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 27 

We assessed whether the ratio of dietary n-6/n-3 polyunsaturated fatty acids (PUFA) 28 

during egg formation engenders transgenerational maternal effects in domestic chicks. We 29 

analysed yolk lipid and hormone concentrations, and HPA-axis activity in hens fed a control 30 

diet (high n-6/n-3 ratio) or a diet enriched in n-3 PUFAs (low n-6/n-3 ratio) for six 31 

consecutive weeks. Their chicks were tested for neophobia during the first week of life. We 32 

found higher corticosterone metabolites in droppings of hens fed the diet enriched in n-3 and 33 

significantly higher concentrations of yolk progesterone, androstenedione and estradiol in 34 

their eggs compared to controls. Chicks of hens fed the n-3 enriched diet showed a lower 35 

body mass at hatch than controls and expressed higher neophobia when exposed to a novel 36 

object. These results add support to the hypothesis that the nutritional state of female birds 37 

produces variation in yolk hormone levels and engender maternal effects.  38 

 39 

 40 

 41 

 42 
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  Understanding the reasons for phenotypic variation is one of the cornerstones of 52 

behavioural biology. Non-genetic maternal effects play a key role in generating phenotypic 53 

variation in many taxa (Ledón-Rettig, Richards, & Martin, 2013). In birds, prenatal maternal 54 

effects can affect the morphology, behaviour and physiology of offspring (Ruuskanen, 2015). 55 

Such effects are partly mediated via variation in yolk-hormone concentrations of maternal 56 

origin according to different environmental conditions (Groothuis, Muller, von Engelhardt, 57 

Carere, & Eising, 2005). Yolk androgens (mainly testosterone and its precursor 58 

androstenedione) have been widely studied in wild bird populations. Differential allocation of 59 

androgens into eggs is presumed to be a way to adapt offspring to their hatching environment 60 

(Gil, 2008; Groothuis, et al., 2005). Androgen concentrations can vary substantially within 61 

and between egg clutches as a consequence of the maternal environment; factors such as 62 

social conditions (density, aggressive interactions, mate quality) (Kingma et al., 2009; Pilz & 63 

Smith, 2004; Schwabl, 1997), parasitic infection  (Müller, Heylen, Eens, Rivera-Gutierrez, & 64 

Groothuis, 2013) and predation risk (Coslovsky, Groothuis, de Vries, & Richner, 2012) can 65 

influence hormone production. Because yolk hormone levels show such a strong context-66 

dependency within species (Ruuskanen, 2015), the specific environmental cues triggering 67 

maternal effects must be elucidated further.  68 

Recently, food resource availability has been identified as an environmental factor 69 

engendering differential maternal hormone allocation. In the lesser black-backed gull (Larus 70 

fuscus), pied flycatcher (Ficedula hypoleuca) and black-legged kittiwake (Rissa tridactyla) 71 

food supplementation prior to, and during oviposition affected androgen quantity in the yolk 72 

(Verboven et al., 2003; Verboven, Monaghan, Nager, & Evans, 2010). While in great tits 73 

(Parus major), no effect of food supplementation on yolk androgens has been recorded (S. 74 

Ruuskanen, Darras, de Vries, Visser, & Groothuis, 2016). Manipulation of food resources 75 

also shows to increase the within clutch variation of yolk-hormones in canaries (Serinus 76 
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canaria) (Jonas Vergauwen, Goerlich, Groothuis, Eens, & Müller, 2012) and zebra finches 77 

(Taeniopygia guttata) (Sandell, Adkins-Regan, & Ketterson, 2007). These studies 78 

demonstrate that the nutritional state of maternal birds during oviposition contributes to 79 

differences in yolk hormone concentrations between or within a clutch. In the reported 80 

studies, enrichment of the maternal diet was achieved by providing additional protein and/or 81 

lipids from different sources (e.g. seeds, boiled eggs). This procedure leaves open the question 82 

on the influence of the nutritional composition of the food provided to the mother. To our 83 

knowledge the effect of the quality of maternal diet on egg hormone levels and offspring 84 

phenotype hasn’t been investigated so far in birds. 85 

This question is of particular importance for factory-farmed birds which are fed an 86 

unique diet. The domestic chicken (Gallus gallus domesticus) is the most abundant bird 87 

species on the earth but, despite this importance, many avenues of research remained to be 88 

explored in order to advance our knowledge on maternal effects and behavioral development 89 

(Dixon, Sparks, & Rutherford, 2016). Housing conditions (Janczak, Torjesen, & 90 

Rettenbacher, 2009), unpredictable access to food (Janczak, Torjesen, Palme, & Bakken, 91 

2007; Nätt et al., 2009), maternal social status (Muller, Eising, Dijkstra, & Groothuis, 2002), 92 

early social stress (Goerlich, Nätt, Elfwing, Macdonald, & Jensen, 2012) and thermal 93 

environment (Bertin et al., 2013) cause variation in yolk androgens and progesterone levels in 94 

domestic hens. This caused modifications in growth, feeding behaviors, and emotional 95 

reactivity of their chicks (Goerlich, Nätt, Elfwing, Macdonald, & Jensen, 2012; Nätt et al., 96 

2009; Bertin et al., 2013). In domestic hens, maternal stress during egg formation —mimicked 97 

with subcutaneous corticosterone implantation— increased plasma corticosterone levels and 98 

decreased the synthesis of reproductive hormones which accumulate in the yolk (Henriksen, 99 

Groothuis, & Rettenbacher, 2011). In addition, on-farm longitudinal observations showed that 100 

parental stress physiology correlate with offspring’s anxiety and expression of damaging 101 
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behavior (de Haas, Bolhuis, Kemp, Groothuis, & Rodenburg, 2014; Rodenburg & de Haas, 102 

2016).  103 

In domestic hens we previously showed that adding fish oil to the maternal diet 104 

induced food neophobia in the offspring (Aigueperse, Calandreau, & Bertin, 2013). As fish oil 105 

is particularly rich in n-3 poly-unsaturated fatty acids (PUFA), this result suggested that 106 

PUFA in the maternal diet may directly affect the development of behaviour in the offspring. 107 

The aim of the present study was to test this hypothesis and assess whether the ratio between 108 

n-6 and n-3 PUFA in the maternal diet during egg formation could engender maternal effects. 109 

N-3 and n-6 PUFA unambiguously influence the development of the central nervous system 110 

in both mammalian and avian species (Noble & Cocchi, 1989). But these effects are better-111 

understood for mammals. In mammals, PUFAs and their mediators are known to regulate 112 

many processes within the brain, such as neurotransmission, cell survival and neuro-113 

inflammation, and also affect hypothalamic–pituitary–adrenal (HPA) axis responses, thereby 114 

possibly playing a role in anxiety-like behavior and cognition (e.g. Bazinet & Layé, 2014; 115 

Lafourcade et al., 2011). In the domestic chicken, PUFA ratios in the maternal diet are 116 

transferred to the egg yolk (Noble & Cocchi, 1990) and subsequently to the tissues of the 117 

developing chick embryo (Maldjian, Farkas, Noble, Cocchi, & Speake, 1995). Numerous 118 

studies show that the PUFA profile of the developing chick brain reflects the PUFA 119 

composition in the yolk (Cherian & Sim, 1993; Anderson, Connor, Corliss, & Lin, 1989) but 120 

the consequences on behavioral development remain to be investigated. 121 

We analysed yolk lipid and hormone concentrations, and HPA-axis activity in hens 122 

fed a control diet (high n-6/n-3 ratio) or a diet enriched in n-3 PUFAs (low n-6/n-3 ratio). 123 

Development and neophobia (i.e. fear of novelty) of the hatchlings were analysed. Neophobia 124 

is considered to be a temperament trait which can impair an animal’s capacity to adapt to new 125 

resources, new habitats and express behavioural innovation (Greenberg & Mettke-hofmann, 126 
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2001; Webster & Lefebvre, 2001). As a high level of neophobia can reduce fitness (Brown, 127 

Ferrari, Elvidge, Ramnarine, & Chivers, 2013), this behavioural trait is a growing topic of 128 

interest for behavioural biologists (Camín, Martín-Albarracín, Jefferies, & Marone, 2016; 129 

Greggor, Thornton, & Clayton, 2015). The precocial domestic chick is a particularly 130 

appropriate model in which to analyse developmental influences on neophobia since chicks 131 

start food selection soon after hatching (Bertin et al., 2010). In addition, under commercial 132 

conditions the refusal to accept new foods leads to a major reduction in feed intake and, 133 

subsequently, in growth and animal welfare (Murphy, 1977).  134 

 135 

Methods 136 

Ethics statement 137 

All birds were maintained at the Experimental Unit PEAT of INRA (Nouzilly, France). The 138 

Experimental Unit is registered by the ministry of Agriculture with the license number B-37-139 

175-1 for animal experimentation. All experiments were approved by the Ethic Committee in 140 

Animal Experimentation of Val de Loire, CEEA Vdl (reference number 02153.02). The 141 

CEEA vdl is registered by the National Committe “Comité National de Réflexion Ethique sur 142 

l’Expérimentation Animale” under the number 19. All experiments were performed in 143 

accordance with the European Communities Council Directive 2010/63/UE. All animals were 144 

sold for rehabilitation at the end of the experiment. 145 

Maternal hens and diets 146 

Hens (n=40) and diets were provided by the experimental unit PEAT of INRA (Nouzilly, 147 

France). Two groups of 20 one-year old White Leghorn laying hens were matched for body 148 

weight, and divided into two dietary treatment groups, a control diet and a diet enriched in n-3 149 

FA. Diets were administered for six consecutive weeks. The control diet contained soya-oil 150 
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(3%) with a n-6:n-3 ratio of 7.99, a value within the range recommended for commercial 151 

laying hens (Van Elswyk, 1997). The n-3 diet contained 3% menhaden fish-oil (Sigma Life 152 

Science) having an n-6:n-3 ratio of 0.82. Diets were iso-caloric (2820 kcal ME/kg) and iso-153 

nitrogenous (170 g CP/kg), differing only in the composition of PUFAs (electronic 154 

supplementary material, table S1). Hens were housed individually in wire-mesh cages of 100 155 

x 100 x 50 cm (l x w x h), with the possibility of tactile, visual, and vocal contact with 156 

neighbouring hens. Cages contained wood shavings and a wooden perch on the floor, a nest 157 

enclosed by red curtain flaps, a nipple drinker and a feed trough. Water and food were 158 

provided ad libitum. Four hens were excluded from the experiment, three due to a lack of 159 

habituation to the experimental diets (food conservatism) and one death unrelated to the diet 160 

treatment, resulting in n =18 hens per diet group. 161 

Morpho-physiological measurements of hens 162 

All hens were weighed once per week. 24 h-feed intake per hen was measured once a week by 163 

calculating the difference in weight of the feeder before and after 24 h. The number of eggs 164 

laid was recorded daily. Laying rate was calculated as a percentage of the number of eggs laid 165 

per female per day.  166 

In order to evaluate HPA activity in chickens, faecal corticosterone metabolite (FCM) 167 

concentrations were measured (Rettenbacher, Mostl, Hackl, Ghareeb, & Palme, 2004). In the 168 

sixth week of diet treatment, one fresh faecal dropping per hen was collected from the home 169 

cage. Urine was removed from the sample as the concentrations of FCM in the liquid portions 170 

of droppings are more likely to represent acute HPA activity caused by handling or disturbing 171 

the animals during collection (Rettenbacher, et al., 2004). Each sample was homogenized and 172 

stored at -20°C. From each sample an aliquot (0.5 g) was extracted with 60% methanol 173 
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(Mostl, Spendier, & Kotrschal, 2001) and analysed by a cortisone enzyme immunoassay 174 

(EIA) validated for chickens and fully described in (Rettenbacher, et al., 2004).  175 

Analysis of egg quality, yolk hormones and yolk lipids 176 

As the vitellogenesis has an average length of 8 days (Lacassagne, 1960), we collected eggs 177 

for hormonal and lipid assays during the fifth and sixth weeks of treatment to ensure hens 178 

were fully habituated to the diets, and that differences in egg components were a result of the 179 

maternal diet treatments. One egg per female was weighed and stored at -20°C for hormonal 180 

assay. Eggshells were separated and dried for 24 h and weighed. Frozen yolk was separated 181 

from the albumen and weighed. The weight of albumen was calculated by subtracting the 182 

weight of the eggshell and yolk from that of the whole egg. We then determined the ratio of 183 

each component relative to the egg mass (yolk mass / egg mass; albumen mass / egg mass; 184 

shell mass / egg mass) for each female. A total of 18 eggs were collected per group. The 185 

concentrations of immunoreactive progesterone, testosterone, androstenedione and oestrogens 186 

were analysed by EIAs. Details of the extraction protocol are found in (Guesdon et al., 2011). 187 

For a full description of the assays including specific antibodies, see (Palme, Touma, Arias, 188 

Dominchin, & Lepschy, 2013). Intra- and inter-assay coefficients of variation were less than 189 

10% and 15%, respectively.  190 

In order to measure yolk lipid content, three yolks per female were pooled and homogenized. 191 

We then determined the total lipid content of the yolk and the percentages of saturated, mono-192 

unsaturated and poly-unsaturated FAs within the lipid fraction. Yolk lipid analysis was 193 

conducted by trans-methylation with gas chromatography (Perkin Elmer Autosystem, St. 194 

Quentin en Yvelines, France) following the protocol described in (Chartrin, Berri, Lebihan-195 

Duval, Quentin, & Baéza, 2005). 196 
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During the fourth and fifth week of treatment, hens were artificially inseminated three times 197 

(same mix of sperm for all the hens). Two hundred and thirty nine eggs (mean of 5.6 ± 0.4 198 

eggs per female) produced offspring. Eggs were incubated at 37.8°C with 56% relative 199 

humidity for 21 days.  200 

Chicks and housing conditions 201 

Forty-eight chicks from hens fed the n-3 enriched diet (n-3 chicks) and 50 control chicks (C 202 

chicks) were used in this experiment. Chicks were identified with a metal leg-ring. Chicks 203 

were housed in non-sibling pairs but with birds from the same diet treatment. We chose not to 204 

mix treatments within each cage as potential unknown differences in chicks’ social or 205 

emotional behaviour between treatments may mask prenatal effects. Chicks were housed in 206 

plastic cages (50 cm x 40 cm x 30 cm) placed in rows with treatments in alternation within a 207 

row (two adjacent cages were from different treatments). All the cages were equally 208 

distributed between two identical rooms. Cages had wood shavings on the floor and a wire-209 

mesh lid. Food and water were provided ad libitum. Chicks were fed a postnatal starter mash 210 

with a PUFA ratio similar to the maternal diet. We used this diet so that the PUFA ratio of the 211 

chick’s diet would not counteract the effects induced by the maternal diet on offspring’s brain 212 

PUFA levels. This is especially important since precocial birds adapt their feeding behaviour 213 

to their mother’s diet choices (Hess, 1964). Moreover, when the chick’s brain experiences a 214 

deficiency in PUFAs due to restriction of the maternal diet, it is able to compensate for this 215 

deficiency by altering lipid metabolism and demonstrating preferential uptake of the PUFA 216 

lacking in the diet (Anderson, Van Winkle, & Connor, 1992). As chicks rely on the vitelline 217 

sac reserve for 2/3 days after hatching, any phenotypic differences during the first days of life 218 

between chicks of both maternal diets could therefore be attributed to maternal diet effects. 219 

The n-3 diet administered to experimental chicks had an n-6:n-3 ratio of 1.03, and the control 220 

diet had an n-6:n-3 ratio of 8.15. Both diets were iso-caloric (2900 kcal ME/kg) and iso-221 
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nitrogenous (207.2 g CP/kg) differing solely in PUFA composition (electronic supplementary 222 

material, table S1). To determine the sex we looked for the development of the comb at 23 223 

days of age. The body weight of each chick was measured at hatching and at seven days of 224 

age. 225 

Behavioural characterization of chicks 226 

To characterize neophobia, behavioural responses to two novel foods and a novel object were 227 

assessed with a protocol previously described by (Bertin et al., 2015). Each test was executed 228 

at the same age for all chicks. All tests lasted 180 s.  229 

Because chicks become distressed when socially isolated (Hocking, Haldane, Davidson, 230 

Sandøe, & Kristensen, 2015), we tested cage mates together (n = 24 pairs of n-3 chicks and n 231 

= 25 pairs of C chicks). Testing took place in a separate room within an experimental cage 232 

that had the same features as their home cage. Testing commenced 90 min after the feeder 233 

was removed from their home cage. Pairs were transported to the test room in a 15 cm × 15 234 

cm × 15 cm plastic container, and were gently deposited in an opaque enclosure (20 cm × 6 235 

cm × 20 cm) within the testing cage, opposite the feeding trough. After 30 s, the enclosure 236 

was lifted and removed while chicks remained inside the testing cage. The behaviour of one 237 

marked focal chick of each pair was recorded by an unseen observer. Focal chicks were 238 

chosen randomly at two days of age and were tagged with a blue-coloured mark on the head. 239 

The latency (s) to eat (the moment swallowing was observed) and time spent eating (s) were 240 

recorded.  241 

(i) Habituation test/familiarization: at three days of age, chicks were familiarized with the 242 

testing cage and handling procedure. As chicks rely on their vitelline sac reserve the first days 243 

of life, this test also measured food motivation. The metallic feeding trough of their home 244 

cage was placed in the test cage, filled with 200 g of their usual diet.  245 
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(ii) Food neophobia tests: we used these tests to assess the immediate reaction to novel foods. 246 

Chicks were exposed to changes in sensory properties of the food. At four days of age, the 247 

first test was done with cracked corn-wheat (cereals contained in familiar pellets). Millet 248 

seeds (a novel food) was used at five days of age for the second test.  249 

(iii) Object neophobia test: chicks were tested at six days of age. The novel object was an 250 

unfamiliar feeder containing the familiar diet of the test pair.  251 

Statistical analysis  252 

Data were analyzed with Statview (SAS Institute Inc., Cary, NC). The distribution of 253 

variables was tested with a Kolmogorov-Smirnov test. Hen and egg data were normally 254 

distributed. Groups were compared using a t-test (FCM, mass of egg components, yolk-255 

hormones, yolk-PUFA concentrations) or repeated measures ANOVA (hen body weight, food 256 

intake and laying rate) with the main effect of diet, time, and the interaction between time and 257 

diet. The number of chicks hatched (hatching success) and sex ratio between diet groups were 258 

compared with a Chi-square test. The weight of chicks at hatching and their growth rate 259 

during the first week were analyzed via ANOVA. Offspring behavioural data did not follow a 260 

normal distribution even after transformation, so the non-parametric Mann-Whitney U-test 261 

was used to compare groups. Data are presented as mean ± SEM, with significance accepted 262 

at p < 0.05. 263 

 264 

Results 265 

Dietary effects on laying performance of hens  266 
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After five weeks of consuming their respective diets, n-3 enriched hens had significantly 267 

higher FCM levels than hens of the C diet (398 ± 57 ng/g vs. 99 ± 19 ng/g, t = 2.98, p = 268 

0.006).  269 

No effect of diet or interaction between diet and time were observed for body weight, 24h-270 

food intake, or laying rate (see Table 1). For food intake, a time effect was observed (time: 271 

F4,33 = 15.3, p < 0.01). Hen food intake was lower during the first week compared to the 272 

second week for both diets (Table 1).  273 

    >>> INSERT Table 1 <<< 274 

Dietary effects on egg components, yolk hormones and yolk lipids 275 

The eggs of n-3 hens were significantly lighter than those of C hens (54.9 ± 1.25 g vs. 58.0 ± 276 

0.86 g, t = -2.11, p = 0.04). N-3 eggs had a significantly lower yolk mass/egg mass ratio (0.28 277 

± 0.04 vs. 0.29 ± 0.06, t = 2.47, p = 0.02), and higher albumin mass/egg mass ratio (0.64 ± 278 

0.05 vs. 0.62 ± 0.04, t = -2.07, p = 0.05) than C eggs. Eggshell mass/egg mass ratio did not 279 

differ between diets (0.09 ± 0.02 for both diets, t = - 0.41, p = 0.68).  280 

Compared to C hens, the egg yolk of n-3 hens contained a significantly higher concentration 281 

of immunoreactive progesterone (t = 2.96, p = 0.006), oestrogens (t = 5.97, p < 0.0001) and 282 

androstenedione (t = 2.01, p = 0.05) with a trend in the same direction for testosterone (t = 283 

1.68, p = 0.10; Figure 1). If instead of yolk hormone concentrations (ng/g) we analyse 284 

hormone contents (ng/yolk), the results remained the same except for androstenedione (n-3 285 

eggs vs. n-6 eggs: progesterone: 17897.2 ± 2241.07 ng vs. 12042.04 ± 1635.8 ng, t = 2.1, p = 286 

0.04; oestrogens: 162.5 ± 4.9 ng vs. 134.05 ± 5.4 ng, t = 3.85, p = 0.0005; androstenedione: 287 

785.6 ± 75.06 ng vs. 641.7 ± 94.16 ng, t = 1.2, p = 0.23; testosterone: 42.7 ± 4.7 ng vs. 30.4 ± 288 

5.2 ng, t = 1.77, p = 0.08). 289 
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The percentage of total lipid content in the yolk did not differ between diets (34.7 ± 0.6 % vs. 290 

33.1 ± 1.0%, t = 1.36, p = 0.18). Within the lipid fraction of the yolk, the percentage of 291 

saturated fatty acids did not significantly differ between diets (33.6 ± 0.47% vs. 33.7 ± 0.37 292 

%, t = - 0.28, p = 0.78). For n-3 hens, the percentage of mono-unsaturated fatty acids was 293 

higher, while the percentage of PUFAs was lower in comparison to eggs from the C hens 294 

(mono: 49.5 ± 0.62% vs. 44.0 ± 0.65 %, t = - 6.2, p < 0.001, PUFA: 16.7 ± 0.36 % vs. 22.5 ± 295 

0.60 %, t = 8.22, p < 0.001). The yolk of eggs from n-3 hens had significantly higher 296 

percentages of n-3 PUFAs with a significantly lower n-6/n-3 ratio, while the yolk of eggs 297 

from C hens had significantly higher percentages of n-6 PUFAs and a significantly higher n-298 

6/n-3 ratio (Table 2).  299 

>>> INSERT Figure 1 <<< 300 

>>> INSERT Table 2 <<< 301 

Dietary effects on hatching success and weight of chicks  302 

Hatching success did not differ between diets (98 hatched out of 111 fertile eggs for the n-3 303 

group vs. 125 out of 138 fertile eggs for the n-6 group; chi
2
-test,  p = 0.67), neither did sex-304 

ratio (25 females and 23 males in the n-3 group and 28 females and 22 males in the C group, 305 

chi
2
-test, p = 0.69). N-3 chicks were lighter at hatching than C chicks (39.4 ± 0.4 g vs. 40.9 ± 306 

0.5 g, t = -2.29, p = 0.02) but did not differ significantly in growth rate during the first week 307 

of life (8.60 ± 0.16 g/week vs. 9.72 ± 1.86 g/week, F3, 93 = 0.66, p = 0.57).  308 

Dietary effects on neophobic behaviour in the chicks 309 

Latencies to eat and the time spent eating did not differ significantly between n-3 and C 310 

chicks in the habituation/familiarization test and both food neophobia tests (Table 3). In the 311 
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novel object test, n-3 chicks demonstrated a longer latency to eat and spent less time eating 312 

from the novel object compared to C chicks (Table 3).  313 

>>> INSERT Table 3 <<< 314 

Discussion 315 

The present experiment was designed to test the hypothesis that PUFA in the maternal diet 316 

could engender differential allocation of yolk hormones of maternal origin. We found higher 317 

corticosterone metabolites, reflecting heightened HPA-activity, in the faecal droppings of 318 

hens fed the diet enriched in n-3 compared to control animals. As expected, yolk n-6:n-3 ratio 319 

strongly reflected that of the maternal diet. There were significantly higher concentrations of 320 

yolk progesterone, androstenedione and oestrogens, as well as a trend for higher yolk 321 

testosterone in eggs of hens fed the n-3 enriched diet compared to controls. Chicks of hens fed 322 

the n-3 enriched diet showed a lower body weight at hatching and higher neophobia when 323 

exposed to a novel object compared to chicks of hens fed the control diet. 324 

After six weeks of consuming a diet enriched in n-3 PUFAs, hens had elevated 325 

concentrations of corticosterone metabolites in the faeces and elevated levels of yolk 326 

hormones compared to hens fed a control diet. Additionally, hens of the n-3 diet laid lighter 327 

eggs, with lower yolk/egg mass ratios than controls. Diets were equal in protein and energy 328 

content, and were selected to meet the dietary requirements of laying hens (Van Elswyk, 329 

1997). Food intake and body weight followed a similar pattern for n-3 and control hens. Thus, 330 

differences between groups cannot be explained by differences in the energy content of the 331 

diet or differences in food intake. Rather, they demonstrate an influence of n-6/n3 PUFA ratio 332 

in the diet on the metabolism and physiology of hens.  333 
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These results suggest a potential action for the n-6:n-3 PUFA ratio of diet on the HPA-334 

axis of hens as reported in other species (Fisher et al., 2014 ; Larrieu et al., 2014; Lafourcade, 335 

et al., 2011). First, hens of the n-3 diet had FCM levels more than 3-times greater than 336 

controls. FCM levels have been shown to reflect HPA activity (Rettenbacher & Palme, 2009). 337 

Second, in chickens with elevated corticosterone levels due to a corticosterone implant, egg 338 

mass, yolk mass and hatchling’s weight reduction have also been recorded (Rie Henriksen, 339 

Groothuis, & Rettenbacher, 2011; R. Henriksen, Rettenbacher, & Groothuis, 2011) which is 340 

comparable to our chicks from hens treated with n-3. Moreover, in birds, environmental stress 341 

can induce HPA axis activation, causing a decrease in egg and offspring weight (Hayward & 342 

Wingfield, 2004; R. Henriksen, et al., 2011; Hsu, Dijkstra, Darras, de Vries, & Groothuis, 343 

2016). Third, it is known that maternal environmental stress induces similar increases in hens’ 344 

yolk hormones as we found in the hens fed the n-3 diet (Bertin, et al., 2013; Guibert et al., 345 

2010). In mammals, the effects of n-3 PUFAs on HPA axis functioning are generally 346 

beneficial, but not always. As in mice, a deficiency of n-3 PUFA can alter corticosterone 347 

secretion via modifications in glucocorticoid receptors (GRs) of the prefrontal cortex, but not 348 

in the HPA-axis (Larrieu, Hilal, De Smedt-Peyrusse, Sans, & Laye, 2016). In the chicken, 349 

GRs are also found in the pituitary (Bossis, Nishimura, Muchow, & Porter, 2004) and frontal 350 

brain areas (Bordone, Schrott, & Sparber, 1997). Glucocorticoid receptors can be modified by 351 

stressful conditions in a variety of avian species (Japanese quail (Zimmer & Spencer, 2014), 352 

starlings (Dickens, Romero, Cyr, Dunn, & Meddle, 2009), house sparrow (Lattin & Romero, 353 

2014)) and play a role in the lipid metabolism of the white-crowned sparrow (Landys, 354 

Piersma, Ramenofsky, & Wingfield, 2004) (Landys, Ramenofsky, Guglielmo, & Wingfield, 355 

2004). Our results on HPA-functioning are a likely consequence of the surplus of n-3 in the 356 

experimental diet. This may have resulted in a lack of arachidonic acid (AA), which is 357 

essential for metabolic and hormonal functioning (Huang, Leibovitz, Lee, & Millar, 1990). 358 
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Based on our results, we hypothesize that the ratio of n-6:n-3 PUFAs in the diet influence 359 

HPA activity in birds, but the mechanisms require further investigation. It is important to 360 

notice that domestic chickens have been raised for food thousands of years ago and were 361 

mainly fed with wheat seeds. As wheat seeds are poor in n-3 and rich in n-6 fatty acids, these 362 

animals may have developed specific adaptations and, as a consequence, may cope better with 363 

high n-6:n-3 ratios than with low n-6:n3 ratios in the diet.  364 

Egg mass and yolk proportion was reduced in n-3 hens. These results are in 365 

accordance with those obtained by administering diets enriched with 2%, 3% or 4% fish oil 366 

(Gonzalez-Esquerra & Leeson, 2000; Huang, et al., 1990) in which hens’ egg mass was found 367 

to decrease linearly with increasing percentages of fish oil (high in n-3). Diets enriched with 368 

fish oil can increase albumin production and decrease yolk production compared to control 369 

diets (Huang, et al., 1990). The n-3 diet we applied contained little linoleic acid (a molecular 370 

precursor essential to the production of n-6 PUFA AA). Moreover, AA production appeared 371 

to be strongly inhibited by the dominance of docohexaenoic acid (DHA) in the n-3 diet as 372 

demonstrated by the amount measured in the yolk. This could severely hamper AA 373 

metabolism, resulting in metabolic changes in the hens receiving the n-3 diet, and thereby 374 

altering egg composition (Huang, et al., 1990). PUFAs in the maternal diet can thus have an 375 

important effect on the amount and constitution of the resources available for embryo 376 

development.  377 

Moreover, our data showed that fish oil in the diet led to higher concentrations of yolk 378 

progesterone, androstenedione and oestradiol and a trend for higher concentrations of yolk 379 

testosterone. These results add support to the hypothesis that the nutritional state of female 380 

birds causes variation in yolk hormone levels. However, at the present stage, the interpretation 381 

of the mechanisms that mediate variations in yolk hormone levels is bound to be speculative. 382 

As mentioned previously, it could be that increased levels of yolk hormones are the result of 383 
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HPA axis activation in the mother. In accordance with this hypothesis; recent studies showed 384 

that maternal plasma corticosterone levels influence reproductive hormone concentrations in 385 

the yolk (Henriksen, Groothuis, & Rettenbacher, 2011). The underlying physiological 386 

mechanisms remain poorly understood and are barely addressed in the literature. As argued 387 

before, it might be possible that corticosterone levels affect the steroidogenic activity of 388 

follicles. Another hypothesis could be related to the direct influence of PUFAs and their 389 

oxygenated derivatives on steroid synthesis. Several factors of the steroidogenic machinery 390 

are directly regulated by AA and AA-derived eicosanoids (Wathes, Abayasekara, & Aitken, 391 

2007). The n-3/n-6 PUFA ratio in the diet largely determines the balance between the various 392 

types of oxygenated metabolites deriving from AA or from EPA and DHA (Yates, Calder, & 393 

Rainger, 2014). Therefore, the decreased AA/DHA+EPA ratio and the resulting eicosanoid 394 

pattern in n-3 supplemented hens may have directly contributed to the observed differences in 395 

yolk hormone levels. Consistently, dietary fat (such as those derived from fish oil) in the 396 

maternal diet is known to influence egg weight and plasma oestrogen levels (Whitehead, 397 

1995), a role for PUFAs in the hormonal metabolism of birds seems, therefore, a plausible 398 

explanation.  399 

We found that n-3 chicks were more inhibited (longer latency to eat and less time 400 

spent eating) than C chicks in the novel object test. This result indicates a higher level of 401 

object neophobia in n-3 chicks than C chicks. On the other hand, n-3 and C chicks did not 402 

differ in food neophobia test. Since the n-3 maternal diet modified the embryonic 403 

environment in several ways (yolk mass, yolk hormones and fatty acids), it is difficult to 404 

determine which mechanisms and which hormones affected object neophobia. Little is 405 

currently known regarding the developmental influence of yolk progesterone and androgens 406 

on neophobia. The influence of progesterone is barely investigated. In Northern bobwhite 407 

quail (Colinus virginianus), a recent study showed that elevated yolk progesterone levels 408 

Page 17 of 35

John Wiley & Sons

Developmental Psychobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18 

 

elevate emotional reactivity in neonates (Herrington, Vallin, & Lickliter, 2015). Interestingly, 409 

an artificial increase in yolk hormone levels has been found to alter object neophobia but not 410 

food neophobia in domestic chicks (Bertin, et al., 2015), but the direction of effects was not 411 

the same as in the present study. Lower object neophobia was found in chicks exposed in ovo 412 

to increased yolk progesterone, androstenedione and estradiol levels compared to controls. 413 

Discrepancies in the direction of yolk hormonal effects are also seen in latencies to approach 414 

novel objects depending on species and the injected dose (Vergauwen, Eens, & Muller, 2012). 415 

Nevertheless, all of these experiments suggest that variation in yolk hormone levels can alter 416 

specific aspects of neophobia.  417 

The data concerning the effects of environmental conditions during ontogeny on the 418 

development of object or food neophobia are inconclusive. In accordance with our findings, 419 

zebra finch chicks (Taeniopygia guttata) from eggs with artificially elevated yolk testosterone 420 

show no difference in latency to eat novel foods than control animals (Tobler & Sandell, 421 

2007). Similarly, in canaries (Serinus canaria), increased levels of yolk testosterone was 422 

found to not be the primary source of variation in the expression of food neophobia ( 423 

Vergauwen, et al., 2012). Our data highlight the importance of studying the quality of the 424 

maternal diet in order to understand more fully the ontogeny of emotional and behavioural 425 

traits involved in adapting to new resources. This could be of particular importance when food 426 

resources become scarcer under the projected future of climate change. In captive bird 427 

populations (for production or conservation purposes), no specific recommendation is made 428 

regarding PUFA quantity and quality in the diet. This study highlights the importance of 429 

carefully considering food quality in captive bird populations as they might engender 430 

transgenerational effects on development and behaviour. In our study, chicks were all feeding 431 

around two/three days after hatching, therefore we cannot totally exclude the possibility that 432 

the behaviour of the chicks was influenced by their respective diet. Two points are of 433 
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importance when considering this hypothesis. First, even when chicks start feeding, the 434 

residual yolk continues to be taken up and thereby provides a source of fatty acids of maternal 435 

origin (Romanoff, 1960). Second, in the domestic chicken and king penguin (Aptenodytes 436 

patagonicus) it was consistently found that the proportion of fatty acids in the brain 437 

phospholipids was particularly refractory to the effects of the chicks’ diet compared to other 438 

tissues (Thil, Speake, & Groscolas, 2003; Anderson, et al., 1992). More specifically, high 439 

levels of brain n-3 produced by exposure to a maternal diet rich in fish oil are not reversible 440 

on a short time period (Anderson, et al., 1992). Although caution must be exercised, we argue 441 

that maternal effects more likely contributed to the differences observed in hatchlings’ mass 442 

and behaviour than the post-natal diet.  443 

 The present data show maternal diet composition as an overlooked pathway by which 444 

the environment could engender large variation in yolk hormones levels. This may play a role 445 

in the development of offspring behaviour and phenotype. In farm birds, as unresolved 446 

welfare issues are mediated by unknown cues, this study lends support to perspectives in the 447 

field of maternal nutrition. Further investigations to the mechanisms are required but this 448 

study suggests common principles regarding the regulative action of n-3 and n-6 PUFA on 449 

fear-related behavior across vertebrate taxa. Using precocial birds could yield new insights 450 

into the mechanism by which the prenatal resources in PUFA influences behavioral 451 

development of individuals in vertebrates 452 
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 707 

 708 

 709 

Table 1: Mean (± SE) body mass, food intake and laying rate of adult n-3 hens (N = 18) and control hens (N = 18) during dietary treatment.  710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

Parameters Hens Week 1 Week 2 Week 3 Week 4 Week 5

n-3 enriched 1958.7 ± 33.9 1854.5 ± 40.6 1863.8 ± 37.3 1835.3 ± 35.3 1856.6 ± 36.5

controls 1966.6 ± 67.2 1880.9 ± 60.9 1974.1 ± 62.5 1865.4 ± 60.8 1873.5 ± 62.3

n-3 enriched 154.7 ± 23.4 144.7 ± 7.4 173.7 ± 16.7 194.6 ± 22.8 224.4 ± 28.1

controls 133.7 ± 11.8 169.6 ± 21.1 161.8 ± 20.5 219.0 ± 24.5 265.4 ± 24.3

n-3 enriched 0.78 ± 0.07 0.89 ± 0.03 0.91 ± 0.02 0.78 ± 0.04 0.69 ± 0.06

controls 0.71 ± 0.07 0.82 ± 0.06 0.77 ± 0.07 0.69 ± 0.07 0.65 ± 0.06

Laying rate (number 

per day)

24h feed intake (g)

Body mass (g)
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Table 2: Mean (± SE) percentages of n-3 and n-6 poly-unsaturated fatty acids in the yolk of eggs of hens fed a diet enriched in n-3 (N = 18) or a 718 

control diet (N = 18). 719 

 720 

 721 

 722 

Means between columns with a different superscript (a, b) differ (p  < 0.05) 723 

 724 

 725 

 726 

 727 

Poly Unsaturated fatty acids

n-3 enriched Control

n-6 fatty acids

Linoleic acid (LA), C18:2 n-6 13.5 % ± 0.23
a

18.9 % ± 0.47
b

Arachidonic acid (AA), C20:4 n-6 0.64 % ± 0.05
a

1.81 % ± 0.18
b

Docosatetraenoic acid (DTA), C22:4 n-6 0.03 % ± 0.005
a

0.22 % ± 0.02
b 

n-3 fatty acids

α-linolenic acid (ALA), C18:3 n-3 0.47 % ± 0.02
a

0.71 % ± 0.03
b 

Eicosapentaenoic acid (EPA), C20:5 n-3 0.22 % ± 0.02
a

0.00 % ± 0.0
b 

Docosapentaenoic acid (DPA), C22:5 n-3 0.15 % ± 0.01
a

0.07 % ± 0.02
b 

Docosahexaenoic acid (DHA), C22:6 n-3 1.72 % ± 0.17
a

0.74 % ± 0.07
b 

Ratio n-6/n-3 6.15 % ± 0.53
a

13.9 % ± 0.42
b 

Diets
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Table 3: Mean (± SE) Latency to eat and time spent eating during neophobia tests of n-3 chicks (N = 24 pairs) and control chicks (N = 25 pairs) 728 

and Mann-Whitney U-test outcome.  729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 Neophobia Tests Parameters Measured n-3 chicks control chicks Z p- values

latency to eat (s) 40.5 ± 3.3 48.3 ± 6.5 -0.66 0.51

time spent eating (s) 48.9 ± 3.8 52.1 ± 5.2 -1.07 0.28

Novel food latency to eat (s) 99. 1 ± 13.2 85.4 ± 10.6 -0.30 0.76

Test 1 time spent eating (s) 18.4 ± 3.7 22.8 ± 3.8 -0.90 0.36

Novel food latency to eat (s) 84.3 ± 13.9 107.8 ± 10.2 -0.96 0.33

Test 2 time spent eating (s) 32.0 ± 9.1 24.2 ± 5.9 -0.15 0.88

latency to eat (s) 174.1 ± 5.9 155.2 ± 8.5 -2.11 0.03

time spent eating (s) 2.1 ± 2.0 14.11 ± 5.1 -2.27 0.02

Habituation

Novel Object
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FIGURE 1 737 
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Figure caption 741 

FIGURE 1: Mean (± SE) yolk progesterone (P4), androstenedione (A4), estrogens (E) and 742 

testosterone (T) concentrations (ng/g of yolk) in the eggs from n-3 enriched hens (N = 18) and 743 

control hens (N = 18). ** p < 0.01; * p ≤ 0.05; # 0.1 ≤ p ≥ 0.05 744 
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