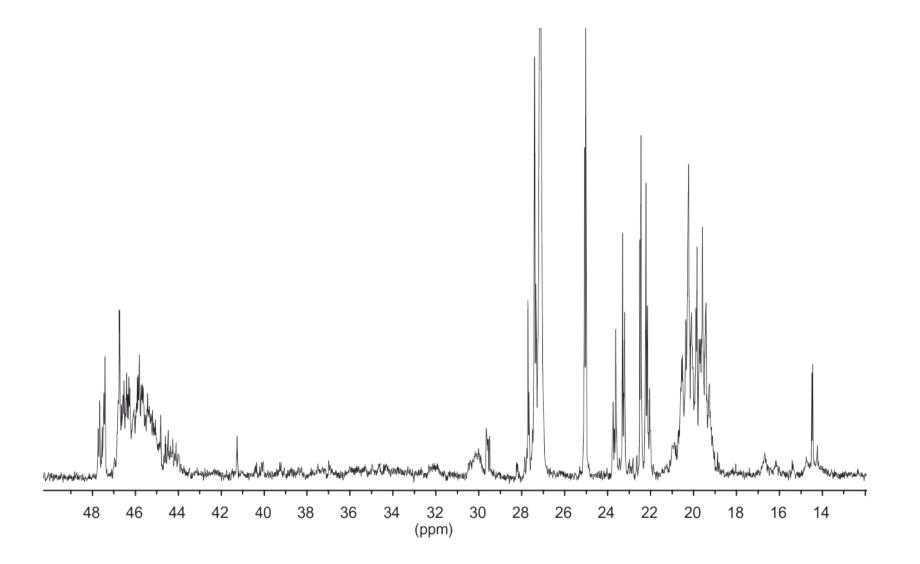
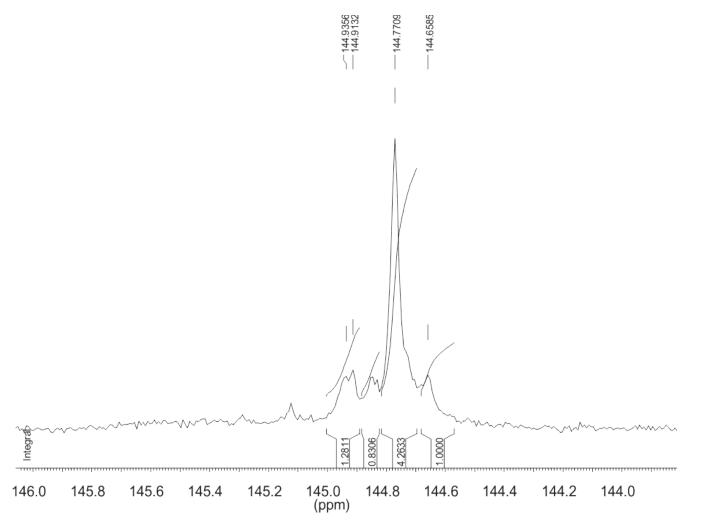
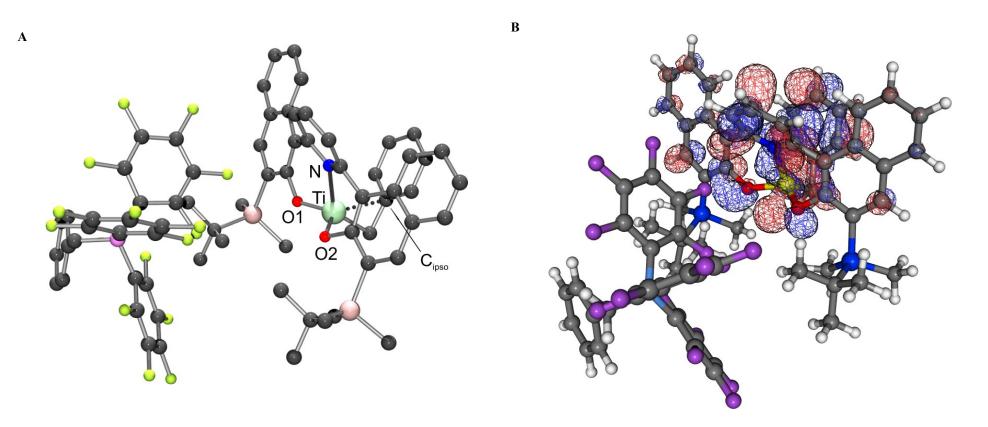
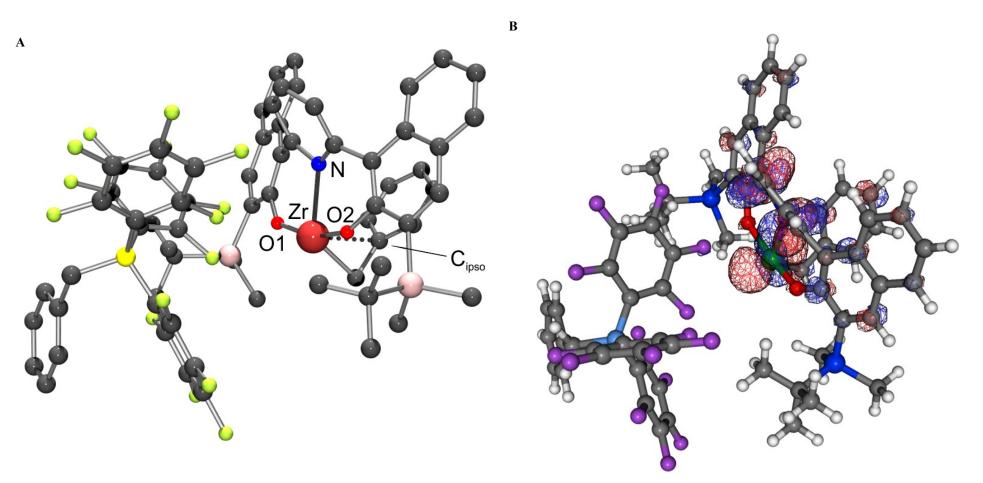


Figure S16. ¹H NMR spectrum (500 MHz, C₂D₂Cl₄, 25 °C) of oligopropylene sample prepared with 3/MAO system (Table S2, entry 2).


Figure S17. Aliphatic portion of the ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, $C_2D_2Cl_4$, 25 °C) of oligopropylene sample prepared with 3/MAO system (Table S2, entry 2).


Figure S18. The *ipso*-carbon region of the ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, $C_2D_2Cl_4$, 25 °C) of polystyrene sample prepared with **3**/MAO system (Table S3, entry 19).

	2-Zr	3
Empirical formula	C ₆₉ H ₅₇ BF ₁₅ NO ₂ Si ₂ Zr	$3(C_{39}H_{50}Cl_2N_2O_2Si_2Zr), 7(C_6H_6)$
Formula weight	1375.37	2938.09
Temperature, K	150	150
Wavelength, Å	0.71073	0.71073
Crystal system	monoclinic	triclinic
Space group	$P 2_1/c$	P -1
a, Å	16.3881(4)	18.8689(10)
b, Å	28.2501(7)	20.4867(11)
c, Å	18.8581(5)	22.9343(13)
α, deg	90	69.667(2)
β, deg	115.6710(10)	75.579(2)
γ, deg	90	70.528(2)
Volume, Å ³	7868.9(3)	7748.1(7)
Z	4	2
Density (calc.), Mg/m ³	1.161	1.259
Absorption coefficient,mm ⁻¹	0.243	0.403
Crystal size, mm ³	0.35 x 0.22 x 0.15	0.41 x 0.28 x 0.06
Reflections collected	121430	116649
Independent reflections	17983	34197
Max. and min. transmission	0.964, 0.847	0.976, 0.851
Data / restraints / parameters	17983 / 0 / 830	34197 / 21 / 1459
Final R indices $[I > 2\sigma(I)]$	0.0472	0.0643
R indices (all data)	0.0716	0.1031
Goodness-of-fit on F ²	1.065	1.114
Largest diff. peak, e.Å ⁻³	0.519 and -0.416	2.259 and -2.184

 Table S1.
 Summary of Crystal and Refinement Data for Compounds 2-Zr and 3.

Figure S19. DFT data obtained from B3PW91 level calculations for OSIP **2-Ti-***C*_s**-decoord(1)**: (A) Optimized structure (all hydrogen atoms are omitted for clarity). Selected bond distances (Å) and angles (°): C (benzyl)–Ti, 2.067; C_{ipso}(benzyl)–Ti, 2.440; N–Ti, 2.057; N–Ti–C(benzyl), 134.80; N–Ti–C_{ipso}(benzyl), 97.90; N–Ti–O, 88.71 and 92.33; (B) Kohn-Sham LUMO (isosurface value, 0.01; –0.1249 a.u.).

Figure S20. DFT data obtained from B3PW91 level calculations for OSIP **2-Zr-** C_s -decoord(1): (A) Optimized structure (all hydrogen atoms are omitted for clarity). Selected bond distances (Å) and angles (°):C (benzyl)–Zr, 2.217; C_{ipso}(benzyl)–Zr, 2.657; N–Zr, 2.331; C–F...Zr, 3.066; N–Zr–C(benzyl), 124.43; N–Zr–C_{ipso}(benzyl), 105.84; N–Ti–O, 81.33 and 65.43; (B) Kohn-Sham LUMO (isosurface value, 0.02; -0.1072 a.u.).

Additional results on the polymerization activity studies. The catalytic performance of the isolated discrete ionic complexes 2-Ti and 2-Zr or those generated *in situ* from the charge neutral 1-Ti and 1-Zr and the corresponding molecular cocatalysts $(B(C_6F_5)_3, [Ph_3C]^+[B(C_6F_5)_4]^-)$, was briefly evaluated in the homogeneous polymerization of alkenes (propylene and styrene).

In propylene polymerization (Table S2), the ternary system **1-Zr**/[Ph₃C]⁺[B(C_6F_5)₄]⁻/*i*Bu₃Al (used as scavenger) was found only barely active (entry 1). Whatever the activation mode in polymerization of styrene, that is either generation of active species *in situ* from **1-Ti** and B(C_6F_5)₃ or direct use of isolated **2-Ti**, no significant differences in terms of polystyrene yields or molecular weight properties were observed between the corresponding runs conducted in the temperature range of 25–80 °C (Table S3, compare entries 1, 3, 5 and 2, 4, 6, respectively). Most of the polymers obtained were soluble in THF, even at room temperature. In a few cases, polystyrene samples were found insoluble in acetone (entries 3–5), that is indicative of their stereoregular¹ (at least, in a part) structures. However, no melting transitions were detected in any case, which suggests that stereoregular sequences are short and/or randomly distributed within polymeric chain. The **1-Zr**/B(C_6F_5)₃ system was also found sluggishly active, though providing higher molecular weight atactic polymers (entries 7 and 8). In contrast with the titanium-based systems, no activity was observed for the zirconium-based analogue at 80 °C, which may reflect a lower thermal stability of this catalyst.

Polymerization of styrene using *in situ* combinations of the neutral **1-Ti** and **1-Zr** with $[Ph_3C]^+[B(C_6F_5)_4]^-$ was also studied. The system **1-Ti**/[Ph_3C]+[B(C_6F_5)_4]^- afforded small amounts of polystyrenes with molecular weight characteristics (M_n and M_w/M_n) close to those of the polymers obtained using cocatalyst B(C₆F₅)₃ (entries 10–12); on the other hand, **1-Zr**/[Ph_3C]+[B(C_6F_5)_4]^- appeared to be inactive at room temperature (entry 14). This discrepancy between the Ti- and Zr-based systems in polymerization of styrene can be a result of a generally higher intrinsic stability of Ti³⁺ species, the "true" precursors responsible for syndiospecific polymerization of styrene,^{1,2} while the Zr-based systems are typically much less active.^{1,3}

Entry	Catalyst	Co-catalyst	Temp. [°C]	Time [h]	m _p [g]	Productivity [kg·mol ⁻¹ ·h ⁻¹]	$\frac{M_{\rm n}{}^b}{[10^3 {\rm g} \cdot {\rm mol}^{-1}]}$	$M_{ m w}/M_{ m n}{}^b$
1	1-Zr	[Ph ₃ C] ⁺ [B(C ₆ F ₅) ₄] ⁻ / <i>i</i> Bu ₃ Al (1:100)	50	2	traces	-	-	-
2	3	MAO (1000)	50	1	1.35	135	1.4	1.23

 Table S2.
 Propylene Polymerization Promoted by 1-Zr and 3.^a

^{*a*} General conditions: 300 mL high pressure reactor; catalysts, 10 μmol; solvent toluene, 80 mL; P = 5 bars. ^{*b*} Determined by GPC.

Entry	Catalyst	Co-catalyst	Temp. [°C]	Time [h]	Yield [g]	$M_{n}{}^{b}$ [10 ³ g·mol ⁻	$[-1] M_{\rm w}/M_{\rm n}{}^{b}$	T _m ^c [°C]	PS
1	1-Ti	$B(C_{6}F_{5})_{3}$	25	18	0.08	24.4	3.9	-	aPS
2	2- Ti	-	25	18	0.10	43.7	2.8	n.o.	aPS
3	1-Ti	$B(C_{6}F_{5})_{3}$	50	3	0.02	19.5	2.2	n.o.	sPS enriched
4	2- Ti	-	50	18	0.05	28.7	2.2	n.o.	sPS enriched
5	1-Ti	$B(C_{6}F_{5})_{3}$	80	3	0.08	25.2	2.3	n.o.	sPS enriched
6	2-Ti		_80	3	0.10	36.4	2.7	-	aPS
7	1-Zr	$B(C_6F_5)_3$	25	43	0.20	102	2.7	n.o.	aPS
8	1-Zr	$B(C_{6}F_{5})_{3}$	50	24	0.10	205	2.6	n.o.	aPS
9	1-Zr	$B(C_{6}F_{5})_{3}$	80	24	0	-	-	-	-
10	1-Ti	$[Ph_3C]^+[B(C_6F_5)_4]^-$	25	18	0.02	70.2	2.3	-	aPS
11	1-Ti	$[Ph_3C]^+[B(C_6F_5)_4]^-$	50	18	0.04	98.2	2.6	n.o.	aPS
12 ^d	1-Ti	$[Ph_3C]^+[B(C_6F_5)_4]^-$	50	18	0.08	49.5	2.7	-	aPS
13	1-Ti	$[Ph_3C]^+[B(C_6F_5)_4]^-$	80	18	0	-	-	-	-
14	1-Zr	$[Ph_3C]^+[B(C_6F_5)_4]^-$	25	18	0	-		-	
<u>15</u> ^e	3	MAO	50	15	1.23	9.9	1.2	n.o.	sPS enriched

Table S3. Styrene Polymerization Promoted by 1-Ti, 1-Zr, 2-Ti, 2-Zr and 3.^{*a*}

^{*a*} General conditions, otherwise stated: catalysts, 20 μ mol; [B]/[Cat] = 1; [styrene]/[Cat] = 6500 (15 mL); Solvent = toluene (5 mL); n.o. = not observed. ^{*b*} Determined by GPC. ^{*c*} Determined by DSC. ^{*d*} catalyst, 40 μ mol. ^{*e*} [styrene]/[Zr] = 3000; [A1]/[Zr] = 500.

References

- ¹ Rodrigues, A.-S.; Kirillov, E.; Carpentier, J.-F. *Coord. Chem. Rev.* **2008**, *252*, 2115–2136.
- ² Mahanthappa, M. K.; Waymouth, R. M. J. Am. Chem. Soc. **2001**, 123, 12093–12094.
- ³ Schellenberg, J. *Prog. Polym. Sci.* **2009**, *34*, 688–718.