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Key points 

 SUVMax is a poor predictive parameter when compared with volumetric parameters 

(MTV, TLG) 

 MTV and/or TLG pre-treatment are well correlated with clinical outcome 

 MTV had a better predictive value than GTV and/or AJCC staging 

 

 
Abstract 
 

18 F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography 
(PET/CT) allows to quantify the metabolic activity of a tumor (glycolysis) and has become a 
reference tool in oncology for the staging, restaging, radiotherapy planning and monitoring 
response in many cancers. Quantitative analyses have been introduced in order to overcome 
some of the limits of the visual methods, allowing an easier and more objective comparison 
of the inter- and intra-patients variations. The aims of this review were to report available 
evidences on the clinical value of quantitative PET/CT parameters in HNC.  

Forty-five studies, for a total of 2928 patients, were analyzed. Most of the data available dealt 
with the intensity of the metabolism, calculated from the Standard Uptake Value (SUV). 
Metabolic Tumor Volume (MTV) was well correlated with overall survival and disease free 
survival, with a higher predictive value than the maximum SUV. Spatial distribution of 
metabolism and textural analyses seems promising.  
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1 Introduction 
 

Head and neck cancers are among the most common in the world (5th leading cancer by 

incidence (Parkin et al., 2005)). The American Joint Committee on Cancer (AJCC) staging is 

generally used to estimate the prognosis and guide therapy (Edge and Compton, 2010). Radio-

chemotherapy is a standard treatment of unresectable and/or locally advanced Head and 

Neck Cancers (Pignon et al., 2000; St Guily et al., 2010). Despite this treatment, the prognosis 

remains worst and loco-regional recurrence may occur in up to 40% patients, mostly within 

the first 2-years after treatment (Chajon et al., 2013).18F-fluorodeoxyglucose (18F-FDG) 

positron emission tomography/computed tomography (PET/CT) allows to quantify the 

metabolic activity of a tumor (glycolysis) and has become a reference tool in oncology for the 

staging, radiotherapy planning and monitoring tumor response in many cancers (Cacicedo et 

al., 2016; Fletcher et al., 2008). For primary tumor diagnosis, 18F-FDG-PET imaging showed a 

significant better sensitivity (93% vs 65%) and specificity (70% vs 56%) over CT (Gambhir et al., 

2001). PET imaging allows a more accurate nodal staging of locally advanced head and neck 

cancer (Kyzas et al., 2008; Yoo et al., 2013), and could result in changing the therapeutic 

management in nearly 15% of patients (Lonneux et al., 2010). For patients with cervical node 

metastases of unknown primary, PET/CT detected a primary tumor in nearly 30% of patients 

(Rudmik et al., 2011; Wong et al., 2012; Zhu and Wang, 2013).  

Thanks to these potential advantages, PET/CT is recommended for the initial staging and for 

the treatment decision algorithm of advanced head and neck cancer (Yoo et al., 2013). 

However, in almost all of these studies, only a visual analysis of PET/CT by physician, based on 

contrast in uptake between normal tissues and potential tumor (i.e. operator dependent), was 

performed. Visual analysis was sufficient for diagnosis, staging and detection of recurrence, 

but with the goal of predicting patient’ outcome, quantification is necessary. More recently, 

quantitative analyses have been introduced in order to overcome some of the limits of the 



visual methods (Table 1). Indeed, quantitative analysis is less operator dependent than visual 

analysis and can be fully automated, allowing an easier and more objective comparison of the 

inter- and intra-patient variations. The main goal of the quantification is to obtain parameters 

reflecting the tumor activity and/or having a prognostic value.   

The aims of this review were to report available evidences on the value of quantitative 

parameters from PET/CT performed at the diagnosis, during treatment and during follow to 

predict overall- and disease free survival in head and neck cancer and to discuss theirs limits.  

2 Materials and methods 
 

We performed a systematic electronic search of articles published in PubMed/MEDLINE from 

January 2000 to march 2016. Our search was restricted to articles reporting data obtained on 

humans and to English-written articles dealing with locally advanced head and neck cancer 

and PET/CT. All the articles which did not report data on the prognostic value of PET/CT-

related parameters were excluded as well as all the articles which reported data obtained only 

from visual analyses. Hence this review was focused on the prognostic value of parameters 

obtained from quantitative or semi-quantitative analyses. We included all the studies 

reporting data on PET/CT performed before, during or after exclusive RT +/- CT, excluding 

those reporting data from surgical series and/or post-operative radio-chemotherapy. The 

predictive value of PET at diagnosis, during treatment and during follow up was analyzed 

separately.  

3 Results 
 

One hundred and twenty-five studies were identified according to the criteria described 

above. Seventy-seven studies were excluded since they did not match the inclusion criteria, 

mainly because they dealt with operated patients (22/77 studies). One retrospective study 



presenting data on a small population (< 20 patients) was also excluded. Finally, 45 studies 

were included in the analysis, for a total of 2928 patients. Table 2 summarizes the main 

characteristics of the studies included in this analysis, while table 3 summarizes the principal 

results of these studies.   

 

3.1 Predictive value of 18FDG PET before treatment with RT-CT 
 

Forty-two studies investigated the predictive value of quantitative PET parameters at 

diagnosis (Table 4). The large majority of these studies analyzed parameters based on 

Standard Uptake Value (SUV), while only 3 studies performed texture or shape analysis. 

 

3.1.1 SUVmax and Metabolic Tumor Volume 
 

Maximum standard uptake value (SUVMax) corresponding to the maximal pixel value in the 

tumor. Thanks to its ease of use, it was historically the first parameter analyzed. SUVmax was 

correlated with overall- or disease free survival in 11 studies (Allal et al., 2002; Brun et al., 

2002; Castaldi et al., 2012; Chen et al., 2014; Farrag et al., 2010; Higgins et al., 2012; Kitagawa 

et al., 2003; Machtay et al., 2009; Matoba et al., 2015; Rasmussen et al., 2015; Sanghera et 

al., 2005). SUVmax allows to identify patients with a high risk of events (death or recurrence). 

For example, (Rasmussen et al., 2015) analyzed 287 patients with locally advanced head and 

neck cancers treated with radiotherapy +/- chemotherapy. SUVmax showed a higher 

predictive value for recurrence than T stage, N stage and age. The authors developed a 

prognostic model of freedom from failure at 2 years, in which including SUVmax significantly 

increased the predictive value, changing the estimated risk by more than 10% for 23% of the 

patients. In (Allal et al., 2002), 63 patients treated with RT +/- CT were prospectively included. 

Patients presenting a SUVMax < 5.5 g/ml had a 3-year DFS of 79% compared to 42% for those 



with SUVmax > 5.5 g/ml (p=0.005). However, the range of cutoff values adopted in published 

studies to define patients at high or low risk of events markedly varied between 3.7 and 9 g/ml 

(median: 5.8). Noteworthy, also 2 negative studies are available in the literature (Ashamalla 

et al., 2014; Greven et al., 2001). In (Greven et al., 2001), patients with local recurrence had a 

mean pretreatment SUVMax of 7.7 g/ml versus 8.2 g/ml for patients without local recurrence. 

In (Ashamalla et al., 2014), SUVMax was correlated with OS in univariate analysis, but not in 

multivariate analysis. Only 28 patients were included in this study, which may explain this 

negative result.  

The Metabolic Tumor Volume (MTV), defined as the volume of FDG activity in a tumor 

assessed by automated volume of interest delineation, and Total Lesion Glycolysis (TLG), 

defined as MTV x SUVmean, may be more representative of the tumor heterogeneity. The 

predictive value of MTV was evaluated in 26 studies, with 21 of them also evaluating SUVMax 

(for a total of 1464 patients). All these studies showed that MTV/TLG were predictive for 

clinical outcome, with a higher predictive value than SUVmax. In (Chang et al., 2012), 108 

patients with nasopharyngeal cancer treated with RT-CT were prospectively included to assess 

the predictive value of SUVMax, MTV and TLG for DFS and OS. Only Epstein–Barr virus DNA 

load and TLG of the tumor were significantly correlated with DFS and OS. In particular, patients 

presenting a TLG value < 65 g showed a 3-year DFS of 79.9% versus 37.4% for other patients 

(p<0.001), with a hazard ratio of 3.54 (p=0.006) for DFS and of 4.91 (p=0.045) for OS.  

In two studies, MTV was found to have a higher predictive value than TNM staging (Kao et al., 

2012; Romesser et al., 2014). (Romesser et al., 2014) reported data of 100 oropharyngeal 

cancer, treated with RT-CT (median follow-up:  49 months). MTV at a cutoff of 9.7 mL was 

correlated with DFS (80.3% vs 56.7%, p=0.015) and OS (84.1% vs 57.8% p=0.008). In 

multivariate analysis, only MTV was significant while GTV, T stage and N stage did not. 



Noteworthy, the reproducibility of the MTV and/or TLG may be limited by the initial definition 

of these parameters, which is based on a threshold of SUV, absolute (all pixels with SUV value 

> x) or relative (all pixels with SUV value > xx % of SUVMax). The choice of the threshold for 

either method may affect the absolute value of the MTV. Six studies compared the predictive 

value of MTV and/or TLG computed with different thresholds (Cheng et al., 2015; Kao et al., 

2012; Lin et al., 2015; Schinagl et al., 2011; Yabuki et al., 2015). In the study by (Schinagl et al., 

2011), 4 thresholds (2.5, 40%, 50% and adaptive threshold based on liver uptake) were 

compared for 77 patients treated with RT +/- CT. MTV 40% was the strongest predictor of DFS 

and OS. However, even if the predictive value of the other thresholds was slightly lower, they 

were also correlated with OS and DFS. Same results were reported by the others studies. 

Based on these results, the use of different thresholds within a reasonable range (between 2 

and 3 for an absolute threshold; and between 40 – 50 % for a relative threshold) seems to 

have no major impact on the predictive value of MTV. 

 

3.1.2 Texture and shape analysis  

 

Two different approaches have been used to evaluate tumor heterogeneity, one 

morphological at macroscopic level (shape of the metabolic area) and the other at pixel level 

(texture analysis). (Apostolova et al., 2014) used a new parameter to characterize the 

deviation of the tumor’s shape from sphere symmetry (asphericity). The initial assumption of 

the authors was that “aggressive” tumors are expected to show more irregular shapes, due to 

necrosis, angiogenesis and extravascular extracellular matrix. In a first study, including 

patients treated with surgery, radiotherapy or chemotherapy alone, asphericity was 

correlated with OS and PFS. Based on these results, the authors tried to confirm the predictive 

value of asphericity in a following study (Hofheinz et al., 2015). Thirty-three patients, with 



LAHNC treated with RT-CT were included. Using the same cutoff of 20.4 found in (Apostolova 

et al., 2014), asphericity was correlated with PFS (HR 2.96, p= 0.015) and OS (HR 5.9, p=0.001). 

Two studies evaluated the prognostic value of texture analysis in LAHNC. In the first study 

(Cheng et al., 2013), including 70 oropharyngeal cancers, TLG and texture uniformity were 

correlated with OS (HR 5.85 and 0.46 respectively). A 3-point risk scale for DFS and OS was 

proposed, according to the presence of a uniformity ≤ 0.138 and a TLG > 122.9 g. One point 

was given for each factor. Clinical outcome (DFS or OS) was significantly different in the 3 risk 

groups. These findings were confirmed in an independent series of 88 oropharyngeal cancer 

patients (Cheng et al., 2015). 

 

3.2 Predictive value of quantitative PET parameters during chemoradiotherapy 
 

Early changes in tumor metabolism during radiochemotherapy may be assessed by PET/CT 

and may be used to tailor treatment. The aims of this adaptive strategy to the treatment’ 

response are to decrease the adverse effect and/or to intensify the treatment, with the final 

goal to improve the outcome. 

Seven studies (374 patients) evaluated the predictive value of PET performed during RT +/- CT 

(Brun et al., 2002; Castaldi et al., 2012; Chen et al., 2014; Farrag et al., 2010; Hentschel et al., 

2011; Min et al., 2016; Min et al., 2015). All but one of them found a correlation between PET 

parameters RT +/- CT and clinical outcome. In a study by Min et al., 100 patients received a 

PET before and 3 weeks after the beginning of treatment (Min et al., 2016). The authors 

showed that pre-treatment SUVMax and mid-treatment TLG were correlated with 2-year DFS 

in multivariate analysis (83% vs 71.4%, p=0.0019 and 88.4% vs 77.2%, p=0.012, respectively).  

Moreover, patients presenting pretreatment TLG < 91 g and a mid-treatment TLG < 9.4 g 

presented a better 2-year DFS (88.1% vs 61.1%, p=0.001) and 2-year OS (90% vs 67%, p=0.012). 



Other parameter,such as SUVMax and MTV were also correlated to DFS and OS, but TLG was 

the most predictive one. In (Castaldi et al., 2012), which included 24 patients, no predictive 

value of PET during treatment was shown. However, the decrease of SUVmax between PET at 

diagnosis and during treatment was highly correlated with 2-year DFS (100% in case of 

complete response vs 74% in case of partial response, defined as a reduction of 25% in tumor 

18FDG SUV (Young et al., 1999)). 

The optimal time to perform PET during treatment is still unclear. Most of the studies 

performed the PET before the third week to allow time for adapting therapy. A prospective 

multicentric study (TEMPORAL) (NCT02469922) is undergoing to assess the predictive value 

of PET at the 2nd and 4th week of chemoradiotherapy. One hundred twenty-three patients 

are expected to be included.  

 

3.3 Predictive value of 18FDG PET after treatment  
 

After treatment with radiotherapy, PET/CT may be used to identify good responders and avoid 

useless neck dissection. Twelve studies performed a quantitative or semi quantitative analysis 

from PET after treatment. All these studies evaluated the SUVMax. A high SUVMax in post 

treatment was correlated with a poor outcome in 6 studies (Horiuchi et al., 2008; Hoshikawa 

et al., 2011; Ito et al., 2014; Kim et al., 2016; Kitagawa et al., 2003; Moeller et al., 2010). In 

(Moeller et al., 2010), 98 patients underwent a PET before and 8 weeks after RT +/- CT.  The 

authors found that a post-treatment SUVMax < 6 g/ml and the variation of SUVMax (in %) 

between the pre- and post-irradiation PET/CT were predictive for DFS. In (Kim et al., 2016), a 

PET was performed 3 months after RT-CT. Seventy-eight patients were analyzed. Three-year 

OS was 87.7% in patients with SUVMax <4.4 g/ml versus 56.9% (p=0.002). 



A comparison between visual analysis and quantitative parameters was performed by 

(Hoshikawa et al., 2009). Thirty-five patients underwent PET before and 5 weeks after RT-CT. 

Patients with a post-treatment SUVMax value > 3 g/ml and decreasing less than 60% 

compared to the pre-treatment situation presented a higher risk of recurrence (odds ratio = 

61.5, p<0.0001). The overall accuracy for quantitative analysis was 89.9% vs 60.9% for the 

visual analysis.  

 

4 Discussion and conclusion 
 

This overview of the available literature shows that MTV and TLG are well correlated with 

clinical outcome (Local control, Disease Free Survival and overall survical). Most of the 

available data deal with the intensity of the metabolism, calculated from the SUV, a 

quantitative parameter used to normalize the uptake of 18F-FDG. In practice, SUV is defined 

as a ratio of tissue radioactivity concentration and the injected dose adjusted by body weight 

(SUVbw with BW for body weight). Intensity of the metabolism can be analyzed using 

histogram-based method, which represents the voxel value frequency distribution. This 

method includes in particular the four histogram moments, i.e., the mean (corresponding to 

SUVMean), the maximum (corresponding to SUVMax), the median, the skewness (asymmetry 

of the histogram) and kurtosis (degree of peakedness of a distribution).  However, it did not 

take into account the spatial relationship between voxel values (Fig. 1).  

The maximum SUV (SUVMax) corresponds to the maximal pixel value in the tumor. Thanks to 

its ease of use, it is one of the most used parameters in the clinical practice. However, this 

value is highly dependent from noise, duration and parameters of acquisition, and so is 

considered to be poorly reproducible (Boellaard et al., 2004; Nahmias and Wahl, 2008; 

Nakamoto et al., 2002). This point may explain the wide range of cut-off value for SUVmax 



reported in the available studies (from 3.7 to 9 g/ml), limiting the generalization of the use of 

SUVmax for the whole population. Peak SUV (SUVPeak), defined as the average SUV within a 

small region of interest (1.2 cm of diameter) around the SUVMax, is a more robust alternative 

to SUVMax. However, SUVPeak may not be representative of nonhomogeneous overall tumor 

uptake, and the ideal size of the ROI is still unclear (Lee et al., 2007).  

Others volumetric parameters like the MTV, the mean SUV within the tumor volume or the 

TLG are used to represent the heterogeneity of the tumor uptake. The predictive value for 

clinical outcome of these parameters seems to be higher than SUVMax. However, uptake in PET 

may be due to inflammatory or infectious reaction. Furthermore, the physiological uptake 

surrounding organs can also be a source of loss of specificity in the analysis of the signal. A 

major difficulty in the analysis of PET is to differentiate the tumor signal from the non-tumor 

signal. PET imaging suffers from a low contrast and spatial resolution, with a high noise 

background and partial effect volume. Tumor delineation may change depending on the 

chosen segmentation method. One of the most used automatic method is to use a threshold, 

between 2 and 3 (absolute value) or 40-50% (relative value of SUVmax).  

One important issue concerning the predictive value of MTV is the lack of external validation. 

Most of the studies were monocentric, using the same PET/CT for all patients. Only two 

studies performed a validation on an independent dataset (Hofheinz et al., 2015; Tang et al., 

2012). The first study (La et al., 2009) included 85 patients and showed that an increase of 

MTV of 17 cm3 (from the 25th to 75th percentile) was significantly correlated with an 

increased risk of death (HR 2.1). The authors validated their results on a dataset of 83 patients 

treated in the same institution after the original dataset (Tang et al., 2012). Based on 

(Apostolova et al., 2014), (Hofheinz et al., 2015) used a cutoff of TLG of 58.7 ml. They showed 

a correlation of TLG only with better DFS (HR 3.01, p=0.048) but not with better OS (HR 2.02, 

p=0.22). After adjusting the cutoff at a value of 141 ml, TLG was also correlated with OS (HR 



3.32, p=0.016). Such methodologies and findings highlight the difficulty in identifying a cutoff 

which may be tested on external dataset of patients. The use of international guidelines, like 

the European Association of Nuclear Medecine guidelines for tumor imaging (Boellaard et al., 

2015), by harmonizing quantitative FDG PET/CT imaging procedures in multicentre studies and 

quantitative interpretation criteria, may increases the reproducibility of PET studies.   

The spatial relationships between the voxel values within the tumor may be assessed by 

texture analyses. Texture analyses aim to characterize the internal metabolism morphology 

of the tumors. From a technical point of view, they characterize the transitions between voxel 

values. Several approaches exist and they all rely on a quantification of spatial scales 

organization and directions in images. Most approaches are computing the latter in two 

dimensions on a slice basis. The most widely used method is the Gray Level Co-occurrence 

Matrix and consists in calculating matrices counting the co-occurrences of two voxels values 

separated from a set of fixed distances and along set of fixed directions. Several statistics can 

be computed on these matrices to quantify textural properties (e.g., correlation, contrast, 

energy). Another popular approach is to apply image filters with various scales and directional 

properties to continuously quantify transitions between image voxels. One popular example 

is the isotropic Mexican hat filter (also called Laplacian of Gaussian filter) . A comprehensive 

review of methods for 3-D texture analysis is available in (Depeursinge et al., 2014). This kind 

of analysis seems promising, but its use should still be considered experimental and limited to 

clinical studies. 

 

Unresolved questions and controversies 

1. Reproducibility of PET parameters between different machines and/or centre 

2. Which methods (Manually, relative, absolute or adaptive segmentation) and which 

threshold to compute MTV ? 

3. When should perform PET during radiotherapy ? 

4. Which methods for texture and shape analysis ? 
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Figure 1 : Heterogeneity measures do not characterize the spatial relationships between 

voxels. The two tumors in the upper row have identical SUV histograms, although their visual 

aspect is very dissimilar. 

  



 

Table 1 : Most frequently used quantitative parameters in PET imaging 

Parameters Definition and method to compute 

SUVMax Maximal pixel value in the tumor 

SUV Peak Average SUV within a small, fixed-size region of interest (ROIpeak) of 1.2 cm 
diameter, centered on a high-uptake part of the tumor 

Metabolic Tumor 
Volume (MTV) 

Sum of the volume of voxels with SUV exceeding a certain threshold value in 
a tumor  

SUV Mean Average SUV in the ROI (defined by applying a threshold or by visual 
assessment) 

Total Lesion 
Glycolysis (TLG) 

TLG is obtained by multiplying MTV and the mean SUV of the MTV  

 

  



 

Table 2 : Main criteria of the 45 studies. * = Mean follow up, CR: Complete Response, LCR: 

Loco Regional Response, LR: Local Relapse, DSS: Disease Specific Survival, RFS: Recurrence 

Free Survival, LRFS: Local Relapse Free Survival, DFS: Disease Free Survival, OS: Overall 

Survival, MTV: Metabolic Tumor Volume, TLG: Total Lesion Glycolysis 

Authors Year Subject 
No. 

Study 
Design 

Timin
g of te 
PET-
CT 

Follo
w up 

Localisation Treatment End 
poin

t 

Quantitative PET parameters 

Greven 
[36] 

2001 45 Prospective Pre 
post 

N/A HNC RT  LR SUVMax 

Allal [14] 2002 63 Prospective Pre 36 HNC RT +/- CT DFS 
OS 

SUVMax 

Brun [19] 2002 47 Prospective Pre 
and 
per 

39.6 HNC RT +/- CT CR 
LRC 
OS 

SUVMax 
Metabolic rate FDG  

Kitagawa 
[16] 

2003 20 Prospective Pre, 
post 

52.8 HNC CRT CR SUVMax 

Sanghera 
[20] 

2005 12 Prospective Pre 24 HNC RT OS SUVMax at 1 and 2h, SUVMax Difference 

Horiuchi 
[43] 

2008 31 Retrospective Pre 
and 
post 

N/A HNC CRT LR SUVMax 

Chung [61] 2009 82 Retrospective Pre 34.8*  Pharynx RT +/-CT LR 
DFS 
OS 

SUVMax 
MTV 2.5 

La [34] 2009 85 Retrospective Pre  20.4 * HNC RT +/- CT OS 
DSF 
LRC 

SUVMax 
MTV 50% 

Machtay 
[17] 

2009 60 Retrospective Pre N/A HNC RT +/- CT OS 
DFS 

SUVMax 

Suzuki [62] 2009 45 Retrospective Pre 24* HNC RT OS 
DFS 

SUVMax 

Farrag [15] 2010 43 Prospective Pre 
and 
Per 

12.7 HNC CRT OS 
DFS 
LRR
FS 

SUVMax 

Moeller 
[44] 

2010 98 Prospective Pre 
and 
post 

24 HNC RT +/- CT DFS SUVMax T 
Change in SUVMax T 

Seol [63] 2010 59 Retrospective Pre N/A HNC Neo CT + RT DFS 
OS 

SUVMax 
SUVMean 
MTV 2.5 

Deron [64] 2011 22 Retrospective Pre 20 HNC RT +/- CT DFS 
OS 

SUVMax 
MTV 50% 

Hentschel 
[39] 

2011 37 Prospective Pre 
and 
per 

26 HNC CRT DFS 
OS 
LRC 

SUVMax 
SUVMean 
MTV 50% 

Hoshikawa 
[45] 

2011 35 Prospective Pre 
and 
post 

50 HNC RT +/- CT Rec
urre
nce 

SUVMax 

Murphy 
[49] 

2011 47 Retrospective Post 34 HNC CRT DFS 
OS 

SUVMax 
MTV 2, 2.5, 3, 3.5, 4 

TLG 



Schinagl 
[28] 

2011 77 Prospective Pre 46 HNC CRT DFS 
OS 

SUVMax 
SUVMean 

MTV 40% 50% 
MTV 2.5 
GTV -PET 

Castaldi 
[21] 

2012 24 Prospective Pre 
per 
and 
post 

29.2 HNC CRT RFS 
DSS 

SUVMax 
Change in SUVMax (EORTC criteria) 

Chang [25] 2012 108 Prospective Pre N/A Nasopharyn
x 

CRT OS 
DFS 
LRF

S 

SUVMax 
MTV 2.5 

TLG 

Chu [65] 2012 51 Retrospective Pre 17.5 HNC RT +/- CT OS 
DFS 

SUVMax 
MTV50% 

MTV Velocity 

Higgins 
[22] 

2012 88 Retrospective Pre 15 HNC RT +/- CT DFS 
LRC 
OS 

SUVMax 
SUVMean 

TLG (manuelly delineated) 

Kao [27] 2012 64 Retrospective Pre 24 Pharynx RT +/- CT DFS 
PRF

S 

MTV 2.5 3.0 40% 50% 

Romesser 
[66] 

2012 41 Retrospective Pre 24.2 HNC RT +/- CT OS 
DFS 
LRF

S 

SUVMax 
MTV (Gradient based method) 

Tang [32] 2012 83 Retrospective Pre 20 HNC CRT OS 
DFS 

SUVMax  
MTV 50% 

Cheng [38] 2013 70 Retrospective Pre >24 Oropharynx CRT OS 
DFS 

MTV 2.5 
TLG 

Textural features 

Ashamalla 
[37] 

2014 28 Retrospective Pre 
and 
post 

36 * HNC RT +/- CT OS SUVMax 
SUVMean 

Anatomical biological value = 
SUVMax x greatest tumor diameter 

Chen [23] 2014 51 Prospective Pre 
and 
per 

23 Pharynx RT +/- CT OS 
DFS 

SUVMax pre and per 
SUV reduction ratio 

Hanamoto 
[67] 

2014 118 Prospective Pre N/A HNC CRT LR SUVMax 
SUVMean 
MTV 2.5 

TLG 

Ito [46] 2014 36 Retrospective Post 23.8 * HNC CRT  OS 
LC 

SUVMax 

Romesser 
[26] 

2014 100 Retrospective Pre 49 Oropharyng
eal 

CRT LRC 
DFS 
OS 

SUVMax 
MTV 42% 

Sager [68] 2014 74 Retrospective Pre 23 HNC CRT DFS 
OS 

SUVMax 
MTV 50% 

Akagunduz 
[69] 

2015 62 Retrospective Pre 18 HNC RT +/- CT LRF
S 

DFS 
OS 

SUVMax 
SULMax 

MTV (adaptive threshold based) 

Cheng [29] 2015 88 Retrospective Pre 32 Oropharynx CRT DFS 
DSS 

MTV 50 %  42% 2.5 and adaptive 
threshold 

TLG 
Textural features 

Hofheinz 
[33] 

2015 37 Prospective Pre 27* HNC CRT DFS 
OS 

SUVMax 
SUVMean 

MTV (adaptive threshold) 
TLG 

Asphericity 



Lin [30] 2015 91 Retrospective Pre 18 Pharynx CRT OS 
DFS 

SUVMax Nodal 
MTV2.5 N 

MTV40% N 
MTV50% N 
TLG40% N 
TLG50% N 

Matoba 
[24] 

2015 33 Prospective Pre 
and 
post 

N/A HNC CRT LRC 
DFS 
OS 

SUVMax 
EORTC Criteria 

Min [41] 2015 72 Retrospective Pre 
and 
per 

25 HNC CRT LRF
S 

DFS 
MFF

S 
OS 

SUVMax 
MTV 2.5 

TLG 
Percentage reduction between per 

and pre treatment PET 

Moon [70] 2015 44 Retrospective Pre 34.7 Nasopharyn
x 

CRT DFS SUVMax 
SUVMean 

MTV (adaptive threshold) 
TLG 

Rasmussen 
[18] 

2015 287 Retrospective Pre 32 HNC RT +/- CT Tim
e to 
failu

re 

SUVMax 
SUVMean 
SUVPeak 

Schwartz 
[50] 

2015 74 Retrospective Pre 
and 
post 

50.4 HNC CRT LR 
DFS 
OS 

SUVMax 
SUVPeak 

MTV 40 % 

Yabuki [31] 2015 118 Retrospective Pre 36 Larynx CRT OS 
DFS 

SUVMax  
MTV 2, 2.5, 3 

Kim [47] 2016 78 Retrospective Post 52.7 HNC CRT DFS 
OS 

SUVMax 

Min [40] 2016 100 Retrospective Pre 
and 
per 

20 HNC RT +/- CT LRF
S 

DFS 
MFF
S OS 

SUVMax 
MTV 2.5 

TLG 
Percentage reduction between per 

and pre treatment PET 

 

  



Table 2 : Correlation between PET quantitative parameters and clinical outcome. CR: 

Complete Response, LCR: Loco Regional Response, LR: Local Relapse, DSS: Disease Specific 

Survival, RFS: Recurrence Free Survival, LRFS: Local Relapse Free Survival, DFS: Disease Free 

Survival, OS: Overall Survival, MTV: Metabolic Tumor Volume, TLG: Total Lesion Glycolysis 

Timing Authors Year End point Used PET 
parameters 

Significant Prognostic 
parameters 

Threshold Clinical 
outcome 

Hazard Ratio 

Pre 
and 
post 

Greven [36] 2001 LR SUVMax None    

Pre Allal [14] 2002 DFS OS SUVMax SUVMax (DFS) 5.5 3-year DFS  
79% vs 42% 

N/A 

Pre 
and 
per 

Brun [19] 2002 Complete 
response 

(CR) 
LRC 
OS 

SUVmax 
Metabolic rate 

(MR) FDG  

Pre treatment : SUVMax 
Tumor (CR and LCR) 

Per treatment : SUVMax 
Tumor (CR and LCR), MR 
Tumor and lymph node 

(CR and LCR) 
MR FDG per OS 

Pre treatment 
SUVmaxT = 9 

Per trt 
SUVmaxT =  5 

SUVmax pre trt 
    CR 96% vs 64% (p=.01) 
    LRC 96 vs 57 (p=.003) 

MR Tumor per trt 
    CR 96 vs 62% (p=.007) 

    LRC 96 vs 55% (p=0.002) 
    OS 72% vs 35% (p=0.0042) 

SUVMax per trt 
    LCR 91% vs 62  (p=.031) 

Pre 
and 
post 

Kitagawa [16] 2003 Clinical 
response 

SUVMax SUVMax N/A N/A N/A 

Pre Sanghera [20] 2005 OS SUVMax at 1 
and 2h, 
SUVMax 

Difference  

SUV difference 16% N/A N/A 

Pre 
and 
post 

Horiuchi [43] 2008 LR SUVMax SUVMax Post trt 3.7 N/A  

Pre Chung [61] 2009 LR 
DFS 
OS 

SUV Max 
MTV 2.5 

MTV 40  DFS 3.42 (p =0.04) 

Pre  La [34] 2009 OS 
DFS 
LRC 

SUVMax 
MTV 50% 

MTV50% (OS and DFS) N/A N/A Increase of 17.4ml 
of MTV50% = HR 

1.9 (first event) and 
2.1 (death) 

Pre Machtay [17] 2009 OS 
DFS 

SUVMax SUVMax 9 2 year DFS 76 
vs 37% 

(p=0.007) 
2 year OS 82% 

vs 46 % 
(p=0.016) 

DFS : 2.41 (p=0.03)  
OS : 2.47 (p=0.06) 

Pre Suzuki [62] 2009 OS DFS SUVMax None 5.5 N/A N/A 

Pre 
and 
Per 

Farrag [15] 2010 OS DFS 
LRRFS 

SUVMax Pre : SUVMax (OS) 
Per SUVmax (OS) 

Pre trt : 8.11 
Per trt : 4.03 

2-year OS  
SUVmax pre trt 

81% vs 50% 
(p=0.027) 

SUVMax Per trt 
82 vs 47% 
(p=0.026) 

N/A 

Pre 
and 
post 

Moeller [44] 2010 DFS SUVMax T 
Change in 
SUVMax T 

SUVMax Post 
Change in SUVMax 

6 N/A N/A 

Pre Seol [63] 2010 DFS OS SUVMax 
SUVMean 
MTV 2.5 

MTV 9.3 cm3 N/A DFS : 2.19 (p=0.006) 
OS : 1.62 (p=0.051) 



Pre Deron [64] 2011 DFS OS SUVMax 
MTV 50% 

MTV50(DFS OS) 31 cm3 N/A N/A 

Pre 
and 
per 

Hentschel [39] 2011 DFS OS LRC SUVmax 
SUVMean 
MTV 50% 

ΔSUVmax10/20 (OS) 
MTV50 TEP 0 (OS) 

ΔSUVmax10/20 
50% 

MTV50% 10.2 

2 year OS 
ΔSUVmax10/20 
  88% vs 38% (p 

=0.02) 
MTV 50% 

  83% vs 34% 
(p=0.02) 

N/A 

Pre 
and 
post 

Hoshikawa 
[45] 

2011 Recurrence SUVMax SUVMax Post 
% change in SUV 

60% N/A Odds ratio local 
control 61.5 (p < 

0.001) 

Post Murphy [49] 2011 DFS OS SUVMax 
MTV 2, 2.5, 3, 

3.5, 4 
TLG 

Post trt : MTV2.0 (DFS 
OS) 

15 cm3 N/A Increase of 21cm3 : 
2.5 (DFS) and 2 (OS) 

Pre Schinagl [28] 2011 DFS OS SUVMax 
SUVMean 

MTV 40% 50% 
MTV 2.5 
GTV -PET 

GTV PET (LC DFS OS in 
oral cavity and 

oropharyngeal cancer) 
MTV40% (DMFS DFS OS) 

N/A N/A N/A 

Pre 
per 
and 
post 

Castaldi [21] 2012 RFS DSS SUVMax 
Change in 
SUVMax 
(EORTC 
criteria) 

EORTC criteria post N/A 2 year DSS (late 
TEP) 

CR 100% 
PR 74% 
PD 33% 
p=.009 

N/A 

Pre Chang [25] 2012 OS DFS 
LRFS 

SUVMax 
MTV 2.5 

TLG 

TLG T (OS DFS) 65 g 3-year DFS 
   79.9% vs 

37.4% 
(p<0.001)  

DFS : 3.54 
OS : 4.9 

Pre Chu [65] 2012 OS DFS SUVMax 
MTV50% 

MTV Velocity 
(Difference 

between the 2 
pre treatment 

TEP) 

MTV T N/A N/A Increase of 
1cc/week = 85% 

increase of the risk 
of death 

Pre Higgins [22] 2012 DFS LRC OS SUVMax 
SUVMean 

TLG (manuelly 
delineated) 

SUVMean (DFS) 7 (median) 2 year DFS 
82% vs 58% 

p=0.03 

DFS : 1.14 (p=0.014) 

Pre Kao [27] 2012 DFS PRFS MTV 2.5 3.0 
40% 50% 

MTV 2.5 (DFS PRFS) 13.6 ml 2-year PRFS  
  72% vs 39% 

(p=0.001) 
2-year DFS  
68% vs 41% 
(p=0.008) 

DFS HR 2.69 
p=0.011 

PRFS HR 3.76 
p=0.003 

Pre Romesser [66] 2012 OS DFS 
LRFS 

SUVMax 
MTV (Gradient 

based 
method) 

MTV 7.2 2-year LC 100 
vs 54.2% 

(p=<0.001) 
DFS 94.7 vs 

39.4% 
(p=0.001) 

OS 94.7 vs 64.2 
(p=0.04) 

N/A 

Pre Tang [32] 2012 OS DFS SUVMax 
MTV50% 

MTV50% T (OS and DFS) Increase of 
17cm3 

(difference between first 

and third quartiles) 

N/A DFS : 2.07 
(p=0.00017) 

OS : 1.99 
(p=0.0048) 



Pre Cheng [38] 2013 PFS DSS OS MTV 2.5 
TLG 

Normalized 
gray-level co-

occurence 
matrix 

Neighborhood 
gray-tone 
difference 

matrix 

TLG (PFS DSS OS) 
Uniformity (PFS DSS OS) 

TLG 121.9 g 
Uniformity 4 

bins 0.138 

N/A PFS  
   TLG : 7.15( 

p=0.02) 
   Uniformity : 0.32 

(p=0.001) 
OS  

   TLG : 5.85 
(p=0.011) 

   Uniformity : 0.46 
(p=0.017) 

Pre 
and 
post 

Ashamalla 
[37] 

2014 OS SUVMax 
SUVMean 

Anatomical 
biological 

value = 
SUVMax X 

greatest tumor 
diameter 

None N/A N/A N/A 

Pre 
and 
per 

Chen [23] 2014 OS DFS SUVMax pre et 
per (T et N) 

SUV reduction 
ratio 

SUV reduction ratio 
tumor 

3.9 2-year DFS 
  64% vs 41% 

(p=0.045) 
2 year OS 

  66% vs 47% 
(p=0.035)  

DFS : 2.33 
OS : 2.64 

Pre Hanamoto 
[67] 

2014 LR SUVMax 
SUVMean 
MTV 2.5 

TLG 

For laryngeal and 
hypopharyngeal cancer, 
High MTV (> 25 ml) or 
high TLG (>144.8g) = 

high risk of partial 
response 

N/A N/A 13.4 (p=0.003) 

Post Ito [46] 2014 OS LC SUVMax SUVMax (OS) 6.1 OS 12.1 vs 44.6 
months 

(p<0.001) 

N/A 

Pre Romesser [26] 2014 LRC PFS OS SUVMax 
MTV 42% 

MTV (Distant 
metastasis, Disease 

progression or death) 

9.7 5-year PFS  
  80.3% vs 

56.7% 
(p=0.015)  
5-year OS  
  84.1% vs 

57.9% 
(p=0.008)  

PFS : HR2.17 
OS : HR 2.37 

Pre Sager [68] 2014 DFS OS SUVMax 
MTV 50% 

MTV50% N/A N/A DFS : 2.5 
OS : 2  

Pre Akagunduz 
[69] 

2015 LRFS DFS 
OS 

SUVMax 
SULMax 

MTV (adaptive 
threshold 

based) 

MTV (treatment 
response, LR, Disease 

related death) 
SULMax (LR) 

N/A 3-year (MTV) 
   DFS 75.5% vs 

25.3%  
   OS 82.9% vs 

55.9% 

N/A 

Pre Cheng [29] 2015 PFS DSS MTV 50 %  
42% 2.5 and 

adaptive 
threshold 

TLG 
Grey level run 

lenght 
encoding 

matrix 
Grey level size 

zone matrix 

Zone size 
nonuniformity,  
Uniformity, TLG 

adaptive threshold (PFS) 

N/A N/A N/A 

Pre Hofheinz [33] 2015 PFS OS SUVMax 
SUVMean 

MTV (adaptive 
threshold) 

TLG 
Aphericity 

TLG MTV ASP MTV 12.6 
TLG 82.6 
ASP 22% 

N/A PFS 
MTV : 2.89 
(p=0.017) 

TLG : 3.11 (p=0.02) 
ASP : 3.09 (p=0.015) 

OS 
MTV : 3.3 (p=0.018) 
TLG : 3.32 (p=0.016) 
ASP : 5.9 (p=0.001) 



Pre Lin [30] 2015 Nodal 
relapse 

free 
survival 

OS 
DFS 

SUVMax Nodal 
MTV2.5 N 

MTV40% N 
MTV50% N 
TLG40% N 
TLG50% N 

TLG 40% (DFS NRFS) 38g N/A DFS : 2.12 (p=0.02) 

Pre 
and 
post 

Matoba [24] 2015 LRC PFS OS SUVMax 
EORTC Criteria 

EORTC criteria (OS and 
PFS) 

N/A N/A N/A 

Pre 
and 
per 

Min [41] 2015 LRFS 
DFS 

MFFS 
OS 

SUVMax 
MTV 2.5 

TLG 
Percentage 
reduction 

between per 
and pre 

treatment PET 

SUVMax per trt (DFS) 
MTV Pertrt (DFS) 

TLG pertrt (LRFS DFS) 

SUVMax 4.25 
MTV 3.3 
TLG 9.4 

N/A N/A 

Pre Moon [70] 2015 DFS SUVMax 
SUVMean 

MTV (adaptive 
threshold) 

TLG 

TLG 7.6 N/A DFS : 7.62 (p<0.001) 

Pre Rasmussen 
[18] 

2015 Time to 
failure 

SUVMax 
SUVMean 
SUVPeak 

SUVmax N/A N/A Time to failure ( for 
SUVMax increase 
from 25th to 75th 
percentile) : 1.34 

(p=0.039) 

Pre 
and 
post 

Schwartz [50] 2015 LR PFS OS SUVMax 
SUVPeak 

MTV 40 % 

Primary MTV 40% (LRR, 
DM, DFS) 

8.76 cm3 N/A LRR : 4.01 (p=0.02) 
PFS : 2.34 (p=0.05) 

Pre Yabuki 2015 DFS OS MTV 2 2.5 3 
(for t and n) 

MTV T 2.5 (OS DFS) 4.9 ml 3-year DFS 
92.9% vs 38.6% 

(p<0.001) 
3-year OS 
95.35% vs 

59.27% 
(p<0.001) 

DFS : 6.97 (p=0.001) 
OS : 1.96 (p=0.002) 

Post Kim [47] 2016 PFS OS SUVMax SUVMax (DFS and OS) 4.4 3-year PFS 
81.1% vs 42.9% 

3-year OS 
87.7% vs 56.9% 

PFS : 4.79 (p<0.001) 
OS : 4.25 (p = 0.005) 

Pre 
and 
per 

Min [40] 2016 LRFS DFS 
MFFS OS 

SUVMax 
MTV 2.5 

TLG 
Percentage 
reduction 

between per 
and pre 

treatment PET 

TLG pertrt (DFS) 
SUVMax per (DFS MFFS) 

MTV per (DFS OS) 
TLG per (DFS) 

TLG per trt 9.4 
SUVMax pre 

11.45 and per 
4.25 

MTV pre 21.95 
and per 3.3 

TLG pre 91.75 
and per 9.4 

TLG  
2-year DFS 

85.9% vs 60.8% 
(p=0.005)  

MTV  
2-year DFS 

83.2% vs 62.3% 
(p=0.018) 
SUVMax 

 2-year DFS 
82% vs 64.5% 

(p=0.025) 

TLG DFS : 7.7 
MTV DFS : 4.29 
SUVMax : 4.18 

 

 

  



 

Table 4: summary of the results of the 42 studies which analyzed the predictive value of PET 

before treatment. * : if considering only studies without volumetric PET parameters. DFS : 

Disease Free Survival, OS : Overall Survival, MTV : Metabolic Tumor Volume, TLG : Total Lesion 

Glycolysis 

Quantitative 
parameters 

Correlation 
with 

DFS/OS 

Number of 
positive 

studies/total 
studies 

Strength Weakness 

SUVMax Poorly 
14/38 

(11/14*) 
Ease of use 

Poorly reproducible 
No data concerning heterogeneity 

SUVPeak ? 0/2 
More robust 
than SUVMax 

May not be representative of 
nonhomogeneous overall tumor uptake 

Ideal size of the ROI is still unclear 

SUVMean No 1/9 - - 

MTV/TLG Yes 26/26 

Represent the 
heterogeneity 
of the tumor 

uptake 
Ease of use 

No clearly segmentation method 
No data concerning spatial relationships 

 

Shape/ 
Texture 
analysis 

? 
 

3/3 

Represent the 
heterogeneity 
of the tumor 

 

No standardized method/Experimental 
Which correlation with histology ? 

 

 

 




