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Numerical simulation and experimental investigation on the residual stresses in a laser beam welded dual phase DP600 steel plate: thermo-mechanical material plasticity model
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A thermo-mechanical plasticity material model, which consists of a hardening and a temperature sensitivity term, is built to describe the dual phase DP600 steel behavior. For the hardening term, a synthesis Ludwik -Voce hardening law is proposed, identified and compared with the classical Ludwik and the Voce hardening laws. For the temperature sensitivity function, a new proposed expression together with a classical Johnson-Cook term and an improved Chen term are analyzed and identified. Moreover, the plate anisotropy of DP600 is also taken into account using Hill-48 theory. Based on the plasticity material model, a numerical sequential coupled thermo-mechanical model is applied to investigate the residual stresses of laser welding process. It is shown that the material anisotropy and the thermo-mechanical elastic-plastic model have an important influence on numerical residual stresses results. An experiment is also carried out to verify the numerical model. Simulation results of residual stresses are in good accordance with neutrons diffraction measurements.

Introduction

In the aim of reducing energy consumption and CO 2 release, high strength alloy is widely used to reduce the car weight in automotive industries [START_REF] Davies | Materials for automobile bodies[END_REF]). Among the high strength low weight alloys, the dual-phase (DP) steel possesses adequate ductility and high strength. DP600 contains about 15% hard martensite in a soft ferrite matrix [START_REF] Calcagnotto | Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dualphase steels and the effect of aging[END_REF]; [START_REF] Marya | Development of requirements for resistance spot welding dual-phase (dp600) steels part 1-the causes of interfacial fracture[END_REF]). The body-centered-tetragonal martensite helps to improve the high strength while the body-centered-cubic ferrite contributes to ductility [START_REF] Chen | The dependence of near-threshold fatigue crack growth on microstructure and environment in dual-phase steels[END_REF]; [START_REF] Kuang | Effect of continuous annealing parameters on the mechanical properties and microstructures of a cold rolled dual phase steel[END_REF]). DP600 has no-yieldpoint elongation and a higher strain-hardening rate than traditional highstrength low-alloy (HSLA) steels [START_REF] Fekete | A comparison of the response of hsla and dual phase sheet in dynamic crush[END_REF]). The high strain-hardening rate can increase absorption energy in car collision, thus helps to decrease damage [START_REF] Bouaziz | Driving force and logic of development of advanced high strength steels for automotive applications[END_REF]).

Nd:YAG laser welding is an efficient way in car manufacture. With appropriate welding parameters, the process can produce a firm joint. But welding may also change material property and introduce potential safety and reliability issues. When laser welding is used on dual-phase (DP) materials, the influence of material property should be investigated, such as the microstructure, tensile strength, hardness and fatigue properties by N. Farabi et al [START_REF] Farabi | Microstructure and mechanical properties of laser welded dissimilar dp600/dp980 dual-phase steel joints[END_REF]), mechanical and metallurgical properties by M. Hazratine et al [START_REF] Hazratinezhad | Mechanical and metallurgical properties of pulsed neodymium-doped yttrium aluminum garnet laser welding of dual phase steels[END_REF]) and the formability by M. Xia et al (Xia et al. (2008)). To better evaluate the performance of DP600 welding joint, the residual stresses are investigated in this paper both numerically and experimentally.

In simulation domain, the strain hardening phenomenon can be modeled by defining the material plasticity. Among various mathematical expressions, Ludwik equation [START_REF] Ludwik | Element der technologischen[END_REF]) and Voce equation [START_REF] Voce | A practical strain-hardening function[END_REF]) are two widely used constitutive models for material plasticity. As plastic strain increases, the flow stress increases in Ludwik model, while reaches a constant value in Voce model. Ludwik constitutive model is suitable for martensite hardening phenomenon, while Voce model for ferrite. Since DP600 is a combination of martensite and ferrite, a synthesis constitutive equation is used to describe the material plasticity. Besides the hardening, a temperature sensitivity term is proposed and compared with Johnson-Cook model [START_REF] John | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF]) and Chen model [START_REF] Chen | Mechanical properties and constitutive relationships of 30crmnsia steel heated at high rate[END_REF]) for plasticity model.

Along different directions, DP600 sheet presents different plastic behavior. The anisotropy of DP600 sheets is usually a result of large deformation during rolling operations in manufacturing. To describe anisotropy of material, a number of theory can be applied to material, such as Hill-48 (Hill (1948)), Srp93 [START_REF] Barlat | Anisotropic potentials for plastically deforming metals[END_REF]) and Yld-2004-18p (Barlat et al. (2005)). Among these theories, Hill-48 theory is one of the most famous theories which describes the material's anisotropy with six parameters F, G, H, L, M, N. The values for DP600 have been reported by works [START_REF] Padmanabhan | Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailorwelded blanks[END_REF]; [START_REF] Rabahallah | Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction[END_REF]; [START_REF] Ozturk | Effects of anisotropic yield functions on prediction of forming limit diagrams of dp600 advanced high strength steel[END_REF]), which reveal that the anisotropy in rolled sheet influences subsequent material behavior and affects the strain distributions.

To ensure weld performance, residual stresses of DP600 lap welding joint is investigated. A thermo-mechanical finite element model (FEM) is built through commercial code ABAQUS. The hardening behavior and temperature sensitivity of DP600 are considered in the model through UHARD subroutine. The anisotropy of DP600 are considered in the simulation model and the result suggest that different material rolling orientations influence numerical simulation of residual stresses obviously. Simulation results of residual stresses are compared with the experimental measurements of neutron diffraction technique, and good accordances are found.

Numerical model

A laser beam of 4kW power and 3.4m/min welding speed was used to weld two plates of dual phase DP600 steel. Concerning the elastic properties of the DP600 dual phase steel the numerical simulations uses the following generic values: Young's modulus E = 210GPa, Poison's ratio ν = 0.28 and thermal expansion coefficient α = 1.2 × 10 -5 K -1 . The detail description about thermal analysis, elastic and expansion behaviors of laser welding DP600 steel can be referred to a previous work [START_REF] Seang | Nd: Yag laser welding of sheet metal assembly: Transformation induced volume strain affect on elastoplastic model[END_REF]). This paper focus on the thermo-plasticity material model. The residual stresses analysis uses a sequential coupled thermo-mechanical analysis. The simulation model consists of two parts:

1. Thermal analysis part Heat source, heat transfer and boundary condition of radiation and convection are considered to analysis the thermal data using an ABAQUS model

Mechanical analysis part

A predefined field is used to introduce thermal analysis results so that the previous calculated thermal data is used as an input data file for a mechanical analysis of residual stress distribution.

With the consideration of material property, such as the expansion behavior of the material due to temperature increase, the elastic and plastic behavior of the material, and the relaxation of the stresses at the cooling step, laser welding residual stresses are simulated.

In figure 1, the geometry, mesh and boundary condition of the mechanical model are presented. The path transversal to weld line, the rolling direction and the directions of residual stresses are illustrated. The angle between transversal path and rolling direction is θ. There are 44160 elements in total for the model and element type C3D8R is selected for analysis. According to the material rheological behavior, the hardening influence, the softening phenomena, the strain rate sensitivity and the anisotropy influence of a dual phase DP600 steel are discussed. As proposed by Gavrus [START_REF] Gavrus | Constitutive equation for description of metallic materials behavior during static and dynamic loadings taking into account important gradients of plastic deformation[END_REF]), based on theory of dislocations glides and mixture microstructures formulations proposed by Avrami, the plastic flow stress corre-sponding to numerical simulation of dynamic forming process can be expressed in a general form as:

σ(ε p ) = [σ h (ε p ) • (1 -ψ) + σ s • ψ] • F(T ) • G( ε) (1)
where ε p is the cumulated plastic strain, T is the temperature and ε is the plastic strain rate. In this equation, σ h (ε p ) represents the hardening component, σ s the saturation term and ψ the material fraction undergoing dynamic softening phenomena (dynamic recrystallization, phase transformation, twinning . . . ) or a dynamic recovery. F(T) is the temperature sensitivity, and G( ε) is the strain rate sensitivity function. In a first approximation, during the laser welding simulation, the strain rate sensitivity can be chosen to be equal to unity i.e. G( ε) = 1.

Hardening behavior

Table 1 presents all the rheological parameters of DP600 identified for different hardening models. The mathematical form of the hardening models are discussed in the following parts. 

Ludwik model

The initial yield stress marked as "σ y " is the elastic limit after which the material starts its hardening. For a material phase such as the martensite one, the material flow stress σ(ε p ) can be expressed by the Ludwik hardening model using a classical power form:

σ(ε p ) = σ y + n 1 ε n 2 p (2)
Ludwik model can be interpreted as a particular term of the general constitutive equation (1) defined by [σ h (ε p ) • (1 -ψ) + σ s • ψ] using the hardening stress expressed by σ h (ε p ) = σ y + n 1 ε n 2 p and a softening material fraction equal to 0 i.e. ψ = 0.

For the DP600 steel, the Ludwik model cannot fully fit the original experimental curve, so a mathematically modified form of Ludwik model is proposed to represent the observed material behavior:

σ(ε p ) = σ y + n 1 ε n 2 p + n 3 ε p + n 4 (3)
As can be seen in figure 2, "Classical Ludwik model 01" correspond to the classical form (equation 2) and "Modified Ludwik model" becomes a mathematical improvement of the Ludwik one. It is important to note that the addition of the linear term "n 3 ε p + n 4 " in Equation 3 permits to fit more accurately the experimental data but has not any physical meaning. The straight line is used to obtain more accuracy of the obtained non-linear regression curve. 

Voce model

The Voce law is a good rheological formulation used to describe the material recovery (hardening with saturation plateaus) such as the plastic flow of the ferrite. The Voce model can be expressed in the following form [START_REF] Voce | A practical strain-hardening function[END_REF]):

σ(ε p ) = σ y + n 1 • [1 -exp(-n 2 ε p )] (4) 
In Equation 4, n 1 + σ y is the saturation stress and σ y is the initial yield stress. Voce model can be interpreted in term of the general constitutive equation ( 1) where the term

[σ h (ε p ) • (1 -ψ) + σ s • ψ] is written by the sum of (n 1 + σ y ) • [1 -exp(-n 2 ε p )
] and σ y • exp(-n 2 ε p ) defining the hardening term by σ h = n 1 + σ y , the saturation of plateaus term by σ s = σ y and the recovery fraction by ψ = exp(-n 2 ε p ).

For the DP600 material, the plastic flow stress can not be perfectly fitted by the Voce equation, so a mathematically modified form is written below in order to fit the experimental curve.

σ(ε p ) = σ y + n 1 • [1 -exp(-n 2 ε p )] + n 3 ε p (5)
As is seen in figure 3, "Classical Voce model 01" is the original form of Voce law and "Modified Voce model" is the mathematical improvement form of the classical Voce equation. The addition of the linear term "n 3 ε p " in Eqn. 5 only let the Voce equation to obtain a best fit of the original experimental data. This mathematical improvement is not based on the physical mechanisms characterizing the material plasticity and of the real mechanical behavior of hardness martensite / softening ferrite mixture, but can be regarded as a first approximation if an equal repartition of two phases is considered. 

Proposed synthesis model

According to the above considerations, mathematical improvements only for classical hardening laws to fit more accurately the experimental data are generally not physically based on material microstructure or plastic phenomena. Since DP600 is a dual phase material containing both martensitic and ferritic phases, a proper and physical rheological hardening model should be defined. So based on equation (1), neglecting any phase transformation or dynamic softening phenomena (i.e. ψ = 0), using a hardening term σ h defined by a mixture Avrami formulation available for static recovery phenomenon with a classical Ludwik model describing the ferritic recovery, and introducing the material fraction w to define the content of martensitic phase, a synthesis model is proposed by authors to define the hardening function σ(ε p ) in the following form:

σ(ε p ) = w • (σ y + n 1 ε n 2 p ) + (1 -w) • {σ y + n 3 • [1 -exp(-n 4 ε p )]} (6)
The martensitic material fraction w can vary from 0 to 1. In this paper, w takes a value of 0.4 for the studied DP600 steel.

The figure 4 plot the difference between the experimental data, the classical Ludwik model and the classical Voce one (identified in the plastic strain range [0, 0.05]) and the proposed synthesis model (identified in the plastic strain range of all experimental results i.e. [0, 0.2]). It can be seen the advantage of the proposed synthesis model to obtain a very good agreement with all experimental measurements describing the real elasto-plastic behavior of dual phase DP600 steel, both for plastic strain range [0, 0.05] and [0.05, 0.2] corresponding to more localized deformations which can occur during the forming process. 

Residual stresses obtained from different hardening models

In figure 5, all the three models of figure 4 and the two modified models of figure 2 and figure 3 are input into FEM of ABAQUS by user subroutines as material models. For all five models, a Johnson-Cook temperature sensitivity term F(T ) [START_REF] John | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF]) is used and the conditions "F(298K)=1 and F(1803K)=0.05" is fulfilled with a mathematical value m = 0.104.

The simulation results of residual stresses along welding transversal path are shown. During this laser welding simulation, the maximum strain is no larger than 0.05, thus the five material hardening models are nearly the same within the range of 0 < ε p < 0.05, except for the "modified Ludwik" model where a straight line is added as is seen in figure 2. From the numerical simulation results analysis, one may conclude that as long as the stress-strain curves expressed by the material behavior models are similar within used small strain range, the forms of hardening equations have little influence on the numerical residual stresses estimation. However, the proposed synthesis rheological model describe precisely the experimental hardening material behavior of DP600 dual phase steel simultaneously for small and more important plastic strain values, it is already validated concerning numerical simulation of residual stresses corresponding to a laser welding process and can be used to analysis the process taking into account other initial operating conditions.

The contours of residual stresses σ 11 and σ 22 computed with the five hardening models are nearly the same and only results of the synthesis model is shown in the figure 6. The residual stresses at the plate surface are plotted with contour curves. There are tensile stresses at the center zone of weld line and compressive stresses adjacent to weld line. The magnitude of residual stresses are not precise because the use of basic parameters for a classical Johnson-Cook temperature sensitivity formulation. To improve simulation results, several temperature sensitivity models are discussed in the following part. 

Temperature sensitivity

When a material is subjected to a high temperature, its strength tends to drop. In laser welding process, this phenomenon has a great effect on evaluation of elasto-plastic material behavior. In order to built a fine welding model and obtain good results of residual stresses, a proper material model taking into account the temperature sensitivity is investigated. Several temperature sensitivity models are taken into account and used to analysis the welding process. A lot of scientific works define the temperature sensitivity term F(T ) in function of the homologous temperature T * . Generally the homologous temperature T * can be defined as:

T * = T -T r T melt -T r (7) 
T melt , T , T r are melting, current, and room temperature, respectively. For DP600 steel, T melt is supposed to be 1803.15 K and the room temperature is 298.15 K.

Arrhenius model

The temperature sensitivity of Arrhenius term [START_REF] Samantaray | Constitutive analysis to predict high-temperature flow stress in modified 9cr-1mo (p91) steel[END_REF]) is expressed by:

F(T ) = exp m Q RT ( 8 
)
Where R is the universal gas constant, m is an adjustable parameter and Q the activation energy. Majority of thermo-mechanical plasticity applications consider a simplified expression using the thermal parameter β = m Q/R.

Hirt model

Similar to Arrhenius model, the Hirt model is defined as:

F(T ) = exp (-β T ) (9)

Linear model

The linear model can be viewed as an one order Taylor development of the exponential Hirt model:

F(T ) = exp (-β T ) = 1 -β T + • • • (10) 
Using "m" for "β " and "T -T r " to instead of "T" and avoid the rest, a simple linear model can be obtained.

The linear term of temperature sensitivity has been proposed by Hutchison [START_REF] Hutchison | The temperature dependence of the yield stress of polycrystalline iron[END_REF]) in 1960s. The material drops linearly with temperature increment.

F(T) = 1 -m • (T -T r ) ( 11 
)
Where m is a material coefficient and T r is reference temperature. The linear model is simple in form but not suitable for rapid material strength drop.

Johnson-Cook model

About twenty years later, based on many experimental tests and phenomenological analysis, Johnson-Cook [START_REF] John | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF]) proposed a well-founded material model which is still widely used nowadays to describe dynamic forming process. The temperature sensitivity term of Johnson-Cook model can well predict the material temperature sensitivity below about 1 2 T m but not well above. For Johnson-Cook model, T r is room temperature to define T * in Equation 7.

F(T ) = 1 -T * m (12)

Khan model

A power function with respect to temperature T is proposed by Khan [START_REF] Khan | Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[END_REF]) as a temperature sensitivity model. For Khan model, T r is reference temperature, so Khan temperature sensitivity model can use different parameters "m" with different temperature range. The use of different parameters enable the model to predict material temperature sensitivity at high temperature range.

F(T ) = T m -T T m -T r m (13)

Chen model

The Chen model (Chen et al. ( 2008)) contains the temperature sensitivity term as the following form. The Taylor development of the Chen model is "1 + n • T * m + • • • ", so when "n" is set to "-1" and the Chen model can be viewed as a first order approximation of Johnson-Cook model.

F(T ) = exp(n • T * m ) (14)

Proposed model

The proposed model can be viewed as a more general form equation as Johnson-Cook temperature model (k = n = 1).

F(T ) = (1 -k • T * m ) n (15)
All the parameters of temperature sensitivity terms analyzed above are shown in Table 2. The parameters of the Chen model and the proposed model are identified by a non-linear least squares regression method. The temperature sensitivity of the DP600 steel is supposed to be the same of the high strength steel in the work of Chen [START_REF] Chen | Behavior of high strength structural steel at elevated temperatures[END_REF]). The thermal softening fraction is the ratio of the stress at elevated temperature to that at room temperature. As is seen in figure 7, the thermal soften fraction is presented with different temperature sensitivity models by setting F(T room ) = 1. The Johnson-Cook model and the Khan model can be suitable from room temperature to about 800 K, but not appropriate above 800 K. The Chen model and the proposed model are near to experiment data except for the data around 1000 K. A polynomial expression is used to precisely describe the experimental data. 

Planar anisotropy

For nearly all plate materials, the rolling process would leave an anisotropy property. The anisotropy of DP600 steel is considered as planar anisotropy with Hill-48 theory. The Hill's potential function is an extension of the Mises function, which can be expressed in terms of rectangular Cartesian stress components as (Hibbitt et al. (1997)):

f (σ) = F(σ 22 -σ 33 ) 2 + G(σ 33 -σ 11 ) 2 + H(σ 11 -σ 22 ) 2 + 2Lσ 2 23 +2Mσ 2 31 + 2Nσ 2 12 1/2 (16)
where F, G, H, L, M, and N are the Hill coefficients obtained by tests of the material in different orientations. The effective stress f (σ) is a scalar that dependent on material stress state and is a key value defining the plastic flow. Generally it is assumed to estimate this effective stress from the equivalent stress corresponding to the plastic flow curve obtained by tensile tests along the rolling direction. The specimen geometry used for tensile tests is shown in figure 10. The planar anisotropy is estimated using Hill-48 theory and the parameters are estimated according to the computation method presented in the work of Ohashi [START_REF] Ohashi | Evaluation of r-value of steels using vickers hardness test[END_REF]). Specimen are prepared so that the angle between the stretch direction and the rolling direction of DP600 are θ = 0 • , θ = 45 • and θ = 90 • , respectively. At the beginning, the length and width of test area are noted as l 0 and w 0 , respectively. The tensile test are conducted with a strain rate of 10 -2 s -1 . When the total strain ε total = 0.15, specimen are unloaded and the length l 1 and width w 1 are measured. Along the three specimen directions, the corresponding measurements are presented in Table 3. The Lankford coefficient r (also known as width/thickness strain ratio) can be computed by

r = ln(w 1 /w 0 ) ln(w 1 • l 1 /w 0 • l 0 ) (17) 
Specimens with different angles θ = 0 • , θ = 45 • and θ = 90 • are analyzed by tensile tests. The corresponding anisotropic coefficients are noted as r 0 , r 45 and r 90 respectively. Based on the r-values, the Hill parameters can be estimated from following formula:

F = r 0 (1 + r 0 )r 90 (18) 
G = 1 1 + r 0 (19) 
H = r 0 1 + r 0 (20) N = (1 + 2r 45 )(r 0 + r 90 ) 2(1 + r 0 )r 90 (21) 
For planar anisotropy, if set R 11 = 1, the other anisotropic yield stress ratios R 22 , R 33 and R 12 are defined using the following relationships

R 22 = r 90 (r 0 + 1) r 0 (r 90 + 1) (22) 
R 33 = r 90 (r 0 + 1) r 0 + r 90 (23) 
R 12 = 3(r 0 + 1)r 90 (2r 45 + 1)(r 0 + r 90 )

Based on the test results presented in Table 3 and using the above equations, Lankford coefficients and Hill's coefficients of DP600 steel are presented in Table 4. 

Model validation

To validate the obtained numerical results, specimen experiments have been realized using neutrons diffraction technique. A gauge volume of 1×1×5 mm 3 was defined with the 5 mm aperture along the axis of the laser weld to improve intensity while has been possible (i.e. for transverse and longitudinal measurements only). For axial measurements, a sampling volume of 1 × 1 × 1 mm 3 was used. The crystallographic texture of the base material was determined by neutron diffraction technique on the dedicated 4-circles diffractometer 6T1 at LLB [START_REF] Hutchings | Introduction to the characterization of residual stress by neutron diffraction[END_REF]). From the {110}, {200} and {211} pole figures, using a 5 • × 5 • grid, the Orientation Distribution Function (ODF) was calculated using LaboTex software [START_REF] Pawlik | Labotex: the texture analysis software[END_REF]). The texture exhibits slight {hkl}<110> reinforcements, typical of a cold rolled ferritic steel, but the calculated texture index is rather low (1.6). An elastic self-consistent calculation was performed considering the experimental texture to deduce the {110} dependent values for Young's modulus (E 110 ) and Poisson's ratio (ν 110 ): as a result, it appears that the elastic anisotropy should remain very low, with E 110 ranging between 220 and 226 GPa, and ν 110 between 0.31 and 0.35, depending on the considered direction. In a first approach, triaxial residual stresses were thus calculated from the measured strains applying the Hooke's law (equation 25) in the isotropic elasticity approximation:

σ i = E 110 1 + ν 110 ε i + ν 110 1 -2ν 100 j ε j ( 25 
)
where i, j = axial, transverse and normal, and with the following values for Young's modulus E 110 = 220 GPa and Poisson's ratio ν 110 = 0.33.

Since the characterized zones close to (Heat Affected Zone, HAZ) and within the weld (Fusion Zone, FZ) may have their microstructures more or less strongly affected by the welding process, chemical composition is likely to be heterogeneous depending on the distance from the center of the weld. One would thus commit an error if considering the base material as the reference material for unstrained lattice spacing. So, due to the low thickness of the studied plates, a zero normal stress state was assumed (i.e. a plane stress state), and theoretical reference lattice spacing and diffraction angles 2θ 0 could thus be calculated for each measurement point, applying the following formula (26), [START_REF] Staron | Residual stress in friction stir-welded al sheets[END_REF]):

2θ 0 = 2 • sin -1 (1 + ν) • sinθ normal • sinθ axial • sinθ transverse (1 -ν) • sinθ axial • sinθ transverse + ν • sinθ normal • (sinθ axial + sinθ transverse ) (26)
Considering the difficulty to obtain a reliable unstressed reference sample, the reference (unstressed) d 0,{110} lattice spacing required for strain calculations was determined assuming a zero normal stress at 5 mm in the base metal from the center of the weld.

In figure 14, along the transversal path of weld, experimental and numerical results of residual stresses variations with the different material orientations are shown. The residual stresses of σ 11 and σ 22 are measured by Neutron Diffraction method along transversal path. The material is assigned a material rolling orientation that have 30 • with transversal path. The simulation result shows a good accordance with experiment measurement. 

Conclusion

In this study, a sequential coupled thermo-mechanical FE model is built for a lap laser welding simulation to analyze the elasto-plastic behavior and the residual stress distributions of dual phase steel DP600 joints. Different mechanical constitutive material models describing the hardening behavior, the temperature sensitivity and the anisotropy of the plasticity of the DP600 steel are identified, analyzed and employed in the numerical simulation. By comparisons with neutrons diffraction measurements of residual stresses, the elastic-plastic thermo-mechanical FE model is proved to be useful in predicting the welding residual stresses. According to the simulation and experimental results, we can draw the following conclusions:

1. The flow stress of DP600 at room temperature is obtained from tensile test. Both the classical Ludwik hardening model and the Voce model can represent the obtained true stress-strain hardening behavior of DP600 only with a little mismatch. Improvements of these two classical laws can be obtained only if parameters identification is made in the plastic strain range [0, 0.05]. Thus, a synthesis model formulation based on Voce and Ludwik models has been proposed in order to precisely describe the observed behavior of DP600 steel. Comparative simulations are done for the identified Ludwik, Voce and synthesis hardening models. Similar residual stresses results are acquired by the three hardening models. The obtained results reveal that, as long as flow stresses obtained from formulations of different hardening models are similar for a laser welding plastic strain range defined by 0< ε p <0.05, these ones have small influences on the corresponding numerical residual stresses . 2. Based on the experimental data corresponding to thermal mechanical properties of a high strength steel, the Johnson-Cook, Chen and Khan temperature sensitivity models together with a proposed model and a polynomial model are identified for DP600 material. Thermomechanical analyses show that the classical Johnson-Cook and the Khan temperature sensitivity terms are suitable to describe DP600 thermal softening behavior from room temperature to about 800K. For welding simulation that concerns high temperature up to about 1200K, the proposed and the Chen temperature sensitivity formulation show a better accordance with the obtained experimental data. The temperature sensitivity has a big influence on residual stresses simulation. Even the proposed temperature sensitivity formulation and the Chen model are nearly the same in description of temperature sensitivity, comparative simulations show some differences between the Chen model and the proposed one. Compared with the polynomial model (a best mathematical but not physical description of experimental temperature sensitivity), the proposed physical formulation results show better residual stresses of transversal direction while the Chen model results show better residual stresses of longitudinal direction. 3. Concerning the observed plane anisotropy of the DP600 steel, parameters of Hill-48 criterion are identified through several experiment tests. Simulations with different material rolling orientations of DP600 are assigned to material model. The material orientation of DP600 is found to have a big influence on simulation results of residual stresses σ 11 and σ 22 . The material orientation influence the magnitude of residual stresses σ 11 and σ 22 , increasing one while decreasing the other. 4. Experiment of laser welding with the same welding parameters of numerical model are conducted and residual stresses of the experiment sample are examined by a Neutron Diffraction technique. Based on the experiment measurements, increased residual tensile stresses are found at the weld area. Residual stresses of longitudinal direction σ 22 are found to be higher than residual stresses of transversal direction σ 11 . By comparison, the experimental results of residual stresses show good accordance with the numerical simulation results.
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  Figure 5: Residual stresses of different hardening models along transversal path

  Figure 6: Simulation results of synthesis hardening model with a Johnson-Cook temperature sensitivity model
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 7 Figure 7: Temperature dependence of experiment data and simulation models

  Figure 9: Contour of residual stresses with different temperature sensitivity

  Two yield surfaces predicted by Hill48 model and Von Mises criterion of the dual phase steel DP600 sheet are shown in figure11.The contour of residual stresses of two material rolling orientations θ = 0 • and θ = 90 • are presented in figure12. With the material rolling orientation
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 11 Figure 11: Yield surface predicted by Hill48 anisotropic model and Von Mises criterion

  Figure 12: Contour of residual stresses with different material rolling orientations
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 14 Figure 14: Comparison between the experimental and the numerical residual stresses

Table 1 :

 1 Rheological coefficients corresponding to different DP600 hardening models

		σ y	n 1	n 2	n 3	n 4	w	Equation Nonlinear regression ε p range
	Classical Ludwik model 01 400 980 0.48	-	-	-	(2)	[0, 0.2]
	Classical Ludwik model 02 400 1660 0.63	-	-	-	(2)	[0, 0.05]
	Modified Ludwik model	400 1690 0.5 -1240 -65	-	(3)	[0, 0.2]
	Classical Voce model 01	400 555 15.5	-	-	-	(4)	[0, 0.2]
	Classical Voce model 02	400 340 27.5	-	-	-	(4)	[0, 0.05]
	Modified Voce model	400 270	30	900	-	-	(5)	[0, 0.2]
	Proposed synthesis model 400 1660 0.63 340 27.5 0.40	(6)	[0, 0.2]

Table 2 :

 2 Parameters describing of temperature sensitivity

		m	n	k
	Johnson-Cook	1.5	-	-
	Khan model	0.5	-	-
	Chen model	-28.418 4.254	-
	Proposed model 4.207 38.629 0.699

Table 3 :

 3 Measurement of dimension change of tensile test θ = 0 • θ = 45 • θ = 90 •

	Initial length l 0 /mm	19.70	19.62	19.58
	Unload length l 1 /mm 21.18	21.30	21.04
	Initial width w 0 /mm 10.06	10.06	10.06
	Unload width w 1 /mm 9.70	9.74	9.72

Table 4 :

 4 The Lankford coefficients and Hill's parameters of DP600 steel

	r 0	r 45	r 90	R 11	R 22	R 33	R 12
	1.0123 0.6487 0.9160	1	0.9748 0.9777 1.1172
	F	G	H	N			
	0.5492 0.4969 0.5031 1.2017