Supplementary material

Palladium-catalysed direct arylation of heteroarenes using 1-bromophenyl-1,2,3-triazoles as aryl sources

Halima Hadj Mokhtar, ${ }^{\text {a,b }}$ Nouria Laidaoui, ${ }^{\text {a,b,c }}$ Douniazad El Abed, ${ }^{\text {b* }}$ Jean-François Soulé, ${ }^{\text {a* }}$ Henri Doucet ${ }^{\text {a* }}$
${ }^{a}$ Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes "Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France. Fax: (+33)2-23-23-63-84 E-mail: henri.doucet@univ-rennes1.fr
${ }^{b}$ Laboratoire de Chimie Fine, Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed BenBella, BP. 1524, EL M'naouer Oran 31100 Algérie.
${ }^{c}$ Université des Sciences et de la Technologie d'Oran BP. 1505 El M'naouer Oran 31000 Algérie.

Abstract

General: All reactions were performed in Schlenk tubes under argon. Potassium acetate 99+ was used. DMA (99\%) was purchased from Acros. $\mathrm{Pd}(\mathrm{OAc})_{2},\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}, 1.4$-bis(diphenylphosphino)butane (98%) were purchased from Alfa Aesar. The heteroarenes were used without purification. NMR spectra were recorded on Bruker GPX (400 MHz) spectrometer in CDCl_{3} solutions. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26\right.$ and $\left.{ }^{13} \mathrm{C}: 77.0\right)$. Flash chromatography was performed on silica gel ($230-400$ mesh).

Preparation of the $\mathbf{P d C l}\left(\mathbf{C}_{3} \mathbf{H}_{5}\right)(\mathbf{d p p b})$ catalyst [1]: An oven-dried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(182 \mathrm{mg}, 0.5 \mathrm{mmol})$ and dppb ($426 \mathrm{mg}, 1 \mathrm{mmol}$). 10 mL of anhydrous dichloromethane were added, then, the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The yellow powder was used without purification. ${ }^{31} \mathrm{P}$ NMR $\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3$ (s).

The bromo-substituted 1-aryl-1,2,3-triazoles 1-7 were prepared using a reported procedure [2].
In a typical experiment, the β-dicarbolyl compound (1 mmol), morpholine ($0.087 \mathrm{~g}, 1 \mathrm{mmol}$) and the bromophenyl azide (1 mmol) were dissolved in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . Then, the solvent was evaporated and the product was recristallized in ethanol or purified by silica gel column chromatography (pentane:AcOEt).

General procedure for the synthesis of compounds 8-26: In a typical experiment, the 1-(bromophenyl)-1,2,3-triazole 1-6 (1 mmol), heteroarene (1.5 mmol), $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ or $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(6.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ (see table or schemes) were dissolved in DMA (4 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 16 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography.

Ethyl 1-(4-(2-ethyl-4-methylthiazol-5-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (8)

From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.191 \mathrm{~g}, 1.5$ $\mathrm{mmol}), \mathbf{8}$ was obtained in $91 \%(0.324 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}$, $3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1,161.7,148.1,138.9,136.8,134.6,134.4,130.2,129.1,125.5,61.1,26.9,16.1,14.4,14.2,10.0$.
elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (356.44): C 60.65, H 5.66; found: C 60.71, H 5.48.
Ethyl 5-methyl-1-(4-(5-methylthiophen-2-yl)phenyl)-1,2,3-triazole-4-carboxylate (9)
From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol})$ and 2-methylthiophene ($0.147 \mathrm{~g}, 1.5 \mathrm{mmol}), \mathbf{9}$ was obtained in $87 \%(0.284 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.8,141.2,139.8,138.8,136.8,136.6,133.8,126.6,126.3,125.7,124.3,61.1,15.5,14.3,10.1$.
elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (327.40): C 62.37, H 5.23; found: C 62.50, H 5.12.

Ethyl 1-(4-(5-acetylthiophen-2-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (10)
From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate 10 ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-acetylthiophene ($0.189 \mathrm{~g}, 1.5 \mathrm{mmol}$), $\mathbf{9}$ was obtained in $85 \%(0.301 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.4,161.6,150.1,144.4,138.7,136.9,135.5,135.1,133.3,127.3,125.9,125.1,61.1,26.7,14.3,10.1$. elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (355.41): C 60.83, H 4.82; found: C 60.96, H 4.75.

Ethyl 1-(4-(5-cyanothiophen-2-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (11)
From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol})$ and thiophene-2-carbonitrile ($0.164 \mathrm{~g}, 1.5$ $\mathrm{mmol})$, $\mathbf{1 1}$ was obtained in $87 \%(0.294 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ ($\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.67(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.6,149.3,138.8,138.5,137.1,136.0,134.0,127.6,126.1,124.5,113.9,109.8,61.1,14.4,10.1$.
elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (338.39): C 60.34, H 4.17; found: C 60.12, H 4.31.

Ethyl 1-(4-(5-butylfuran-2-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (12)

From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-nbutylfuran ($0.186 \mathrm{~g}, 1.5 \mathrm{mmol}$), $\mathbf{1 2}$ was obtained in $82 \%(0.289 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.70$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 5 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{3}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.7,157.7,150.3,138.8,136.7,133.3,132.8,125.5,124.0,107.7,107.3,61.0,30.1,27.8,22.2,14.3$, 13.7, 10.0.
elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ (353.42): C 67.97, H 6.56; found: C 68.11, H 6.44.

Ethyl 1-(4-(5-(methoxycarbonyl)furan-2-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (13)

From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol})$ and methyl furan-2-carboxylate ($0.189 \mathrm{~g}, 1.5$ $\mathrm{mmol})$, $\mathbf{1 3}$ was obtained in $73 \%(0.259 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.97(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.7,159.0,155.5,144.5,138.8,135.4,131.1,125.9,125.7,119.9,108.5,61.2,52.0,14.4,10.1$.
elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$ (355.35): C 60.84, H 4.82; found: C 60.71, H 4.61.

Ethyl 1-(4-(4-(methoxycarbonyl)-5-methylfuran-2-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (14)

From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and methyl 2-methylfuran-3-carboxylate (0.210 $\mathrm{g}, 1.5 \mathrm{mmol}), \mathbf{1 4}$ was obtained in $83 \%(0.306 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.70$ (s, 3H), $2.63(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1,161.7,159.7,150.0,138.8,136.8,134.2,131.6,125.7,124.5,115.5,107.4,61.1,51.5,14.4,13.9$, 10.0.
elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ (369.38): C 61.78, H 5.18; found: C 61.90, H 5.24.

Ethyl 1-(4-(5-formyl-1-methyl-pyrrol-2-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (15)

From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $1(0.310 \mathrm{~g}, 1 \mathrm{mmol})$ and 1-methylpyrrole-2-carbaldehyde (0.163 g , $1.5 \mathrm{mmol}), \mathbf{1 5}$ was obtained in $77 \%(0.260 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.9,161.7,142.0,138.8,137.0,135.4,133.6,133.0,130.4,125.5,124.3,111.4,61.2,34.5,14.4 ; 10.1$.
elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ (338.37): C 63.89, H 5.36; found: C 63.70, H 5.21.

Ethyl 1-(4-(3,5-dimethylisoxazol-4-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (16)

From ethyl 1-(4-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{1}(0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole ($0.146 \mathrm{~g}, 1.5 \mathrm{mmol}$), 16 was obtained in $92 \%(0.300 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (s, 3H), $1.46(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,161.6,158.3,138.8,136.8,134.6,132.6,130.2,125.7,115.4,61.1,14.3,11.6,10.8,10.0$.
elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ (326.36): C 62.57, H 5.56; found: C 62.67, H 5.39.

Ethyl 5-ethyl-1-(4-(2-ethyl-4-methylthiazol-5-yl)phenyl)-1,2,3-triazole-4-carboxylate (17)

From ethyl 1-(4-bromophenyl)-5-ethyl-1,2,3-triazole-4-carboxylate 2 ($0.324 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.191 \mathrm{~g}, 1.5 \mathrm{mmol}$), 17 was obtained in 90% (0.333 g) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,161.6,148.3,144.6,136.3,135.0,134.6,130.3,129.2,126.0,61.2,27.1,17.2,16.3,14.5,14.3,13.4$. elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (370.47): C 61.60, H 5.99; found: C 61.41, H 5.87.

Ethyl 1-(4-(2-ethyl-4-methylthiazol-5-yl)phenyl)-5-phenyl-1,2,3-triazole-4-carboxylate (18)

From ethyl 1-(4-bromophenyl)-5-phenyl-1,2,3-triazole-4-carboxylate $\mathbf{3}$ ($0.372 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.191 \mathrm{~g}, 1.5$ mmol), $\mathbf{1 8}$ was obtained in $85 \%(0.355 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50-7.25(\mathrm{~m}, 9 \mathrm{H}), 4.39(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.0,160.9,148.0,140.7,137.1,134.7,133.9,130.2,130.0,129.7,129.1,128.4,125.7,125.2,61.2,26.9$, 16.2, 14.2, 14.1 .
elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (418.52): C 66.01, H 5.30; found: C 65.89, H 5.21.

ethyl 1-(4-(3,5-dimethylisoxazol-4-yl)phenyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate (19)

From ethyl 1-(4-bromophenyl)-5-phenyl-1,2,3-triazole-4-carboxylate $\mathbf{3}$ ($0.372 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole ($0.146 \mathrm{~g}, 1.5 \mathrm{mmol}$), 19 was obtained in $83 \%(0.322 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,160.8,158.2,140.7,137.1,134.9,131.9,130.2,130.0,129.7,128.4,125.6,125.4,115.3,61.2,14.1$, 11.6, 10.7.
elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ (388.43): C 68.03, H 5.19; found: C 68.10, H 5.04.

Ethyl 1-(3-(2-ethyl-4-methylthiazol-5-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (20)

From ethyl 1-(3-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{4}$ ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.191 \mathrm{~g}, 1.5$ mmol), $\mathbf{2 0}$ was obtained in $87 \%(0.310 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.3,161.5,149.0,140.0,136.3,134.3,132.5,130.9,130.0,129.7,128.4,124.7,61.0,26.5,15.3,14.3$, 13.9, 9.3.
elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (356.44): C 60.65, H 5.66; found: C 60.47, H 5.41.

Ethyl 5-methyl-1-(3-(5-methylthiophen-2-yl)phenyl)-1,2,3-triazole-4-carboxylate (21)

From ethyl 1-(3-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate 4 ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-methylthiophene ($0.147 \mathrm{~g}, 1.5 \mathrm{mmol}$), 21 was obtained in $81 \%(0.265 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.7,141.1,139.6,138.9,136.8,136.6,136.0,130.0,126.8,126.5,124.3,123.3,122.2,61.1,15.5,14.4$, 10.0.
elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (327.40): C 62.37, H 5.23; found: C 62.52, H 5.14.

Ethyl 1-(3-(3,5-dimethylisoxazol-4-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (22)

From ethyl 1-(3-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate 4 ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole ($0.146 \mathrm{~g}, 1.5 \mathrm{mmol}$), 22 was obtained in $92 \%(0.300 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.44$ (s, 3H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 165.8,161.5,158.1,138.7,136.8,135.9,132.4,130.5,130.1,125.7,124.2,115.2,61.0,14.3,11.6,10.7$, 10.0.
elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ (326.36): C 62.57, H 5.56; found: C 62.47, H 5.60.

From ethyl 1-(3-bromophenyl)-5-phenyl-1,2,3-triazole-4-carboxylate 5 ($0.372 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.191 \mathrm{~g}, 1.5$ mmol), $\mathbf{2 3}$ was obtained in $94 \% ~(0.393 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50-7.25(\mathrm{~m}, 9 \mathrm{H}), 4.37(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.1,160.9,147.9,140.8,137.2,136.1,133.9,130.3,130.1,130.0,129.7,128.8,128.6,125.8,125.5$, 124.0, 61.3, 26.9, 15.8, 14.2, 14.1.
elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (418.52): C 66.01, H 5.30; found: C 65.87, H 5.22.

Ethyl 1-(2-(2-ethyl-4-methylthiazol-5-yl)phenyl)-5-methyl-1,2,3-triazole-4-carboxylate (24)
From ethyl 1-(2-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate 6 ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.191 \mathrm{~g}, 1.5$ $\mathrm{mmol}), \mathbf{2 4}$ was obtained in $90 \%(0.320 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.42(\mathrm{~m}, 3 \mathrm{H}), 4.44(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.3,161.5,149.0,140.1,136.3,134.3,132.5,130.9,130.0,129.8,128.4,124.7,61.0,26.5,15.3,14.3$, 13.9, 9.3.
elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (356.44): C 60.65, H 5.66; found: C 60.47, H 5.41.

Ethyl 5-methyl-1-(2-(5-methylthiophen-2-yl)phenyl)-1,2,3-triazole-4-carboxylate (25)

From ethyl 1-(2-bromophenyl)-5-methyl-1,2,3-triazole-4-carboxylate $\mathbf{6}$ ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-methylthiophene ($0.147 \mathrm{~g}, 1.5 \mathrm{mmol}$), $\mathbf{2 5}$ was obtained in $92 \%(0.301 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.7,142.1,140.5,136.3,135.1,132.7,131.8,131.1,130.1,128.6,128.1,126.6,126.3,61.0,15.2,14.3$, 9.0 .
elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (327.40): C 62.37, H 5.23; found: C 62.42, H 5.31.

Ethyl [1,2,3]triazolo[1,5-f]phenanthridine-3-carboxylate (26) [3]
From ethyl 1-(2-bromophenyl)-5-phenyl-1,2,3-triazole-4-carboxylate 7 ($0.372 \mathrm{~g}, 1 \mathrm{mmol}$) $\mathbf{2 6}$ was obtained in 85% (0.247 g) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.68(\mathrm{~m}, 4 \mathrm{H}), 4.63(\mathrm{q}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 162.5,133.7,132.8,130.8,130.6,129.9,129.0,128.9,128.7,128.0,123.5,122.6,122.4,121.4,117.6$, 61.7, 14.4.

1. T. Cantat, E. Génin, C. Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 687 (2003) 365-376.
2. R. Fusco, G. Bianchetti, D. Pocar, R. Ugo, Renato, Gazz. Chim. Ital. 92 (1962) 1040-1061.
3. Z. Liu, D. Zhu, B. Luo, N. Zhang, Q. Liu, Y. Hu, R. Pi, P. Huang, S. Wen, Org. Lett. 16 (2014), 5600-5603.
